Doc# OMA-BCAST-2006-1011R01-CR_Comment_DX074_Add_Missing_normative_text.doc[image: image8.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-BCAST-2006-1011R01-CR_Comment_DX074_Add_Missing_normative_text.doc
Change Request

Change Request

	Title:
	OMA-BCAST-2006-1011R01-CR_Comment_DX074_Add_Missing_normative_text
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC BCAST and DLDRM

	Doc to Change:
	OMA-TS-DRM-XBS-V1_0-20060321-D

	Submission Date:
	December 12, 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	John Bernsen, john.ac.bernsen@philips.com

	Replaces:
	n/a

1 Reason for Change

This CR is a proposal for solving review comment:

	DX047
	2006.05.24
	
	Appendix C
	Source: Ericsson

From: OMA-BCAST-2006-0539

Comment:

The XBS document does not contain any static conformance requirements.

Proposed Resolution:

Add static conformance requirements
	Status: OPEN

OMA-BCAST-2006-784R03 (Ericsson) addresses this comment.

on OMA-TS-DRM-XBS-V1_0-20060321-D
The creation of the SCR tables revealed that there are normative references or text missing to sections that are required to implement for the correct functioning of devices or services. This CR proposes such text.

OMA-BCAST-2006-0959-CR_Comment_DX074_Make_A10_Normative has the same purpose, but only for appendix A.10.
R01 deletes change 5. Change 5 has been moved to another CR.
Change 1
Section 9.3.3 does not contain normative language, nor is it referenced to from normative sections. However, it is required in order to encrypt or decrypt BCROs. In Change 1, this CR adds references to the BCRO section to 9.3.3.
Change 2 and 3

Section A.3.2 and A.3.1 are both referenced in both 6.1.1.2 Unique Device Number (UDN) protocol and 6.1.2.1 Theory of operation, using normative language, but not normative enough to make it into the SCR tables, while A.3.2 and A.3.1 contain the specification on how to calculate the checksums used in 6.1.1.2 and 6.1.2.1. In Change 2 and 3, this CR changes text in 6.1.1.2 and 6.1.2.1, such that A.3.1 and A.3.2 become normative.
In Change 4, two typo’s in A.3.1 are corrected (SDN (ARC).

Change 5
Is deleted from this CR in R01.

Change 6

In the current text, Annex A.5 misses a reference from other sections. This is corrected in Change 6.
Change 7, 8, 9, 10, 11, 12
The reference to appendix A.6 is seen as not normative enough, although the start of the sections in which A.6. is referenced says: “Using the 1-pass PDR protocol the RI SHALL send a device_registration_response() message with the registration data to the device as specified below:” in 6.1.3.2.1 and: “Creation of the encrypted message SHALL adhere to the following rules:” in 6.1.3.2.2. Nevertheless, this CR proposes better worded references to appendix A.6.
NOTE TO THE EDITOR: Please take care that the changes in this CR are taken into account when implementing CR1002!
2 Impact on Backward Compatibility

This CR has no impact on backwards compatibility

3 Impact on Other Specifications

None

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Members are kindly asked to agree with the indicated changes in 6.

6 Detailed Change Proposal

Change 1: Reference in BCRO section to section 9.3.3
7.2.3 Format of the OMADRMAsset class

class OMADRMAsset

{

int i;

bit(96)
BCI;

bit(1)
key_flag;

bit(1)
key_type;

bit(2)
reserved_for_future_use;

bit(1)
inherit_flag;

bit(2)
asset_type;

bit(1) permissions_category_flag;

if (inherit_flag)

{

bit(32)
purchase_item_id;

bit(1)
reserved_for_future_use;

bit(7)
rekeying_period_number;

}

if (permissions_category_flag == 1)

{

bit(8)
permissions_category;

}

if (key_flag == 1)

{

if (asset_type == 0x0)

{

if (key_type == 0x0)

{

bit(256)
encrypted_service_encryption_authentication_key;

}

else if (key_type == 0x1)

{

bit(256)
encrypted_program_encryption_authentication_key;

}

}

else

if (asset_type == 0x1)

{

bit(128)
encrypted_content_encryption_key;

}

}

}

BCI: This 96-bit field is the Binary Content ID. [The encoding of this field might be the SHA1-96 hash of the Content ID in ‘cid’ URI form.]

reserved_for_future_use: all fields reserved_for_future_use SHALL be set to 0 for this version of the specification.

key_flag:1-bit flag indicating that the asset does contain key material.

key_type: 1-bit flag indicating the type of the key material. If set to 0 the key material contains a service encryption key (SEK), when set to 1 it contains a program encryption key (PEK).

inherit_flag: 1-bit flag indicating whether inheritance is used. If set to 1 the asset inherits the rights setting from a parent GRO.

asset_type: 2-bit flag indicating the asset type as defined in the table below. If the asset_type is set to 0 the asset MAY contain either a PEK or a SEK. If the asset_type is set to 0x1 then the asset MAY contain a content encryption key.

	Field: asset_type
	Description

	0x0
	Broadcast stream protected IPSec or SRTP as defined in this specification

	0x1
	downloaded file content as defined by OMA

	0x2-0x3
	reserved

permissions_category_flag: 1-bit flag indicating that a permissions_category field is present in this asset object.
purchase_item_id: 32-bit field specifying the purchase ID this GRO is associated with.

rekeying_period_number: 7-bit field specifying the rekeying_period_number of the parent GRO. The purchase_item_id and rekeying_period_number are used together with the socID and deviceID or domainID to uniquely identify the parent GRO.

permissions_category: For programme assets, the value of this field (if present) is always zero. For service assets, the following rule applies. If the value of this field is nonzero, it indicates that the permissions (see below) linked to this asset are only to be applied for streaming content whose TKM contains the same value in its permissions_category field. If the value of this field is zero, it indicates that the permissions (see below) linked to this asset are only to be applied for streaming content whose TKM contains the value zero in its permissions_category field, or has value zero for its permissions_flag bit (indicating that there is no permissions_category field in the TKM). Note that there MAY be multiple assets with the same Service_BCI, in which case typically only one of them contains authentication and/or encryption keys in it asset object(s). TKM permissions_category field value thus selects the one with the permissions to be applied among the service assets with the same Service_BCI. The one with the authentication and/or encryption keys is found among the BCROs via inheritance, or by lookup for a BCRO with key material in its assets.

encrypted_service_encryption_authentication_key: If key_type is set to 0 then this field contains the encrypted SEAK, the service encryption key (SEK) concatenated with the Service Authentication Seed (SAS). The field itself is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field depends on the addressing mode of the BCRO and SHALL be determined using the following table.

	Field: address_mode
	Keys used

	0x0 (subscription group addressing / whole group)
	UGK (Unique Group Key)

	0x1 (subscription group addressing / derived keys)
	DEK (Deduced decryption key; based on bit_access_mask and subscription group keys, refer to section [insert ref to 9.3.3 9.3.3
Applying the Subscriber Group Keys])

	0x2 or 0x3 (unique device)
	UDK (Unique device key)

	0x4 (OMA Domain)
	LDK (Local Domain Key)

encrypted_program_encryption_authentication_key: If key_type is set to 1 then this field contains the encrypted PEAK, the program encryption key (PEK) concatenated with the program authentication seed (PAK). The field itself is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field is depending on the addressing mode of the BCRO and SHALL be determined using the following table.

	Field: address_mode
	Keys used

	0x0 (subscription group addressing / whole group)
	UGK (Unique Group Key)

	0x1 (subscription group addressing / derived keys)
	DEK (Deduced decryption key; based on bit_access_mask and subscription group keys, refer to section [insert ref to 9.3.3 9.3.3
Applying the Subscriber Group Keys])

	0x2 or 0x3 (unique device)
	UDK (Unique device key)

	0x4 (OMA Domain)
	LDK (Local Domain key)

encrypted_content_encryption_key: This field contains the encrypted content encryption key (CEK). The field is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field is depending on the addressing mode of the BCRO and SHALL be determined using the following table.

	Field: address_mode
	Keys used

	0x0 (subscription group addressing / whole group)
	UGK (Unique Group Key)

	0x1 (subscription group addressing / derived keys)
	DEK (Deduced decryption key; based on bit_access_mask and subscription group keys, refer to section [insert ref to 9.3.3 9.3.3
Applying the Subscriber Group Keys])

	0x2 or 0x3 (unique device)
	UDK (Unique device key)

	0x4 (OMA Domain)
	LDK (Local Domain key)

Change 2: Normative reference in section 6.1.1.2 to section A.3.2
6.1.1.2 Unique Device Number (UDN) protocol

To reduce the amount of data that is to be notified to the RI, the device data protocol takes care of data reduction. To ease the detection of errors during the registration process, the device data protocol will also allow detection of errors in the notified device data.

Following data format SHALL be used to construct a Unique Device Number (a.k.a. UDN):

[image: image1.wmf]Device serial number

Checksum

ROT ID

Figure 4: Unique Device Number

Table 1: UDN explanation

	Field
	Length (digits)
	supporting up to

	rot_id
	3
	1000 ROT

	device_serial_number
	14
	10,000 Billion devices

	checksum
	3
	

This totals to 20 digits. The fields are explained below:

rot_id - The first 3 digits in the UDN identify the ROT. Every ROT has an own unique ID.

device_serial_number - There are 10,000 billion (1014) possible device_serial_numbers. This range MAY be subdivided in subranges from which separate entities may issue device serial numbers independently.

checksum - The final digits of the device ID number are check digits, akin to a checksum. The 3 digits allow 1 out of 103 possible errors to remain undetected. The algorithm to construct the checksum SHALL be as specified in appendix A.3.2.

Change 3: Normative reference in section 6.1.2.1 to section A.3.1
6.1.2.1 Theory of operation

Note: This protocol is also known as the “offline NSD protocol”, short for offline Notification of Short Data protocol.

[image: image2.wmf][1] notify "request"

Service Provider /

RI

Customer / Device

Figure 3: offline NSD protocol

Note: Notification of device data is performed off-line. Refer to Table 2 for an overview of the possible “requests”.

Explanation of the protocol:

· The user may notify a short decimal code called the action request code (ARC) to the RI via offline methods (e.g. telephone call or SMS or else). The code SHALL be constructed as follows:

	Short_udn
	Action_code
	Checksum

Figure 4: Action Request Code (ARC)

Note that for some of the ARCs (e.g. the ARC token_consumption_report), the user MAY have to notify more digits to the RI than the ones of the ARC.

Table 1: NSD action request code fields

	ARC fields
	Length (digits)
	supporting up to

	short_udn
	8
	100 Million devices

	action_code
	2
	99 action codes

	checksum
	2
	

This totals to 12 digits. The fields are explained below:

short_udn. The offline notification can be performed faster if the long form UDN is not used, but a shorter form instead. After first time notification of the device data to the RI, the RI MAY issue a short version of the full UDN (called short_form_udn) that is carried in the device_registration_response() message. The short_form_udn number is used to speed up the offline interaction with the RI. If this number is stored into the device, subsequent “requests” by the user of the device can be notified offline much quicker by using the short_form_udn number concatenated by a standardised action code.

Please note: In cases where the device needs to be identified uniquely in another network than it’s home network where it was registered, the short_udn cannot be used because the (new / different) RI does not have the short_udn in it’s database. In this case the only possibility for the hosting RI to identify the device uniquely would be via the long_udn. It is the responsibility of the device to decide when it is appropriate to use the long_udn instead, for example by comparing the Service Operations Centre (SOC) ID received with the SOC ID remembered from registration.

action_code. Following the short_udn the user of the device can notify an action code to the RI. The NSD protocol defined in this specification SHALL use following action_codes to construct the ARC:

Table 2: NSD action types

	action type
	action code (d)
	described in section

	re-registration (only at same RI)
	{0d01}
	6.1.2.1.1

	resend BCRO
	{0d02}
	11.9

	reserved for future use
	{0d03,..,0d09}
	

	join domain
	{0d10,..,0d19}
	6.1.2.1.2

	leave domain
	{0d20,..,0d29}
	6.1.2.1.3

	purchase
	{0d30}, whereas content identification is supplied by ESG.
	

	token_consumption_report
	{0d31,..,0d39}
	6.1.2.1.4

	metering
	{0d40,..,0d49}
	

	token_request
	{0d50,..,0d59}
	

	notify DRM time drift
	{{0d7}+{0d0,..,0d9},..,{0d8}+{0d0,..,0d9}}
	6.1.2.1.6

	reserved for future use
	{0d90,..,0d99}
	

(*1): Note to Editor: to be defined later in actual XBS document.
checksum. The constructed short_udn and action_code is appended by checksum digits. The algorithm to construct the checksum SHALL be as specified in A.3.1.

Change 4: Two typos corrected in A.3.1
A.3.1 Checksum on ARC
Definition:

The checksum on the ARC is calculated by F-ARC
Take n=12, r=2 and p=11. We consider the code deﬁned by the r=2 following check equations:

8*c1 + 8*c2 + 6*c3 +...+ 1*c11 = 0 (modulo 11)

3*c1 + 6*c2 + 4*c3 +...+ 1*c12 = 0 (modulo 11)

Change 5: Normatiove text in A.5 deleted from this CR in R01

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Change 6: Reference in A.7 to A.5
A.7 C-style types
Following abbreviated types are used in the document:

	type name
	description
	remark

	bslbf
	bit serial leftmost bit first
	

	mjdutc
	modified julian date UTC
	Refer to [ref to appendix A.5] for the specification of this type

	uimsbf
	unsigned integer most significant bit first
	

All fields marked as reserved for future use SHALL be set to the value 0, when not used.

All fields marked as reserved SHALL be set to value 0, and never to any other value.

Change 7: Reference in BCRO section to section 6.1.3.2
6.1.3.2 Registration data – device_registration_response message

6.1.3.2.1 device_registration_response message description

Using the 1-pass PDR protocol the RI SHALL send a device_registration_response() message with the registration data to the device as specified below:

Table 4: device_registration_response message description

	Device_Registration_Response()

	Parameter name
	(M)andatory / (O)ptional

	remark

	message_tag
	M
	global, not encrypted

	protocol_version
	M
	global, not encrypted

	sign_bcros_flag
	O
	global, not encrypted

	longform_udn()
	M
	global, not encrypted

	status
	M
	device specific, not encrypted

	certificate_version
	M
	global, not encrypted

	ri_certificate_counter
	M
	global, not encrypted

	c_length
	M
	global, not encrypted

	ri_certificate
	M
	global, not encrypted

	ocsp_response_counter
	M
	global, not encrypted

	r_length
	M
	global, not encrypted

	ocsp_response
	M
	global, not encrypted

	local_time_offset_flag
	M
	device specific, not encrypted

	time_stamp_flag
	M
	device specific, not encrypted

	subscriber_group_key_flag
	M
	device specific, not encrypted

	signature_type_flag
	M
	global, not encrypted

	short_udn_flag
	M
	device specific, not encrypted

	surplus_block_flag
	M
	device specific, not encrypted

	keyset_block_length
	M
	device specific, not encrypted

	unique_group_key
	O
	device specific, encrypted

	subscriber_group_key
	O
	device specific, encrypted

	unique_device_key
	O
	device specific, encrypted

	unique_device_filter
	M
	device specific, encrypted

	ri_authentication_key
	M
	device specific, encrypted

	local_domain_key
	O
	device specific, encrypted

	shortform_domain_id
	M
	device specific, encrypted

	drm_time
	M
	device specific, not encrypted

	local_time_offset
	O
	device specific, not encrypted

	registration_timestamp_start
	O
	device specific, not encrypted

	registration_timestamp_end
	O
	device specific, not encrypted

	shortform_udn
	O
	device specific, not encrypted

	signature_block
	M
	device specific, not encrypted

message_tag - This parameter identifies the type of the message. Refer to section A.9for the value of the message_tag.

protocol_version - This parameter indicates the protocol_version of this message. The device SHALL ignore messages that have a protocol_version number it doesn’t support. The value of the protocol_version of this message is set to 0x0 (i.e. the original format).

If set to 0x0 the format specified in the this version of the specification is used. If set to anything else than 0x0, then the format is beyond the scope of this version of the specification

sign_bcros_flag: This (OPTIONAL) flag is turned ON if the BCROs will be signed. If this flag is present, the reserved_for_use flag is reduced to 3 bits.

longform_udn() - The long form of the UDN. Refer to section 6.1.1.2.1 for details.

status - The status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 5: Status values

	status value
	meaning

	Success
	The registration request was executed successfully and the RI completed all data. The device SHALL process the message.

	UnknownError
	The RI encountered an unknown error after receiving the registration request. The device MAY put forward a subsequent registration request to the RI (context).

	NotSupported
	The RI does not support the registration request.

	AccessDenied
	The RI decided that the device will not be granted access to the service and stops the registration. The RI will stop listening to future registration requests of this device. The device is forced to refrain from future registration and SHALL suppress broadcast and/or mixed-mode registration requests to the particular RI (context).

	NotFound
	The RI decided that the device could not be found (offline UDN and/or UaProf). The device MAY put forward a subsequent registration request to the RI (context).

	MalformedRequest
	The RI decided that the registration request was malformed and will force the device to execute a (re)-registration at once. The device SHALL enter (re)registration mode.

Note: refer to section A.4 for the value of the error codes.

certificate_version - is a numerical representation of the version of the RI certificate. Using the certificate_version parameter the device can decide if it is needed to update the RI certificate (if it was stored before).

Table 6: description of certificate_version parameter

	Parameter Fieldname
	Field Value (h)
	supports

	major_version_number
	0x0,..,0xA
	MSB4(certificate_version)

	minor_version_number
	0x0,..,0xA
	LSB4(certificate_version)

The parameter is divided 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. The major and minor number encode in bslbf format. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b.

ri_certificate_counter - This parameter indicates the depth of the RI certificate chain.

	number of certificate in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 RI certificates.

c_length - This parameter indicates the length in bytes of the ri_certificate.

ri_certificate() - This parameter SHALL be present. When present, the value of a ri_certificate parameter SHALL be a certificate chain including the RI’s certificate. The chain SHALL NOT include the root certificate. The RI certificate SHALL come first in the list. Each following certificate SHALL directly certify the one preceding it.

The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data stored in this way SHALL uniquely identify the RI certificate and SHALL be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to the stored certificate verification data for this RI. If so, the Device NEED NOT verify the RI certificate chain again, otherwise the Device SHALL verify the RI certificate chain.
 If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Broadcast Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device SHALL verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
However, if the Device does store RI certificate verification data in this way it SHALL store the expiry period of the RI’s certificate (as indicated by the notAfter field within the certificate) and SHALL compare the Device’s current DRM Time with the stored RI certificate expiry time whenever verifying the signature on signed messages from the RI. If the Device’s current DRM Time is after the stored RI certificate expiry time then the Device SHALL abandon processing the RI message and SHALL initiate the registration protocol.

ocsp_response_counter - This parameter indicates the depth of the OCSP response chain.

	number of responses in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 OCSP responses.

r_length - This parameter indicates the length in bytes of the ocsp_response.

ocsp_response() - This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device SHALL NOT fail due to the presence of more than one OCSP response element. A Device SHALL check that an OCSP response is present in the received message. If no OCSP response is present in the device_registration_response() message, then the Device SHALL abort the registration protocol.

local_time_offset_flag - Binary flag to signal presence of the parameter it describes:

	local_time_offset_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

time_stamp_flag - Binary flag to signal presence of the parameter it describes:

	time_stamp_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

subscriber_group_key_flag - The flag expresses how many subscriber_group_keys (a.k.a. SGK) are delivered with the registration data. When zero message broadcast is used, a set of 8 keys will support a group size of 256. A set of 9 keys will support a group size of 512. Other values or larger group sizes are not supported. A value larger than zero indicates that the registration data message delivers a set of zero message subscriber_group_key (s) to the device and that the device needs to use zero message broadcast style encryption to deduce the decryption key to decrypt the SEK.

	subscriber_group_key_flag
	Value (h)
	remark

	data absent
	0x0
	will signal absence of keyset_block e.g. on error status to save bandwidth.

	reserved for future use
	0x1-0x7
	not used in this version of the specification

	set of (8) subscriber_group_key
	0x8
	

	set of (9) subscriber_group_key
	0x9
	

	reserved for future use
	0xA-0xF
	not used in this version of the specification

signature_type_flag - A flag to signal type of signature algorithm used:

	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	CMLA requirement (2004-2007)

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

short_udn_flag - Binary flag to signal presence of the parameter it describes:

	short_udn_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

surplus_block_flag - Binary flag to signal the presence of the parameter it describes:

	surplus_block_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

keyset_block_length - This parameter indicates the length in bits of the total keyset_block. That is the part in the sessionkey_block() plus the optional second part from the surplus_block().
unique_group_key - An symmetric AES encryption key to address a unique group. This key is also known as UGK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 6.1.3.2.2).

subscriber_group_key - An (set of) AES symmetric encryption key(s) which are used for the zero message subscriber_group_key deduction of the key needed to decrypt the SEK and/or PEK. These subscriber_group_key is also known as SGK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 6.1.3.2.2).

unique_device_key - An AES symmetric key to address a unique device. This key is also known as UDK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 6.1.3.2.2).

unique_device_filter - A [EUROCRYPT] style addressing scheme used to filter for messages like BCROs. A device address consists of 5 bytes and is unique within an operation. The shared address is defined as the 4 most significant bytes of the unique address. The least significant byte (byte 5) defines the position (0….255) in the group that shares an address. This means that each group consists of 256 members. An access mask, in an entitlement, is used to identify individual members. So if for a particular group only member 5 and 100 are allowed to have access to a service then their corresponding bits are set in the access mask. Take the device_id_mask equal to 252 (1111 1100b) then the least significant byte of the device_id is masked and thereby creating a shared address. This address is also known as UDF.

Note: This address is wrapped into the keyset_block. (Refer to 6.1.3.2.2).
ri_authentication_key - An AES symmetric key to verify MACs on BCRO and KSM messages. This key is also known as RIAK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 6.1.3.2.2).

local_domain_key - An AES symmetric key to address a unique device. This key is also known as LDK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 6.1.3.2.2).
longform_domain_id() – This parameter is also known as the Longform Local Domain Filter (LLDF). Please refer to section A.8.3 for the definition. The longform_domain_id() is used for mixed-mode operation. Note: This address is wrapped into the keyset_block. (Refer to 6.1.3.2.2).
shortform_domain_id – This parameter is also known as the Shortform Local Domain Filter (SLDF). Please refer to 6.1.3.2.2. An addressing scheme used to filter for messages like BCROs. The shortform_domain_id is used for broadcast mode of operation.

Note: This address is wrapped into the keyset_block. (Refer to 6.1.3.2.2).
drm_time - This parameter defines the time in Universal Time Coordinated (UTC). This 40-bit field contains the current time and date in UTC and MJD. Refer to A.4 for calculation of the UTC and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit BCD.

EXAMPLE: 93/10/13 12:45:00 is coded as “0xC079124500”.

local_time_offset - This parameter indicates the local time offset from the (UTC) drm_time as explained in Annex A.4.

registration_timestamp_start - Indicates from what time onwards the registration data is valid. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

registration_timestamp_end - Indicates from what time onwards the registration data is expires. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

shortform_udn - This parameter allows the RI to give an own defined short number identifying the device. This number can be used as a shorter alternative to the UDN during offline notifications. The shortform_udn is coded in BCD format.

signature_block - The signature SHALL enable a single source authenticity check on the message. The algorithm used for the signature is RSA-1024 or RSA-2048 or RSA-4096. The signature SHALL apply to the implementation guidelines of PCKS#1, as specified in A.6.

Note Message result:

The stored RI Context SHALL at a minimum contain:

· RI ID, Unique device filter (UDF).

· following keys:

· UGK, BGK1..n and/or UDK

· RIAK.

· SK

· If domain addressing via an OMA DRM 2.0 domain is required the keyset SHALL (additionally to the standard addressing above) include following keys:

· LDK.

· Shortform Local Domain Filter (SLDF). A.k.a. “shortform_domain_id”. Refer to A.8.1.

· For mixed-mode devices domain context SHALL additionally contain:

· Longform Local Domain Filter (LLDF). A.k.a. “longform_domain_id()”. Refer to A.8.3.

· A Device MAY have several Domain Contexts with an RI.

· The RI Context SHALL also contain an RI Context Expiry Time, which is defined to be the timestamp of the registration data if that was send and otherwise the expiration of the RI certificate.

· The RI Context MAY also contain RI certificate validation data.

· If the RI Context has expired, the Device SHALL NOT execute any other protocol than the 1-pass binary device data registration protocol with the associated RI (context), and upon detection of RI Context expiry the Device SHOULD initiate the offline notification of detailed device data protocol using the RI_ID stored in the RI Context. Depending on the implementation a dialogue will be shown to the user and the offline NDD protocol will be executed.

· Accessing an ESG for purchase is still allowed, as this will require a registration first.

· The device SHALL be rendered inoperable for any purchase protocol or playback of future content. The device MAY use stored BCROs to play old content for which the device obtained GROs, but SHALL NOT use these BCROs for new content received after the re-registration request until the device is re-registered with the RI.

Requirements:

· The Device SHALL have at most one RI Context with each RI. An existing RI Context SHALL be replaced with a newly established RI Context after successful re-registration with the same RI.

· The device SHALL support at least 6 RI context for broadcast mode of operation.

· For standard addressing the keyset SHALL include a valid set of :

· UGK, BGK1..n and/or UDK keys

· RIAK key. A single RIAK key is bound to a single Subscriber Group (e.g. 256 or 512 members).
· Unique device filter (UDF).

· If domain addressing via an OMA DRM 2.0 domain is required the keyset SHALL (additionally to the standard addressing above) include a valid set of :

· LDK key.

· Shortform Local Domain Filter (SLDF). A.k.a. “shortform_domain_id”. Refer to A.8.1.

And in case of mixed-mode operation devices the keyset SHALL contain:

· A Longform Local Domain Filter (LLDF, a.k.a. “longform_domain_id()”) that matches the SLDF. Refer to A.8.3.

6.1.3.2.2 Protection of the (device registration) keyset

The device_registration_response() message is split in two parts: device specific (time bound) data and global (not time bound) data.

[image: image4.wmf]Device global data

(in the clear)

Device specific data

Key material

(encrypted)

Other device data

(in the clear)

Longform_udn

signature

Message_tag

Signature over

complete

message

Figure 6: device_registration_response() message

The device global data SHALL be in the clear. The device specific data contains the keyset for the device. This key material SHALL be encrypted, whereas the rest of the device specific data SHALL be in the clear. The key material SHALL be protected by encryption. The RI SHALL use the device’s public key to encrypt all key material in the device specific data part of the message.

The RI SHALL use his private key to sign the complete message data. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device SHALL make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message SHALL adhere to the following rules:

1. Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the device_registration_response() message.

2. Concatenate the keyset (UGK, BGK1..n, UDK, RIAK, UDF and/or LDK, SLDF plus optional LLDF if applicable) under rules of [FIPS_197] and the Tag Length Format described in section A.8.

3. Encrypt the keyset using [AES_WRAP] using the generated SK as (AES-WRAP style) KEK. This will produce the keyset_block.

4. Calculate the part of the keyblock that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PCKS#1. If the keyset_block fits into one RSA block continue at step 5. Else continue at step 4.

5. If the SK plus keyset_block including PCKS#1 header, aligning, etc did not fit into one RSA block, then keep the remainder part as surplus_block().

6. Encrypt SK plus the (part of the)keyset_block that fits into the RSA block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1]. This will produce the sessionkey_block().

7. Concatenate the (non encrypted) parameters that were not used in the key_block and create the message “header” from this. Refer to 6.1.3.2.3 for details. (for reason of completeness: of course the sessionkey_block(), the (optional) surplus_block() and the signature_block are not part of the message header)

8. Concatenate the message “header” and the sessionkey_block() . If the SK plus keyset_block including PCKS#1 header, aligning, etc did not fit into one RSA block, then also concatenate surplus_block() part. The result SHALL be hashed under implementation guidelines of [PKCS#1], as specified in section A.6. This will produce the signature_input_data.

9. Sign the signature_input_data with RSA (1024 or 2048 or 4096) using the private key of the RI. The signature SHALL apply to the implementation guidelines of PCKS#1, as specified in A.6. This will produce the signature_block.

10. The device_registration_response() message comprises of the message “header” plus sessionkey_block(), optionally the surplus_block() and the signature_block.

[image: image5.wmf]surplus_block

(AES encrypted)

Sessionkey_block

(RSA encrypted)

Signature_block

(RSA signature)

SK (plus part of

keyset_block that fits into

RSA block (size)

RSA signature

Message “header”

(in the clear)

All but input for keyblocks

below

(optional) Remainder of

keyset_block that did not fit

into RSA block

Keyset_block

(AES encrypted)

Figure 7: structure of device_registration_response() message.

Concluding: The number of RSA blocks used should be kept to a minimum. The AES surplus_block() is present if and when the keyset does not completely fit into the sessionkey_block() given the RSA block size used. If present the AES surplus_block() contains those keys that did not fit into one RSA block (i.e. the sessionkey_block()). The complete keyset needed for operation after registration is included in the encrypted keyset_block, which is concatenated from the first part in the sessionkey_block() and optionally the surplus_block(). Refer to appendix for calculations on the surplus_block_size.

Decryption of the encrypted message SHALL adhere to the following rules:

1. Locate the message via message_tag

2. Verify if the message is intended for this device by comparing the long_form_udn with the UDN stored in the device.

3. Verify the signature_block of the message by using the public key from the RI.

4. Locate the sessionkey_block() and decrypt the block with the private key of the local device. Locate the session key (SK) from the header and (eventual) padding (according to PCKS#1). Then locate the keyset_block part from the header and (eventual) padding (according to PCKS#1).

5. (Optionally) If there is a surplus_block() concatenate this part to the keyset_block. This will complete the keyset_block.

6. Use the SK to decrypt the keyset_block.

7. Allocate the individual keyset_items from the keyset_block according to [AES_WRAP] and the Tag Length Format described in section A.8.

Note: The SK SHALL be stored into protected storage. The AES encrypted keyset_block MAY be stored as is into unprotected storage and decrypted by the device upon use. If the keyset_block is not stored but the decrypted keys from that block are stored instead, the device SHALL store all key data safely. The keys SHALL NOT leak outside the device.

Change 8: Reference in BCRO section to section 6.2.3.1.1
6.2.3.1.1 Update_drmtime message description

Using the 1-pass IRD protocol (refer to 6.2) the RI sends a update_drmtime trigger message with the drmtime to the device as specified below:

Table 4: Update drmtime message description

	update_drmtime_msg()

	Parameter name
	(M)andatory / (O)ptional

	Remark

	message_tag
	M
	

	protocol_version
	M
	

	status
	M
	

	signature_type_flag
	M
	

	local_time_offset_flag
	M
	

	drm_time
	M
	

	local_time_offset
	O
	

	signature_block
	M
	

message_tag - This parameter identifies the type of the message. Refer to A.9 for the value of the message_tag.

protocol_version - This parameter indicates the protocol_version of this message. The device SHALL ignore messages that have a protocol_version number it doesn’t support. The value of the protocol_version of this message is set to 0x0 (i.e. the original format).

If set to 0x0 the format specified in the this version of the specification is used. If set to anything else than 0x0, then the format is beyond the scope of this version of the specification.

status - The status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 5: Status values

	status value
	meaning

	Success
	The message contains valid DRM time RI.

	NotSupported
	The RI does not support the sending of DRM time request. The device will use other means to update DRM time.

	DeviceTimeError
	The RI concluded that the DeviceTime might be false and forces the device to update it’s time. As an extra result the device will determine the eventual clock drift and notify this to the RI per ARC (offline notification of short device data; refer to6.1.2).Please note: this capability should be used with great care.)

Note: Refer to A.4 for the value of the error codes.

local_time_offset_flag - Binary flag to signal presence of the parameter it describes:

	local_time_offset_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

signature_type_flag - A flag to signal type of signature algorithm used:

	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	CMLA requirement (2004-2007)

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

drm_time - This parameter defines the time in Universal Time Coordinated (UTC). This 40-bit field contains the current time and date in UTC and MJD. Refer to Appendix A.4 for calculation of the UTC and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit BCD.

EXAMPLE: 93/10/13 12:45:00 is coded as “0xC079124500”.

local_time_offset - This parameter indicates the local time offset from the (UTC) drm_time as explained in Annex A.4.

signature_block - The signature SHALL enable a single source authenticity check on the message. The algorithm used for the signature is RSA-1024 or RSA-2048 or RSA-4096. The signature SHALL apply to the rules of PCKS#1, as specified in A.6.

Change 9: Reference in BCRO section to section 6.2.4.1.1
6.2.4.1.1 Update contactnumber message description

Using the 1-pass IRD protocol (refer to 6.2.1) the RI sends a update_contact_number_msg() message with a (set of) contact number(s) to the device as specified below:

Table 7: update contactnumber message description

	update_contact_number_msg()

	Parameter name
	(M)andatory / (O)ptional

	Remark

	message_tag
	M
	

	protocol_version
	M
	

	Status
	M
	

	signature_type_flag
	M
	

	ri_certificate_counter
	M
	

	c_length
	M
	

	ri_certificate
	M
	

	ocsp_response_counter
	M
	

	r_length
	M
	

	ocsp_response
	M
	

	contact_counter
	M
	

	contact
	O
	

	signature_block
	M
	

message_tag - This parameter identifies the type of the message. Refer to section A.9 for the value of the message_tag.

protocol_version - This parameter indicates the protocol_version of this message. The device SHALL ignore messages that have a protocol_version number it doesn’t support. The value of the protocol_version of this message is set to 0x0 (i.e. the original format).

If set to 0x0 the format specified in the this version of the specification is used. If set to anything else than 0x0, then the format is beyond the scope of this version of the specification.

status - The status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 8: Status values

	status value
	meaning

	Success
	The message contains valid contact numbers from the RI.

	NotSupported
	The RI does not support the sending of contact numbers. The device will use other means to use contact numbers (e.g. via ESG).

Note: refer to A.4 for the value of the error codes.

signature_type_flag - A flag to signal type of signature algorithm used:

	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	CMLA requirement (2004-2007)

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

certificate_version - is a numerical representation of the version of the RI certificate. Using the certificate_version parameter the device can decide if it is needed to update the RI certificate (if it was stored before).

Table 9: description of certificate_version parameter

	Parameter Fieldname
	Field Value (h)
	supports

	major_version_number
	0x0,..,0xA
	MSB4(certificate_version)

	minor_version_number
	0x0,..,0xA
	LSB4(certificate_version)

The parameter is divided 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. The major and minor number encode in bslbf format. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b.

ri_certificate_counter - This parameter indicates the depth of the RI certificate chain.

	number of certificate in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 RI certificates.

c_length - This parameter indicates the length in bytes of the ri_certificate.

ri_certificate() - This parameter SHALL be present. When present, the value of a ri_certificate parameter SHALL be a certificate chain including the RI’s certificate. The chain SHALL NOT include the root certificate. The RI certificate SHALL come first in the list. Each following certificate SHALL directly certify the one preceding it.

If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Broadcast Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device SHALL verify the complete chain.
ocsp_response_counter - This parameter indicates the depth of the OCSP response chain.

	number of responses in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 OCSP responses.

r_length - This parameter indicates the length in bytes of the ocsp_response.

ocsp_response() - This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device SHALL NOT fail due to the presence of more than one OCSP response element. A Device SHALL check that an OCSP response is present in the received message. If no OCSP response is present in the device_registration_response() message, then the Device SHALL abort the registration protocol.

contacts_counter - This parameter indicates the number of contacts carried in the message.

contact – This object specifies the contact. Please refer to 6.2.4.1.3.
signature_block - The signature SHALL enable a single source authenticity check on the message. The algorithm used for the signature is RSA-1024 or RSA-2048 or RSA-4096. The signature SHALL apply to the implementation guidelines of PCKS#1, as specified in A.6.

Change 10: Reference in BCRO section to section 6.2.5.1.1
6.2.5.1.1 Re-register message description

Using the 1-pass IRD protocol (refer to 6.2.1) the RI sends a register_msg message, indirectly triggering a (re)registration . The message is specified as follows:

Table 13: Re-register message description

	re_register_msg()

	Parameter name
	(M)andatory / (O)ptional

	Remark

	message_tag
	M
	

	protocol_version
	M
	

	longform_udn
	M
	

	status
	M
	

	signature_type_flag
	M
	

	certificate_version
	M
	

	ri_certificate_counter
	M
	

	c_length
	M
	

	ri_certificate
	M
	

	ocsp_response_counter
	M
	

	r_length
	M
	

	ocsp_response
	M
	

	signature_block
	M
	

message_tag - This parameter identifies the type of the message. Refer to A.9 for the value of the message_tag.

protocol_version - This parameter indicates the protocol_version of this message. The device SHALL ignore messages that have a protocol_version number it doesn’t support. The value of the protocol_version of this message is set to 0x0 (i.e. the original format).

If set to 0x0 the format specified in the this version of the specification is used. If set to anything else than 0x0, then the format is beyond the scope of this version of the specification.
longform_udn() - The long form of the UDN. Refer to section 6.1.1.2.1 for details.

status - The status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 14: Status values

	status value
	meaning

	Success
	The message contains valid reregistration message and cancels any preceding forced channel usage restrictions.

	ForceInteractiveChannel
	If the device is a mixed mode device the (re)registration will be possible via OOB and/or the interactive channel. By using this status code the RI can indicate to the device that the device SHALL direct subsequent (re)registrations to the RI over the device’s interactive channel only. When the device receives this status code it will also exclusively use the interaction channel for all other messages. When the interactive channel of the device is not able to connect to the RI the mixed mode device MAY revert back to the OOB re-registration dialogue. Please note that a mixed mode device will remain to have full broadcast reception capabilities after receiving this status code.

	ForceOobChannel
	If the device is a mixed mode device the (re)registration will be possible via OOB and/or the interactive channel. By using this status code the RI can indicate to the device that the device SHALL direct subsequent (re)registrations to the RI over the device’s OOB channel. When the device receives this status code it will also exclusively use the OOB channel for all other messages. Please note that a mixed mode device will remain to have full interactive channel capabilities after receiving this status code, but will not use the interactive channel.

Note: Refer to A.4 for the value of the error codes.

signature_type_flag - A flag to signal type of signature algorithm used:

	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	CMLA requirement (2004-2007)

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

certificate_version - is a numerical representation of the version of the RI certificate. Using the certificate_version parameter the device can decide if it is needed to update the RI certificate (if it was stored before).

Table 9: description of certificate_version parameter

	Parameter Fieldname
	Field Value (h)
	supports

	major_version_number
	0x0,..,0xA
	MSB4(certificate_version)

	minor_version_number
	0x0,..,0xA
	LSB4(certificate_version)

The parameter is divided 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. The major and minor number encode in bslbf format. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b.
ri_certificate_counter - This parameter indicates the depth of the RI certificate chain.

	number of certificate in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 RI certificates.

c_length - This parameter indicates the length in bytes of the ri_certificate.

ri_certificate() - This parameter SHALL be present. When present, the value of a ri_certificate parameter SHALL be a certificate chain including the RI’s certificate. The chain SHALL NOT include the root certificate. The RI certificate SHALL come first in the list. Each following certificate SHALL directly certify the one preceding it.

If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Broadcast Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device SHALL verify the complete chain.
ocsp_response_counter - This parameter indicates the depth of the OCSP response chain.

	number of responses in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 OCSP responses.

r_length - This parameter indicates the length in bytes of the ocsp_response.

ocsp_response() - This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device SHALL NOT fail due to the presence of more than one OCSP response element. A Device SHALL check that an OCSP response is present in the received message. If no OCSP response is present in the device_registration_response() message, then the Device SHALL abort the registration protocol.

signature_block - The signature SHALL enable a single source authenticity check on the message. The algorithm used for the signature is RSA-1024 or RSA-2048 or RSA-4096. The signature SHALL apply to the implementation guidelines of PCKS#1, as specified in A.6.

Change 11: Reference in BCRO section to section 6.4.3
6.4.3 Binary messages

6.4.3.1 Domain data - domain_registration_response() message

6.4.3.1.1 Domain registration response message description

Using the 1-pass PDR protocol (see 6.1.3.1) the RI sends a domain_registration_response() message, informing the device of a new domain keyset. The message is specified below:

Table 22: message description

	domain_registration_response()

	Parameter name
	(M)andatory / (O)ptional

	remark

	message_tag
	M
	global, not encrypted

	protocol_version
	M
	global, not encrypted

	longform_udn
	M
	global, not encrypted

	device_nonce
	M
	device specific, not encrypted

	status
	M
	device specific, not encrypted

	time_stamp_flag
	M
	device specific, not encrypted

	certificate_version
	M
	global, not encrypted

	ri_certificate_counter
	M
	global, not encrypted

	c_length
	M
	global, not encrypted

	ri_certificate
	M
	global, not encrypted

	ocsp_response_counter
	M
	global, not encrypted

	r_length
	M
	global, not encrypted

	ocsp_response
	M
	global, not encrypted

	domain_timestamp_start
	O
	device specific, not encrypted

	domain_timestamp_end
	O
	device specific, not encrypted

	signature_type_flag
	M
	global, not encrypted

	keyset_block_length
	M
	device specific, not encrypted

	local_domain_key
	M
	device specific, encrypted

	longform_domain_id()
	O
	device specific, encrypted

	shortform_domain_id
	M
	device specific, encrypted

	signature_block
	M
	device specific, not encrypted

message_tag - This parameter identifies the type of the message. Refer to A.9 for the value of the message_tag.

protocol_version - This parameter indicates the protocol_version of this message. The device SHALL ignore messages that have a protocol_version number it doesn’t support. The value of the protocol_version of this message is set to 0x0 (i.e. the original format).

If set to 0x0 the format specified in the this version of the specification is used. If set to anything else than 0x0, then the format is beyond the scope of this version of the specification.

longform_udn() - The long form of the UDN. Refer to section 6.1.1.2for details.

status - The status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 23: Status values

	status value
	meaning

	Success
	The message contains valid domain registration data from the RI.

	NotSupported
	The RI does not support the sending of domain registration data from the RI. The RI SHALL NOT include any valid keyset in the message. The device will use other means to obtain valid domain registration data from the RI.

	InvalidDomain
	The RI could not recognize the domain identifier that was used in the join domain request or decided that the domain identifier is invalid. The RI SHALL NOT include any valid keyset in the message.

	DomainFull
	The RI indicates that no more devices are allowed to join the domain. The RI SHALL NOT include any valid keyset in the message.

Note: refer to A.4 for the value of the error codes.

device_nonce - The device_nonce is the nonce which was present in the request (using the offline NSD protocol) to which this message is a response. This nonce is a encoded in BCD.
time_stamp_flag - Binary flag to signal presence of the parameter it describes:

	time_stamp_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

certificate_version - is a numerical representation of the version of the RI certificate. Using the certificate_version parameter the device can decide if it is needed to update the RI certificate (if it was stored before).

Table 24: description of certificate_version parameter

	Parameter Fieldname
	Field Value (h)
	supports

	major_version_number
	0x0,..,0xA
	MSB4(certificate_version)

	minor_version_number
	0x0,..,0xA
	LSB4(certificate_version)

The parameter is divided 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. The major and minor number encode in bslbf format. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b.

ri_certificate_counter - This parameter indicates the depth of the RI certificate chain.

	number of certificate in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 RI certificates.

c_length - This parameter indicates the length in bytes of the ri_certificate.

ri_certificate() - This parameter SHALL be present. When present, the value of a ri_certificate parameter SHALL be a certificate chain including the RI’s certificate. The chain SHALL NOT include the root certificate. The RI certificate SHALL come first in the list. Each following certificate SHALL directly certify the one preceding it.

The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data stored in this way SHALL uniquely identify the RI certificate and SHALL be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to the stored certificate verification data for this RI. If so, the Device NEED NOT verify the RI certificate chain again, otherwise the Device SHALL verify the RI certificate chain.
 If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Broadcast Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device SHALL verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
However, if the Device does store RI certificate verification data in this way it SHALL store the expiry period of the RI’s certificate (as indicated by the notAfter field within the certificate) and SHALL compare the Device’s current DRM Time with the stored RI certificate expiry time whenever verifying the signature on signed messages from the RI. If the Device’s current DRM Time is after the stored RI certificate expiry time then the Device SHALL abandon processing the RI message and SHALL initiate the registration protocol.

ocsp_response_counter - This parameter indicates the depth of the OCSP response chain.

	number of responses in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 OCSP responses.

r_length - This parameter indicates the length in bytes of the ocsp_response.

ocsp_response() - This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device SHALL NOT fail due to the presence of more than one OCSP response element. A Device SHALL check that an OCSP response is present in the received message. If no OCSP response is present in the domain_registration_response() message, then the Device SHALL abort the registration protocol.

domain_timestamp_start - Indicates from what time onwards the registration data for the domain is valid. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

domain_timestamp_end - Indicates from what time onwards the registration data for the domain expires. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

signature_type_flag - A flag to signal type of signature algorithm used:

	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	CMLA requirement (2004-2007)

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

keyset_block_length - This parameter indicates the length in bits of the total keyset_block. That is the part in the sessionkey_block().
local_domain_key - An AES symmetric key to address a unique device. This key is also known as LDK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 6.4.3.1.2).

longform_domain_id() – This parameter is also known as the Longform Local Domain Filter (LLDF). Please refer to A.8.3 for the definition. The longform_domain_id() is used for mixed-mode operation. Note: This address is wrapped into the keyset_block. (Refer to 6.4.3.1.2).
shortform_domain_id – This parameter is also known as the Shortform Local Domain Filter (SLDF). Please refer to A.8.1. An addressing scheme used to filter for messages like BCROs. The shortform_domain_id is used for broadcast mode of operation.

Note: This address is wrapped into the keyset_block. (Refer to 6.4.3.1.2).
signature_block - The signature SHALL enable a single source authenticity check on the message. The algorithm used for the signature is RSA-1024 or RSA-2048 or RSA-4096. The signature SHALL apply to the implementation guidelines of PCKS#1, as specified in A.6.

Note Message result:

The stored domain context SHALL at a minimum contain:

· Following keys:

· LDK.

· Shortform Local Domain Filter (SLDF). A.k.a. “shortform_domain_id”. Refer to A.8.1.

· For mixed-mode operation, devices’ domain context SHALL additionally contain:

· Longform Local Domain Filter (LLDF). A.k.a. “longform_domain_id()”. Refer to A.8.3.

· A Device MAY have several Domain Contexts with an RI.

· If the domain context has expired, the Device SHALL NOT execute any other protocol than the 1-pass binary device data registration protocol with the associated RI (context), and upon detection of domain context expiry the Device SHOULD initiate the offline notification of short device data protocol using the correct ARC. Depending on the implementation a dialogue will be shown to the user and the offline NSD protocol will be executed.

· Accessing an ESG for purchase is still allowed, as this will require a (domain) registration first.

· The device SHALL be rendered inoperable for any purchase protocol or playback of future content. The device MAY use stored BCROs to play old content for which the device obtained GROs, but SHALL NOT use these BCROs for new content received after the re-registration request until the device is re-registered with the RI.

Requirements:

· If domain addressing via an OMA DRM 2.0 domain is required the keyset SHALL include a valid set of :

· LDK key.

· Shortform Local Domain Filter (SLDF). A.k.a. “shortform_domain_id”. Refer to A.8.1.

And in case of mixed-mode operation devices the keyset SHALL contain:

· A Longform Local Domain Filter (LLDF, a.k.a. “longform_domain_id()”) that matches the SLDF. Refer to A.8.3.

6.4.3.1.2 Protection of the (domain registration) keyset

The domain_registration_response() message is split in two parts: device specific (time bound) data and global (not time bound) data.

[image: image6.wmf]Device global data

(in the clear)

Device specific data

Key material

(encrypted)

Other device data

(in the clear)

Longform_udn

signature

Message_tag

Signature over

complete

message

Figure 7: domain_registration_response() message

The device global data SHALL be in the clear. The device specific data contains the keyset for the device. This key material SHALL be encrypted, whereas the rest of the device specific data SHALL be in the clear. The key material SHALL be protected by encryption. The RI SHALL use the device’s public key to encrypt all key material in the device specific data part of the message.

The RI SHALL use his private key to sign the complete message data. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device SHALL make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message SHALL adhere to the following rules:

1. Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the domain_registration_response() message.

2. Concatenate the keyset (LDK, SLDF plus optional LLDF if applicable) under rules of [FIPS_197] and the Tag Length Format described in section A.8. More than one context is allowed up to the RSA blocksize.

3. Encrypt the keyset using [AES_WRAP] using the generated SK as (AES-WRAP style) KEK. This will produce the keyset_block.

4. Calculate the part of the keyblock that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PCKS#1.

5. Encrypt SK plus the keyset_block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1]. This will produce the sessionkey_block().

6. Concatenate the (non encrypted) parameters that were not used in the key_block and create the message “header” from this. Refer to 6.4.3.1.3 for details. (for reason of completeness: of course the sessionkey_block() and the signature_block are not part of the message header)

7. Concatenate the message “header” and the sessionkey_block() . The result SHALL be hashed under implementation guidelines of [PKCS#1], as specified in section A.6. This will produce the signature_input_data.

8. Sign the signature_input_data with RSA (1024 or 2048 or 4096) using the private key of the RI. The signature SHALL apply to the implementation guidelines of PCKS#1, as specified in A.6. This will produce the signature_block.

9. The domain_registration_response() message comprises of the message “header” plus sessionkey_block() and the signature_block.

[image: image7.wmf]Sessionkey_block

(RSA encrypted)

Signature_block

(RSA signature)

SK (plus keyset_block that

fits into RSA block (size)

RSA signature

Message “header”

(in the clear)

All but input for keyblocks

below

Keyset_block

(AES encrypted)

Figure 8: structure of domain_registration_response() message.

Decryption of the encrypted message SHALL adhere to the following rules:

1. Locate the message via message_tag

2. Verify if the message is intended for this device by comparing the long_form_udn with the UDN stored in the device.

3. Verify the signature_block of the message by using the public key from the RI.

4. Locate the sessionkey_block() and decrypt the block with the private key of the local device. Locate the session key (SK) from the header and (eventual) padding (according to PCKS#1). Then locate the keyset_block part from the header and (eventual) padding (according to PCKS#1).

5. Use the SK to decrypt the keyset_block.

6. Allocate the individual keyset_items from the keyset_block according to [AES_WRAP] and the Tag Length Format described in section A.8.

Note: The SK SHALL be stored into protected storage. The AES encrypted keyset_block MAY be stored as is into unprotected storage and decrypted by the device upon use. If the keyset_block is not stored but the decrypted keys from that block are stored instead, the device SHALL store all key data safely. The keys SHALL NOT leak outside the device.

6.4.3.1.3 Domain registration response message syntax

Table 25: domain registration response message syntax

	fields
	length
	type

	domain_registration_response(){
	
	

	/* signature protected part starts here */
	
	

	/* message header starts here /*
	
	

	message_tag
	8
	bslbf

	protocol_version
	4
	bslbf

	reserved_for_future_use
	4
	bslbf

	unique_device_number
	80
	bslbf

	reserved_for_future_use
	4
	bslbf

	device_nonce
	4
	bslbf

	Status
	8
	bslbf

	flags {
	
	

	ri_certificate_counter
	3
	bslbf

	ocsp_response_counter
	3
	bslbf

	signature_type_flag
	2
	bslbf

	time_stamp_flag
	1
	bslbf

	reserved for future use
	7
	bslbf

	keyset_block_length
	16
	uimsbf

	}
	
	

	certificate_version
	8
	bslbf

	for(cnt1=0; cnt1 < ri_certificate_counter ;cnt1++){
	
	

	c_length
	16
	uimsbf

	ri_certificate()
	8*c_length
	bslbf

	}
	
	

	for(cnt2=0; cnt2 < ocsp_response_counter ;cnt2++){
	
	

	r_length
	16
	uimsbf

	ocsp_response()
	8*r_length
	bslbf

	}
	
	

	if (time_stamp_flag == 0x1) {
	
	

	domain_timestamp_start
	40
	mjdutc

	domain_timestamp_end
	40
	mjdutc

	}
	
	

	/* message header ends here /*
	
	

	if (signature_type_flag == 0x0){
	
	

	sessionkey_block()
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	sessionkey_block()
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	sessionkey_block()
	4096
	bslbf

	}
	
	

	/* signature protected part ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	signature_block
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	signature_block
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	signature_block
	4096
	bslbf

	}
	
	

	}
	
	

6.4.3.2 Updating a domain - domain_update_response() message

6.4.3.2.1 Domain update response message description

Using the 1-pass IRD protocol (see 6.2), the RI sends a domain_update_response() message, informing the device that it left a particular domain. The message is specified below:

Table 26: domain update response message description

	domain_update_response()

	Parameter name
	(M)andatory / (O)ptional

	remark

	message_tag
	M
	global, not encrypted

	protocol_version
	M
	global, not encrypted

	longform_udn
	M
	global, not encrypted

	Status
	M
	device specific, not encrypted

	device_nonce
	M
	device specific, not encrypted

	certificate_version
	M
	global, not encrypted

	ri_certificate_counter
	M
	global, not encrypted

	c_length
	M
	global, not encrypted

	ri_certificate
	M
	global, not encrypted

	ocsp_response_counter
	M
	global, not encrypted

	r_length
	M
	global, not encrypted

	ocsp_response
	M
	global, not encrypted

	shortform_domain_id
	M
	device specific, not encrypted

	signature_type_flag
	M
	global, not encrypted

	signature_block
	M
	device specific, not encrypted

message_tag - This parameter identifies the type of the message. Refer to A.9 for the value of the message_tag.

protocol_version - This parameter indicates the protocol_version of this message. The device SHALL ignore messages that have a protocol_version number it doesn’t support. The value of the protocol_version of this message is set to 0x0 (i.e. the original format).

If set to 0x0 the format specified in the this version of the specification is used. If set to anything else than 0x0, then the format is beyond the scope of this version of the specification.

longform_udn() - The long form of the UDN. Refer to section 6.1.1.2.1 for details.

status - The status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 27: Status values

	status value
	meaning

	Success
	The message informs the device that the RI has removed this device from the domain it was registered in. The device SHALL remove the domain keyset that was associated to the particular domain.

	NotSupported
	The RI does not support the request to leave a domain. The device will use other means to notify the RI that it wants to leave a particular domain.

	InvalidDomain
	The RI is unable to support the request to leave a domain, because the domain is invalid

	
	

Note: refer to A.4 for the value of the error codes.

device_nonce - The device_nonce is the nonce which was present in the request (using the offline NSD protocol) to which this message is a response. This nonce is a encoded in BCD.
certificate_version - is a numerical representation of the version of the RI certificate. Using the certificate_version parameter the customer device can decide if it is needed to update the RI certificate (if it was stored before).

Table 28: description of certificate_version parameter

	Parameter Fieldname
	Field Value (h)
	supports

	major_version_number
	0x0,..,0xA
	MSB4(certificate_version)

	minor_version_number
	0x0,..,0xA
	LSB4(certificate_version)

The parameter is divided 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. The major and minor number encode in bslbf format. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b.

ri_certificate_counter - This parameter indicates the depth of the RI certificate chain.

	number of certificate in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 RI certificates.

c_length - This parameter indicates the length in bytes of the ri_certificate.

ri_certificate() - This parameter SHALL be present. When present, the value of a ri_certificate parameter SHALL be a certificate chain including the RI’s certificate. The chain SHALL NOT include the root certificate. The RI certificate SHALL come first in the list. Each following certificate SHALL directly certify the one preceding it.

The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data stored in this way SHALL uniquely identify the RI certificate and SHALL be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to the stored certificate verification data for this RI. If so, the Device need not verify the RI certificate chain again, otherwise the Device SHALL verify the RI certificate chain.
 If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Broadcast Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device SHALL verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
However, if the Device does store RI certificate verification data in this way it SHALL store the expiry period of the RI’s certificate (as indicated by the notAfter field within the certificate) and SHALL compare the Device’s current DRM Time with the stored RI certificate expiry time whenever verifying the signature on signed messages from the RI. If the Device’s current DRM Time is after the stored RI certificate expiry time then the Device SHALL abandon processing the RI message and SHALL initiate the registration protocol.

ocsp_response_counter - This parameter indicates the depth of the OCSP response chain.

	number of responses in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 OCSP responses.

r_length - This parameter indicates the length in bytes of the ocsp_response.

ocsp_response() - This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device SHALL NOT fail due to the presence of more than one OCSP response element. A Device SHALL check that an OCSP response is present in the received message. If no OCSP response is present in the domain_registration_response() message, then the Device SHALL abort the registration protocol.

shortform_domain_ID – the shortform_domain_id is the SLDF.
signature_type_flag - A flag to signal type of signature algorithm used:

	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	CMLA requirement (2004-2007)

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

signature_block - The signature SHALL enable a single source authenticity check on the message. The algorithm used for the signature is RSA-1024 or RSA-2048 or RSA-4096. The signature SHALL apply to the implementation guidelines of PCKS#1, as specified in A.6.

Change 12: Reference in BCRO section to section A.10
A.10 RSA signatures under PKCS#1
RSA signatures SHALL be made as described by the implementation guidelines of [PKCS #1] v2.1: RSA Cryptography Standard, RSA Laboratories, June 14, 2002.
The scheme SHALL be RSA + SHA1. There are two choices described in the [PKCS#1] as they are RSASSA-PSS and RSASSA-PKCS1-V1_5

Since OMA DRM 2.0 is used for interactive mode of operation and uses RSASSA-PSS, this specification SHALL also use RSASSA-PSS to sign the binary messages for broadcast mode of operation.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 33)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 33 (of 33)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

_1179506608.vsd
�

[1] notify "request"�

Service Provider / RI�

Customer / Device�

_1186339833.vsd
Device serial number�

Checksum�

ROT ID�

_1171444797.vsd
surplus_block
(AES encrypted)�

Sessionkey_block
(RSA encrypted)�

Signature_block
(RSA signature)�

(optional) Remainder of keyset_block that did not fit into RSA block�

SK (plus part of keyset_block that fits into RSA block (size)�

RSA signature�

Message �header�
(in the clear)�

All but input for keyblocks below�

Keyset_block
(AES encrypted)�

_1175965624.vsd
Sessionkey_block
(RSA encrypted)�

Signature_block
(RSA signature)�

SK (plus keyset_block that fits into RSA block (size)�

RSA signature�

Message �header�
(in the clear)�

All but input for keyblocks below�

Keyset_block
(AES encrypted)�

_1170257600.vsd
Device global data
(in the clear)�

Device specific data
�

�

Key material (encrypted)�

Other device data (in the clear)�

Longform_udn�

signature�

Message_tag�

Signature over complete message�

