Doc# OMA-BCAST-2006-0936R01-CR_Clarifying_the_TAK_derivation.doc[image: image14.jpg]
Change Request

Doc# OMA-BCAST-2006-0936R01-CR_Clarifying_the_TAK_derivation.doc
Change Request

Change Request

	Title:
	Clarifying the TAK derivation
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BCAST-DRM

	Doc to Change:
	OMA-TS-BCAST_SvcCntProtection-v1.doc (latest version)

	Submission Date:
	November 7, 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Matti Puputti, Nokia, matti.puputti@nokia.com
John Bernsen, john.ac.bernsen@philips.com

	Replaces:
	n/a

1 Reason for Change

In the section 9.1 of the SPCP doc is the following text:

· The TAK contained in the STKM SHALL be used as the key for the ESP message integrity code if authentication is used.
The text is misleading, as the STKM does not contain the TAK, but the key material within STKM is used to derive the TAK as described in section A.11.1 of XBS doc.

This CR proposes to reformulate the sentence in SPCP doc, to avoid the potential misinterpretation.
R01 adds the derivation of the TAS from the XBS document to the SPCP document in change 1. Furthermore in change 2, an incorrect reference to the TAK derivation is corrected and two others. In a separate CR, the TAK derivation (and also the PAK and SAK derivation) are removed from the XBS specification.
2 Impact on Backward Compatibility

none
3 Impact on Other Specifications

none
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Group is asked toagree the following modification describerd in the section 6 of this CR.
6 Detailed Change Proposal

Change 1: (optional)Brief description of specific change

9.1 IPsec

IPsec fulfills both the criterion to be bearer-agnostic and to be universally usable for all types of IP-based services. The Broadcast System MAY use IPsec to protect Broadcast Services. Broadcast Terminals MAY support IPsec.

The IPsec implementation in the device SHALL be such that it does not interfere with the usage of IPsec for other applications than OMA BCAST. This implies that the SPI allocation and security association lookups SHALL be implemented in such a way that they interoperate with existing IPsec implementations.

An IPsec Security Association (SA) consists of a tuple of the following parameters.

· Selectors (IP protocol version, source IP address, destination IP address, protocol, source port and destination port)

· SPI

· Destination IP address

· Security protocol, security protocol mode and security protocol parameters

· Algorithms and algorithm parameters

· Keymaterial

The selectors can contain wildcards, ranges or pointvalues, but all the other parameters must be exactly defined. For transport mode all address selectors must be point values and the destination address selector must match the destination IP address of the SA. An IPsec SA SHALL be uniquely identified by a destination IP address and SPI pair.

[image: image1.emf]Long Term

Key

Message

(LTKM)

OMA DRM2.0 Agent/

(U)SIM/(R)UIM

Short Term Key Delivery Layer

Short Term

Key

Message

(STKM)

Encrypted

Fields from

STKM

Decrypted

Fields from

STKM

Security

Association 1

IPSec

Encrypted Data

Decrypted Data

Security

Association n

...

...

Figure 9 – IPsec Security Association Elements

Figure 9 shows the different objects and elements involved in instantiating IPsec security associations.The instantiation of security associations is performed by Short Term Key Messages and Long Term Key Messages. Given a STKM, a Short Term Key Delivery Layer extracts the encrypted fields from that message. The Short Term Key Delivery Layer passes these and other relevant fields to the Long Term Key Delivery Layer. For all LTKMs on the device, the Long Term Key Delivery Layer examines if one would be able to decrypt the fields in the STKM. If the Long Term Key Delivery Layer does find a suitable LTKM, then it decrypts these fields using the appropriate rights management system and LTKM. The decrypted fields are provided back to the Short Term Key Delivery Layer which based on the STKM and the decrypted fields instantiates a set of security associations. If the Long Term Key Delivery Layer does not find a suitable LTKM, then the STKM SHOULD be silently dropped.

Selectors

Selectors are provided by the key delivery protocol. The requirements for the selectors are that the IP addresses are point values and the destination IP address is equal to the destination address in the security association.

Encapsulation Protocol and Mode

If IPsec is used for encryption of broadcast services, the protocol and mode SHALL be ESP in Transport Mode, according to [RFC2401] and [RFC2406]. Other IPsec encapsulation protocols or modes SHALL NOT be used.

Encryption Algorithm

The encryption algorithm for IPsec ESP SHALL be AES-128-CBC with explicit IV in each IP packet, as defined in [RFC2451] and [RFC3602]. Other encryption algorithms or key sizes or chaining modes SHALL NOT be used.

Authentication Algorithm

The authentication algorithm for IPsec ESP SHALL be HMAC-SHA-1-96, as defined in [RFC2104] and [RFC2404]. Other authentication algorithms or truncations SHALL NOT be used.

Support for the authentication algorithm as specified above is MANDATORY for both the terminal and the broadcast system. If no authentication is desired, the NULL authentication algorithm SHALL be specified. In this case, replay protection SHALL NOT be performed by the terminal.

Note there must be a secure way of notifying whether a security transform includes integrity protection. This should be handled as part of the mechanism for negotiating IPsec security parameters e.g. IKE.
SA Management

The Short Term Key Delivery Layer defines how often the TEKs are rekeyed. This sets the following requirements:

· The TEK contained in the STKM SHALL be used as the key for the ESP encryption.

· The TAK , which is derived from the key material in the STKM, refer to “Authentication for IPsec” below, SHALL be used as the key for the ESP message integrity code if authentication is used.

· The IPsec implementation SHALL be able to manage security associations relating to the key stream messages separately from those managed manually or by any other protocol such as IKE. This implies the ability to identify whether an SA is relating to key stream messages.

· The IPsec Security Policy (SP) SHALL be provided by the Service Guide. Security associations relating to STKMs SHALL be prioritized lower than those security associations that have a locally defined policy or a policy that is provided by a trustworthy party.

· Security associations relating to STKMs are simplex and SHALL be applied only to inbound traffic on the recipient side.

· An implementation SHALL be able to keep alive the security associations for at least two crypto periods of the key stream.

The rekeying of existing security associations by the Short Term Key Delivery Layer SHOULD be managed on a resource basis by the IPsec layer according to the following recommendations:

· The IPsec implementation SHOULD be able to keep alive at least the two most recently instantiated IPsec security associations for a specified set of selectors.

· The IPsec implementation SHOULD provide a least-recently-instantiated mechanism for destroying security associations as resources reserved for OMA BCAST IPsec security associations are exhausted.

· The amount of security associations required to exhaust the resources such that the LRU is triggered SHOULD be 3 per SEK per set of IP selectors.
· A receiver SHOULD be able to rekey any security association at least for every 20 received ESP packets without a significant loss in performance. This rekey consists of installing a new security association with a defined set of selectors, and possibly, eliminating an old security assocation with an equal set of selectors. Both security associations must in this case be managed by the Short Term Key Delivery Layer. Note however, that it is not recommended in a broadcast situation to rekey existing security associations for every 20 seconds, as the amount of traffic one can place in 20 packets varies heavily with the maximum packet size. Also the impact on the receiver in terms of time is hard to estimate, as the timing between packets may be significantly altered in a broadcasting environment. Therefore one SHALL NOT rekey an IPsec SA more often than every two seconds in a broadcast situation.
· Authentication for IPsec

IPsec can be used with authentication. In case of authentication with IPsec the authentication data SHALL carry the TAS. The authentication mechanism SHALL create the TAK from the TAS.

To obtain the encrypted traffic key material from the KSM the encrypted traffic key material SHALL be decrypted with the SEK or PEK:

[image: image2.wmf])

_

_

}(

{

material

key

traffic

SEK

D

TAS

=

or

[image: image3.wmf])

_

_

}(

{

material

key

traffic

PEK

D

TAS

=

The authentication key SHALL be generated from the authentication seed as follows:

[image: image4.wmf])

_

}(

{

KSM

CONSTANT

TAS

f

TAK

auth

=

where:

CONSTANT_KSM
= 0x040404040404040404040404040404 (120 bit)
Refer to Section XXX
 for details on f-auth.

The TAK SHALL be used in the MAC generation / verification of the IPsec data. Refer to [RFC 2406] for details.

Change 2: Correct reference to TAK derivation
5.5.3
Coding and Semantics of Attributes

protocol_version – indicates the protocol version of this key stream message.

The device SHALL ignore messages that have a protocol_version number it doesn’t support. The value of the protocol_version of this message is set to 0x0 (i.e. the original format).

Note: If set to 0x0 the format specified in this version of the specification is used. If set to anything else than 0x0, then the format is beyond the scope of this version of the specification.

protection_after_reception – 2-bit field defining the required protection after the removal of the service protection, according to the following table:

Table 5: Protection_after_Reception Values

	Value
	Description

	0x00
	Content protection

Device has to protect all content against access in the clear.

Only the explicitly allowed types of consumption as defined in Rights Objects that the device has for this service or programme are permitted,

An example permission is 'Access' for the immediate rendering of the service or programme.

	0x01
	Implicit rendering permission; ROs may provide additional rights

Device has to protect all content against access in the clear, but:
Direct rendering is implicitly allowed; no Rights Object is required in the device for this, or an RO with only the service or programme key but without any permissions is sufficient,
The device needs to have an RO with the appropriate permissions (and possibly constraints) for any other type of consumption.

	0x02
	Render and recording play back only

Device has to protect all content against access in the clear, but implicitly, two types of consumption are allowed:

· Direct rendering, and
· Play back of protected recordings of this service or programme, which are made by the device itself
.

Apart from the above two types, no consumption is allowed, not even any consumption granted with Rights Object(s).

The above two types of consumption may also be made available over appropriately protected digital links.

	0x03
	Service Protection

This specification does not impose any protection measures for the content after the removal of service protection.

Note that for e.g. legal or other reasons, the device still might have to protect the content in some way.

terminal_binding_flag – indicates whether or not terminal binding is required for the smartcard profile. 0 indicates it is not required, 1 indicates it is required.

traffic_protection_protocol – defines the protocol used for the encryption and authentication of traffic:

	TKM_ALGO_IPSEC
	IPsec ESP (transport mode; encryption: AES-128-CBC [key length 128]; authentication: HMAC-SHA1-96 [key length 160] or NULL).

	TKM_ALGO_SRTP
	SRTP (encryption: AES-128-CTR [key length 128]; authentication: HMAC-SHA1-80 [key length 160] or NULL).

	TKM_ALGO_ISMACRYP
	AU encryption (encryption: AES-128-CTR [key length 128]; SRTP authentication: HMAC-SHA1-80 [key length 128] or NULL).

	TKM_ALGO_DCF
	DCF encryption (encryption: AES-128-CBC [key length 128]; authentication: HMAC-SHA1-80 [key length 160])

	Other values
	Reserved for future use

Whether or not authentication is used depends on <traffic_authentication_flag>.

traffic_authentication_flag – defines whether or not the traffic is authenticated:

	TKM_FLAG_FALSE
	Traffic authentication is not used.

	TKM_FLAG_TRUE
	Traffic authentication is used, and the algorithm depends on <traffic_protection_protocol>.

next_traffic_key_flag – indicates whether or not the Short Term Key Message contains the next traffic key material:

	TKM_FLAG_FALSE
	The Short Term Key Message contains only the current traffic key material.

	TKM_FLAG_TRUE
	The Short Term Key Message contains both the current and the next traffic key material.

The next traffic key material SHALL be be included at least 1 second before it becomes current. This is to enable the devices to process the traffic key material and put the necessary security associations in place before the media packets that are encrypted with the next traffic encryption key start arriving.

The next traffic key material SHALL NOT be included earlier than 1 minute before it becomes current. This is to limit the effect on pay-per-view enforcement that is caused by sending the next traffic key material encrypted with the encryption key of a program that may end before the next traffic key becomes current to maximally 1 minute.

The above times SHALL be relative to the moment of transmission of the key stream messages.

timestamp_flag – indicates whether or not the key stream message contains a timestamp:

	TKM_FLAG_FALSE
	The key stream message does not contain a timestamp.

	TKM_FLAG_TRUE
	The key stream message contains a timestamp.

program_flag – indicates whether or not the program key layer is present in the Short Term Key Message:

	TKM_FLAG_FALSE
	The PEK is not present, i.e. the optional program key layer is not used for the service.

	TKM_FLAG_TRUE
	The PEK is present, i.e. the optional program key layer is used for the service.

<program_flag> and <service_flag> SHALL NOT both be 0. All other combinations are allowed, indicating that either one or both of the key layers are present.

service_flag – indicates whether or not the service block is present in the Short Term Key Message:

	TKM_FLAG_FALSE
	The SEK is not present, i.e. the optional service key layer is not used for the service.

	TKM_FLAG_TRUE
	The SEK is present, i.e. the optional service key layer is used for the service.

<program_flag> and <service_flag> SHALL NOT both be 0. All other combinations are allowed, indicating that either one or both of the key layers are present.

security_parameter_index – provides the link to the IPsec ESP header:

Upon reception of a protected IP packet, the terminal SHALL use the security parameter index (SPI) to identify (look up) the correct security association and thereby find the decryption and authentication keys to be used for the received IPsec ESP packet. The SPI value SHALL be in the range 0x00000100 – 0xFFFFFFFF. An incoming ESP packet containing the SPI value specified in this field SHALL use the keymaterial provided in the encrypted traffic key material field as keymaterial for the decryption operation.

next_security_parameter_index – provides the link to the IPsec ESP header:

This field is present in the packet only if next traffic key flag is set to true. This field then contains the IPSec SPI value corresponding to the next_encrypted traffic key material field. The value of the SPI SHALL be in the range 0x00000100 – 0xFFFFFFFF. An incoming ESP packet containing the SPI value specified in this field SHALL use the keymaterial provided in the next encrypted traffic key material field as keymaterial for the decryption operation.

master_key_index_length – provides the length of the master_key_index field

This field gives the length of the master_key_index field in bytes.
master_key_index – provides the link to the SRTP header:

Upon reception of a protected RTP packet, the terminal SHALL use the master key index (MKI) to identify (look up) the correct security association and thereby find the decryption and authentication keys to be used for a received SRTP packet.

This field is a sequence of 8-bit values. The sequence consists of master_key_index_length bytes. The bytes are in the same order that they will be in an SRTP packet and SHALL be in SRTP [RFC3711] network byte-order when extracting the MKI value.

The MKI is associated with the current TEK. If the next traffic key flag is set to 1, the MKI associated with the “next TEK” is implicitely defined as MKI+1.

number_of_media_flows – specifies how many RTP media flows are protected by the traffic key. For each of the media flows, the SRTP roll-over counter needs to be signaled.

synchronization_source – identifies an RTP media flow to which the associated roll-over counter applies.

key_indicator – value of the KeyIndicator used to identify the TEK transported in the STKM. This is used to identify the particular TEK key needed to decrypt AUs (as indicated in the OMADRMAUheader). The key_indicator_length parameter is part of the Session Description Protocol (SDP) and is described in Section 10.3.

key_identifier_length – indicates the length in bytes of the key_identifier.

key_identifier – value of the identifier used to identify the TEK key transported in the traffic key stream message. This is used to identify the particular TEK needed to decrypt DCF encoded files.

encrypted_traffic_key_material_length – is the length in bytes of the encrypted traffic key material.

The length of the traffic key material depends on the encryption and authentication algorithm, and is obtained by adding the respective key sizes. Encryption MAY require the clear-text key material to be padded.

encrypted_traffic_key_material – is the key material currently used for encryption and optional authentication of the traffic, encrypted using AES-128-CBC, with fixed IV 0, and with 0 padding in the last block, if needed.

If <programme_flag> == TKM_FLAG_TRUE, the traffic key material is encrypted with the Programme Encryption Key (PEK).

If <programme_flag> == TKM_FLAG_FALSE and <service_flag> == TKM_FLAG_TRUE, the traffic key material is encrypted with the Service Encryption Key (SEK).

After decryption (and discarding any padding), the Traffic Encryption Key (TEK) and the Traffic Authentication Key (TAK) are obtained in a way that depends on the protocol used for traffic protection:

IPsec: If no traffic authentication is used, the TEK is identical to the decrypted traffic key material (16 bytes).
If traffic authentication is used, TEK and Traffic Authentication Seed (TAS) are obtained by splitting the decrypted traffic key material into two parts, where the TEK is identical to the first 16 bytes, and the TAS is identical to the second 16 bytes. The TAK (20 bytes) is derived from the TAS, as described in Section 5.5.4
.

SRTP: The master key is identical to the decrypted traffic key material and SHALL always be a 16-byte key. How the TEK and TAK are derived from the master key is defined by SRTP.
ISMACRYP: If no traffic authentication is used, the decrypted traffic key material is identical to the key used for the AES-CTR decryption and its length is 16 bytes. If authentication is used, the first 16 bytes of the decrypted traffic key material are the TEK, while the remaining16 bytes are the key used for authentication as described by STRP.

next_encrypted_traffic_key_material – is the encrypted key material used for encryption and optional authentication of the traffic after the current crypto period is over and the next crypto period starts. The structure of this attribute is the same as for the encrypted_traffic_key_material attribute.
traffic_key_lifetime – is the lifetime in seconds of the Traffic Encryption Key, relative to the first occurrence of an SPI or MKI.

If <traffic_key_lifetime> is n, then the actual lifetime is 2n seconds, as presented in the following table:

Table 6: Traffic Key Lifetime

	value of traffic_key_lifetime attribute
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	actual lifetime of traffic key material (seconds)
	1
	2
	4
	8
	16
	32
	64
	128
	256
	512
	1024
	2048
	4096
	8192
	16384
	32768

Note: Although the allowed values for the traffic_key_lifetime span from seconds to hours, service providers should not use TKM key material to realize long term key functionality. The TKM messages should be considered and used strictly for short-term key signalling. Also, the lifetime of traffic keys should be considerably shorter than the lifetime of service keys and program keys, to avoid users receiving the service or PPV event (encrypted with traffic keys) even after their service key or current program key has expired.
The following scenario may help in explaining the note. The field "next_encrypted_traffic_key_material" maybe present in the STKM. The field is encrypted with the current Service Key or current Program Key. If someone subscribes to a service, or someone purchases a PPV event, then the person obtains both the current TEK and the next TEK. At the end of the service period, or the end of a PPV event, this means that the person has also a TEK for the next service period or the next PPV event. If the person stops subscription at the end of the current service period or the end of the current PPV event, then the person still has access to the first TEK of the next service period or next PPV event. When the maximum TEK lifetime is 1.5 minutes, a subscriber can at most have 1.5 minutes of unauthorized content, which may not be considered to be excessive. If the traffic_key_lifetime becomes 2 hours, then the subscriber may have excessive access to unauthorized conetnt, especially in the case of PPV events, because the person now may have 2 hours of unauthorized content.

The TEK can be changed frequently to mitigate the risk of end-users posting the key via the interactive channel so that non-members can download that key. The cost of the attack, i.e., extracting the key, and uploading and downloading the key should be made to be more expensive than the cost of BCAST service/content. The frequency of change depends on the value of the BCAST service/content. For high-value PPV content, the TEK SHOULD be changed frequently whereas for low-value content, the TEK MAY be changed infrequently. The exact frequency is a configurable value and does not have impact on interoperability. The option to include two consecutive keys into one STKM, using next_encrypted_traffic_key_material, should be executed with care, since it allows the end user in any case to access service for 2*traffic_key_lifetime.

In the case when a Program Event is available either through subscription or as a PPV event, a STKM containing the next TEK at the end of a PPV program would allow a PPV user to view part of the next PPV event that corresponds to the next TEK. In this case, if next_encrypted_traffic_key_material is used, it SHOULD be utilized with sufficiently short Traffic Key lifetimes so as not to provide PPV users with free access to a PPV event that has not yet been purchased.
The actual duration of the crypto period SHALL be strictly shorter than the defined lifetime of the traffic key material. Typically, an SPI or MKI appears for the first time implicitly, when the “next” traffic key material is included in a STKM. Any safety margins to cope with network and transmission delays SHALL be added by the network. A typical value for the lifetime could be three times the crypto period.

The maximal value for the crypto period duration is in practice slightly shorter than the TEK lifetime, because the TKM will include the “current” and “next” traffic key material before a change of crypto period, to allow the devices to set up the security associations.

After the lifetime has expired, the security association containing the TEK can be safely deleted by the terminal. This may help managing the security association database in the terminal or enable other optimizations.

The maximum value for the TEK lifetime is defined mainly in order to have a strict upper bound for the effect of the “sneak post view” problem: the next traffic key material is distributed under the current PEK, and allows viewers to view a programme during the next crypto period. Should this possibility still be of a concern, the network MAY choose a shorter crypto period than the maximum value, or, during the crypto period where the current programme ends and a new programme starts, choose to distribute the current and the next traffic key material in separate STKMs, encrypted with their respective PEKs.

timestamp – Field containing a timestamp at the point of sending the key stream message. The timestamp SHALL be used as a reliable time of reception of the associated media stream for post-acquisition permissions. The device SHALL not use the timestamp as a reliable source for DRM time.

The format of the 40-bit mjdutc field is specified in Section 15. This 40-bit field contains the timestamp of the key stream message in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

As an example, 93/10/13 12:45:00 is coded as "0xC079124500".

access_criteria_flag – indicates whether or not access criteria are defined for the program:

	TKM_FLAG_FALSE
	No access criteria are defined, implying that the terminal is allowed to access program without further restrictions (provided the necessary keys are available to the terminal).

	TKM_FLAG_TRUE
	Access criteria are defined, implying that the terminal is allowed to access the program only if the specified access criteria are met.

Access criteria cannot change during a program, i.e. as long a PEK is valid.
permissions_flag – indicates whether or not permissions category is defined for the programme:

	KSM_FLAG_FALSE
	No permissions category is defined.

	KSM_FLAG_TRUE
	Permissions category is defined.

number_of_access_criteria_descriptors – indicates the number of access criteria descriptors.
permissions_category – indicates the permissions category for the programme:

	0x00
	No permissions category, RO applies as such,

	0x01...0x3F
	Permissions_category is included in the post- acquisition permissions lookup.

	0x40...0xFF
	Reserved for future standardization.

If permissions_category is in the range 0x01...0x3F,

· In case of ICRO, the device SHALL use as service_CID for post-acquisition permissions lookup the text string

service_CID = bsdaID + "#S" + serviceBaseCID + "@" + hex(service_CID_extension) + "_" + hex(permissions_category)
and then apply the permissions specified in the service ICRO for this asset.
· In case of BCRO, the device SHALL look up the permissions specified in the service BCRO for the asset that has a matching permissions_category field.

If permissions_category is in the (reserved for future standardization) range 0x40...0xFF, and the device does not support it, the device SHALL drop (i.e. ignore) all post-acquisition permissions (like play, redistribute etc.) indicated in the service RO, or if the device cannot do such permissions dropping, allow real-time rendering of the streaming content only (i.e. refuse to record the content, or to redistribute it in real time). Permissions_category has no impact on a Programme RO. The permissions delivered in a Programme RO apply as such.

encrypted_PEK – is the Programme Encryption Key (PEK) used within the current STKM to decrypt the traffic key material, encrypted using AES-128-CBC with a fixed IV equal to 0. The PEK is encrypted with the SEK.

program_CID_extension – is the extension of the program_CID which allows to identify the program key material that has been delivered to the device within a LTKM for a program.

Note that for BCRO, a binary, fixed-size version of the content ID (CID) is needed. This ID is called BCI in this specification.

The CID/BCI of the service key is constructed as:

program_CID = bsdaID + "#P" + serviceBaseCID + "@" + hex(program_CID_extension)

program_BCI = hash(bsdaID + "#P" + serviceBaseCID + "@") + program_CID_extension

The bsdaID and serviceBaseCID are string values and are expected to be part of the service guide. Upon receiption of a STKM, the terminal can assemble the program_CID/BCI and look up the PEK (wrapped inside a LTKM).

The hex() function is a hexadecimal presentation of the parameter containing hexadecimal characters 0-9 and a-f (in lowercase) with possible preceding zeros. As an example, for a 16 bit value 2748, hex() returns "0abc". Note that two characters are always generated for each byte.
The hash function for the construction of program_BCI is SHA1-64. It doesn’t depend on the contents of the STKM, and can thus be pre-computed.

If the permissions_category field is present and has a nonzero value, the Service_CID of the service is constructed as specified above (at description of the permissions_category field).

bsdaID is the globally co-ordinated ID of the broadcast service distribution/adaptation center.

program_MAC – is the HMAC-SHA-1-96 according to [RFC2104] and [RFC2404] calculated over all preceding fields of the Short Term Key Message. It is used to authenticate the relevant part of the STKM in case of pay-per-view, where a PEK from a LTKM for a program is used to directly decrypt the traffic key material.

In case the terminal is accessing the STKM with a LTKM for a program, the terminal SHALL compute the program MAC, and drop the message if authentication fails. In this case, <program_MAC> MAY also be used to detect and drop duplicates (it can be expected that a particular STKM is repeated multiple times, in order to keep access times short for terminals that newly start receiving a broadcast transmission).

In case the terminal is accessing the STKM with a LTKM for a service, it will not be able to compute the program MAC, and there is no need for it to do so.

service_CID_extension – is the extension of the service_CID which allows to identify the service key material that has been delivered to the device within a LTKM for a service.

Note that for BCRO, a binary, fixed-size version of the content ID (CID) is needed. This ID is called BCI in this specification.

The CID/BCI of the service key is constructed as:

service_CID ::= bsdaID + "#S" + serviceBaseCID + "@" + ascii(service_CID_extension)

service_BCI ::= hash(bsdaID + "#S" + serviceBaseCID + "@") + service_CID_extension

The bsdaID and serviceBaseCID are string values and are expected to be part of the service guide. Upon reception of a STKM, the terminal can assemble the service_CID/BCI and look up the SEK (wrapped inside a LTKM).

The hash function for the construction of service_BCI is SHA1-64. It doesn’t depend on the contents of the STKM, and can thus be pre-computed.

bsdaID is the globally co-ordinated ID of the broadcast service distribution center.

service_MAC – is the HMAC-SHA-1-96 according to [RFC2104] and [RFC2404] calculated over all preceding fields of the Short Term Key Message. It is used to authenticate the STKM with SAK in case of subscription, where a SEK from a LTKM for a service is used to decrypt the PEK and further decrypt the traffic key material.

In case the terminal is accessing the STKM with a LTKM for a service, the terminal SHALL compute the service MAC, and drop the message if authentication fails, i.e. if the computed MAC doesn’t correspond to <service_MAC>. In this case, <service_MAC> MAY also be used to detect and drop duplicates (it can be expected that a particular traffic key message is repeated multiple times, in order to keep access times short for terminals that newly start receiving a broadcast transmission).

In case the terminal is accessing the STKM with a LTKM for a program, it need not to compute the service MAC.
5.5.4
Authentication for STKMs for OMA DRM 2.0 Extensions

A STKM can contain two MAC fields: The program MAC and the service MAC. If only one MAC field would be used, the authentication key could only be renewed when both SEK and PEK change at the same time. Having two MAC fields and two authentication keys makes it possible to authenticate the message and check for its integrity while only having one key set. The Service Authentication Key (SAK) and the Programme Authentication Key (PAK) will be derived from the Service Authentication Seed and the Programme Authentication Seed respectively which are transmitted together with the encryption keys in the LTRMs (How this is carried in the BCRO and RO is explained in other sections). A RO for a service will contain Service Encryption and Authentication Keys (SEAK) and a RO for a program will contain Programme Encryption and Authentication Keys (PEAK).

To obtain the SAS or PAS from the BCRO the SEAK/PEAK is decrypted with the Right Encryption Key (REK):

[image: image5.wmf]))

}(

{

(

128

SEAK

REK

D

LSB

SAS

=

[image: image6.wmf]))

}(

{

(

128

PEAK

REK

D

LSB

PAS

=

The authentication key is generated from the authentication seed:

[image: image7.wmf])

_

}(

{

SAK

CONSTANT

SAS

f

SAK

auth

=

[image: image8.wmf])

_

}(

{

PAK

CONSTANT

PAS

f

PAK

auth

=

where :

CONSTANT_SAK = 0x020202020202020202020202020202 (120 bit)

CONSTANT_PAK = 0x010101010101010101010101010101 (120 bit)

The SAK or PAK is used in the MAC generation / verification of the STKM. The algorithm used to calculate the MAC field is HMAC-SHA1-96 according to [FIPS198] and [RFC2104], using authentication keys of 160 bit in both cases.

The function F-auth consists of several steps:

1. Denote by PRF{key}(text) as the AES-XCBC-MAC-PRF with output blocksize 128 bits as defined by IPsec WG in IETF. Please note:

· Refer to [RFC3566] for the AES-XCBC-MAC-PRF based key generation function.

· Refer to [RFC3664] for the requirement NOT to truncate the generated key material.

2. Apply the generated input key according to ideas of IKEv2 to generate authentication key. Define a key generator function f-kg{key}(constant). Keying material will always be derived as the output of the negotiated PRF algorithm.. PRF+ describes the function that outputs a pseudo-random stream of n blocks based on the inputs to a PRF as follows:

[image: image9.wmf])

01

0

||

}(

{

_

_

_

1

x

CONSTANT

AS

PRF

MAC

XCBC

AES

T

=

[image: image10.wmf])

02

0

||

||

1

}(

{

_

_

_

2

x

CONSTANT

T

AS

PRF

MAC

XCBC

AES

T

=

....

[image: image11.wmf])

||

||

1

}(

{

_

_

_

n

CONSTANT

T

AS

PRF

MAC

XCBC

AES

Tn

=

where AS is the appropriate authentication seed (be it TAS, PAS, SAS or RIAK) and CONSTANT is the appropriate constant as described in preceding sections
. The amount of blocks to derive is defined by the amount of key material needed, i.e. n is the amount of needed key bits divided by 128 and rounded up.

This means that if 160 bits were needed then PRF*() would be computed as:

[image: image12.wmf])

}(

{

2

||

1

S

K

PRF

T

T

+

=

3. The 160 bit authentication key is taken from the generated key material as follows:

[image: image13.wmf])

2

||

1

(

160

T

T

MSB

AK

=

The generated authentication key is applied as described in preceding sections.

� In principle, any device that has the service or programme key should be allowed to play back these recordings. However, present OMA DRM specifications require that an OMA DRM V2 agent has the appropriate Rights Objects for being allowed to play back (P)DCF files. The constraint “which are made by the device itself” can be relaxed once play back of (P)DCF files when having just a service or programme key has been standardised.

�Note to editor: insert reference to section “5.5.4 Authentication for STKMs for OMA DRM 2.0 Extensions�” here.

�Note to editor: This is a reference to the SAK derivation, not TAK derivation. Please replace this reference with one to the section on TAK derivation in change 1 (Section 9.1).

�Old section 6.4.3

�Note to editor: “preceding sections is not true anymore. Better is “this section, section 9.1 and [XBS DRM extensions-v1.0]”. Or delete “and RIAK” if you do not want to refer to the XBS document here.

�Note to editor: “preceding sections is not true anymore. Better is “this section and section 9.1”.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 13 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

_1177328713.unknown

_1187595756.unknown

_1193212792.unknown

_1194176987.vsd
text

_1193212765.unknown

_1177331611.unknown

_1179063956.unknown

_1177330850.unknown

_1177331539.unknown

_1177330820.unknown

_1177328637.unknown

_1177328701.unknown

_1177314566.unknown

