Doc# OMA-BCAST-2006-1036-CR_PDCF_byte_counter_mode_and_salt.doc[image: image4.jpg]
Change Request

Doc# OMA-BCAST-2006-1036-CR_PDCF_byte_counter_mode_and_salt.doc
Change Request

Change Request

	Title:
	PDCF byte counter mode and salt
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DLDRM-BCAST

	Doc to Change:
	OMA-TS-DRM-XBS-V1_0-20060321-D

	Submission Date:
	30 November 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de
Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de

Stefan Döhla, Fraunhofer IIS, stefan.doehla@iis.fraunhofer.de

	Replaces:
	n/a

1 Reason for Change

In the current version of the XBS specification, content can be streamed using ISMACryp protection. The encryption algorithm in ISMACryp is very similar to the AES_128_CTR encryption algorithm in PDCF. However, there is an important difference between the algorithms in PDCF and ISMACryp that induces the need to re-encrypt Action Units (AUs) that are originally protected by ISMACryp but stored in a PDCF file.
Both PDCF and ISMACryp use a counter for the encryption of AUs. The difference lies in the update of the counter. In PDCF, the counter is increased by one for each 16-byte cipherblock, whilst in ISMACryp the counter is increased by one for each byte of ciphertext.
This CR solves this problem by adding an additional encryption algorithm, AES_128_BYTE_CTR, to PDCF. This encryption algorithm is the same as the encryption algorithm used in ISMACryp. Adding this algorithm removes the need to re-encrypt ISMACryp AUs when storing them in a PDCF file.

The addition of AES_128_BYTE_CTR includes the addition of a 64-bit Salt. This Salt contains the 64 most significant bits of the Initialization Vector (IV). The Salt is used in ISMACryp, and is introduced in PDCF to increase compatibility.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

AUs encrypted with the new AES_128_BYTE_CTR algorithm cannot be decrypted by OMA DRM v2.0 and v2.1 compliant devices.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

For the DLDRM-BCAST group to agree on the CR.
6 Detailed Change Proposal

Change 1: Add definition

3.2 Definitions

	Broadcast Device
	A device that does not support an interactive communication channel and cannot communicate with other entities except using the broadcast channel.

Note that a Broadcast Device can still have an implicit return channel: it may present information, triggers and dialogs to the user who may "implement" the interactive channel in various ways (e.g. telephone, web portal, service desk).

	Interactive Device
	 A device that supports an interactive communication channel and can communicate with other entities without using the broadcast channel for the communication. For example, an Interactive Device can execute interactive protocols, like the DRM 2.0 ROAP protocol or HTTP towards a Rights Issuer.

	Rights Object
	This is a Rights Object used by DRM profile of the Service and Content Protection. RO is delivered over Interaction Channel. Encoding of the RO is specified in [DRMDRM-v2.0].

	Broadcast Rights Object
	This is a Rights Object used by DRM profile of the Service and Content Protection. BCRO is delivered over Broadcast Channel. Encoding of the BCRO is specified in section 8 of this specification.

	Generalised Rights Object
	This term is used in this document as a more generic term whenever an RO or a BCRO is meant.

	Adapted PDCF
	The PDCF file format from [DRMCF-v2], including adaptations as specified in this document.

Change 2: Add notation

3.4 Notations

	E{K}(M)
	Encryption of message ‘M’ using key ‘K’

	D{K}(M)
	Decryption of message ‘M’ using key ‘K’

	A || B
	Concatenation of A and B

	LSBm(X)
	The bit string consisting of the m least significant bits of the bit string X.

	MSBm(X)
	The bit string consisting of the m most significant bits of the bit string X.

	a & b
	Bitwise AND of a and b.

	AES_ENCRYPT{K}(M)
	Encrypts the message M with AES, using the key K.

	ceil(x)
	Rounds up the real value x to the lowest integer N such that x<N.

	floor(x)
	Rounds down the real value x to the highest integer N such that x>N.

	a << b
	Bitwise shift left of a by b bits. The b most significant bits of a are discarded, whilst the b least significant bits after the shift contain zeros.

	a >> b
	Bitwise shift right of a by b bits. The b least significant bits of a are discarded, whilst the b most significant bits after the shift contain zeros.

Change 3: Change introduction chapter 12 (chapter 13 in Interim Specification)
Remark: the text as it is currently in the Interim Specification is modified here:
12. Adapted PDCF

The existing PDCF file format as defined in OMA DRM v2.0 [DRMCF-v2] allows audio video content to be stored in a file format together with the relevant OMA DRM information. Audio and video tracks can be encrypted as defined in [DRMCF-v2] using the appropriate CEK stored in a Generalised Rights Object (GRO).

Content can be streamed over RTP using ISMACryp. To allow storing this kind of streamed content in a PDCF file, a couple of adaptations to the PDCF file format are made. This modified PDCF file format is called Adapted PDCF.
Section 12.1
 describes the overall Adapted PDCF structure.
Section 12.2
 explains how to store TEK stream information in Adapted PDCF. In the context of broadcast services, RTP streams can be encrypted at the content level (encrypting Access Units using ISMACryp as explained in [BCAST10-ServContProt]) using TEKs. This key is not the traditional CEK stored in an RO. In the broadcast context the CEK is a Service Encryption Key (SEK) or a Program Encryption Key (PEK) delivered using Layer 2. This SEK or PEK allows the TEK delivered in Traffic Encryption Key stream messages delivered in Layer 3 to be decrypted. The TEK is used to encrypt content transmitted in RTP packets using ISMACryp. As this key changes regularly, Adapted PDCF allows the storage of the relevant TEK stream information.

Section 12.3 specifies the AES_128_BYTE_CTR encryption algorithm. This algorithm is used in ISMACryp and is included in Adapted PDCF to allow the storage of ISMACryp protected AUs in a PDCF file, without re-encryption.
Change 4: Make section 12.3 part of section 12.2 by giving it the number 12.2.3

12.2.3 Traffic Encryption Key stream storage format
Change 5: Add new section 12.3 describing the AES_128_BYTE_CTR algorithm
12.3 AES counter encryption in byte mode and salt
To record an ISMACryp stream directly to a PDCF file, a couple of adaptations to the OMA DRM v2.0 PDCF file format [DRMCF-v2] are needed.
The AES counter mode algorithm as appears in [DRMCF-v2], AES_128_CTR, is slightly modified. This modified version will be referred to as AES_128_BYTE_CTR. Using the AES_128_BYTE_CTR algorithm allows the storing of ISMACryp AUs without re-encryption. The two AES counter mode algorithms are explained in more detail in Section 12.3.1.
In Section 12.3.2, makes the adaptations needed to signal that the AES_128_BYTE_CTR algorithm is used. This is done by adding a new possible value for the EncryptionMethod field in the OMADRMCommonheaders box.
Section 12.3.3 handles the adaptations needed for the use of a Salt. In the AES_128_BYTE_CTR algorithm, the Salt contains the 64 most significant bits of an Initialization Vector (IV) and is transmitted only once per track. The salt omits the need to send all the bits of the IV in each AU and therefore reduces the overhead in the AU Header.
12.3.1 Description of AES counter modes

In both AES counter mode algorithms, a block of plaintext is encrypted to a block of ciphertext by xoring it with a generated pseudorandom KeyBlock based on AES encryption, which is defined as follows:

KeyBlocki = AES_ENCRYPT{CEK}(i),

where i is a 128-bit integer. Each KeyBlock has a length of 16 bytes and uses a new value of i. The kth byte in a KeyBlocki is denoted by KeyBlocki[k], where k=0 corresponds to the first byte. Similarly the nth byte of the ciphertext (in an AU) is denoted by C[n] and nth byte of the associated plaintext by P[n], where n=0 corresponds to the first byte.
The encrypter/decrypter has an internal variable CTR. This variable is used to calculate i in KeyBlocki. The exact calculation of i depends on the counter mode. To calculate the first value of CTR, the cipher algorithms need an Initialization Vector. There is one Initialization Vector per AU.
The basic difference between the two AES counter mode algorithms lies in the fact that for AES_128_ CTR the CTR is increased by 1 for each (16 byte) KeyBlock, whilst for AES_128_BYTE_CTR the CTR is increased by 1 for each byte. Furthermore, AES_128_BYTE_CTR uses a Salt, whereas AES_128_CTR does not.
12.3.1.1 AES_128_CTR

The AES_128_CTR algorithm is defined in [DRMCF-v2]. Using this algorithm, the initial value of CTR is equal to the value of the Initialization Vector IV. CTR is increased by one for each KeyBlock. The first byte of plaintext is encrypted using the first byte in KeyBlockCTR, with CTR=IV.

The plaintext on byte position n, P[n], is encrypted to the ciphertext on byte position n, C[n], as follows:
C[n] = P[n] xor KeyBlockIV+floor(n/16)[n mod 16]. The decryption is similarly done as follows:
P[n] = C[n] xor KeyBlockIV+floor(n/16)[n mod 16].

If this mode is used, it should be avoided to encrypt two different AUs using the same KeyBlock. Therefore encryption in this mode should always start with a fresh CTR value for each AU. This means that possibly unused bytes from the last KeyBlock used to encrypt the previous AU are discarded. The following figure illustrates this:

[image: image1]
12.3.1.2 AES_128_BYTE_CTR

In the case of AES_128_BYTE_CTR, the initial value of CTR is also equal to the value of the Initialization vector IV. CTR is increased by one for each byte of ciphertext/plaintext. CTR is used together with a 64-bit integer Salt to calculate the KeyBlock. The Salt is stored in the OMADRMSalt box in the ExtendedHeaders of the OMADRMCommonHeaders box. The 4 least significant bits of CTR contain the byte offset in the KeyBlocki(CTR) with i(CTR) = ((Salt << 64) xor (CTR >> 4)). Notice that i(CTR) is a function i depending on CTR.
The plaintext on byte position n, P[n], is associated with a CTR value CTR = IV + n. P[n] is encrypted to the ciphertext on byte position n, C[n], as follows: C[n] = P[n] xor KeyBlocki(CTR) [CTR & 0xF]. The decryption is similarly done as follows:
P[n] = C[n] xor KeyBlocki(CTR)[CTR & 0xF].

For encryption in this mode, it is RECOMMENDED to increase the Initialization Vector continuously over the borders of AUs: when the Initialization Vector associated an AU has a value IV and the AU contains B bytes of ciphertext, then the Initialization Vector of the next AU has the value IV+B. This allows possibly unused bytes of the last KeyBlock of one AU to be used for the encryption of the first bytes of the next AU. The following figure illustrates this case:

[image: image2]
If there are no unused KeyBlock bytes left, the next AU starts with a fresh KeyBlock, as is illustrated in the following figure:

[image: image3]
The bitsize of CTR is the same as the bitsize of the Initialization Vector, IVLength. To ensure that the CTR does not overflow, the IV MUST be reset in due time. This can be avoided by choosing the IVLength big enough.
12.3.2 The EncryptionMethod field
Because of the addition of the AES_128_BYTE_CTR algorithm, the possible values in the EncryptionMethod field in the OMADRMCommonHeaders box are extended with the value 0x03. This value signals the use of the AES_128_BYTE_CTR algorithm. Table 1 summarizes the possible values for the EncryptionMethod field.
Table 1: Possible values for the EncryptionMethod field
	Algorithm-id
	Value
	Semantics

	NULL
	0x00
	No encryption for this object. NULL encrypted Content Objects may be used without acquiring a Rights Object. Value of the PaddingScheme field MUST be 0.

	AES_128_CBC
	0x01
	AES symmetric encryption as defined by NIST [AES].

128 bit keys.

Cipher block chaining mode (CBC).

128 bit initialization vector prefixing the ciphertext (for non-streamable PDCF files this is included in the OMADRMAUHeader).

Padding according to RFC 2630.

	AES_128_CTR
	0x02
	AES symmetric encryption as defined by NIST [AES].

128 bit keys.

Counter mode (CTR).

128 bit initialization vector prefixes the ciphertext (for non-streamable PDCF files this is included in the OMADRMAUHeader).

For each cipherblock the counter is incremented by 1 (modulo 2128).

No padding.

	AES_128_BYTE_CTR
	0x03
	AES symmetric encryption as defined by NIST [AES].

128 bit keys.

Counter mode (CTR).

Maximal 64 bit initialization vector prefixes the ciphertext (for non-streamable PDCF files this is included in the OMADRMAUHeader).

For each byte of ciphertext the counter is incremented by 1.

No padding.

12.3.3 The OMADRMSalt Box
Using the AES_128_BYTE_CTR encryption method, the ExtendedHeaders field in the OMADRMCommonHeaders box MUST include one instance of the OMADRMSalt box:
aligned (8) class OMADRMSalt extends FullBox('oslt', version, 0) {

unsigned int(8) SaltLength;

// Length of the Salt field in bits. MUST be 64

unsigned int(SaltLength) Salt;

// Salt needed for AES_128_BYTE_CTR

}
The OMADRMSalt box contains the field Salt, which is needed for AES_128_BYTE_CTR encryption method.

...

Key Block with CTR = IV+m

AU with Initial Vector IV�(B bytes)

Key Block�with�CTR = IV

Key Block�with�CTR = IV+1

Next AU with Initial Vector�IV' = IV+ ceil(B/16)

Key Block with�CTR = IV' = �IV+m+1

...

...

Plaintext

XOR

KeyBlocks

AU with Initialization Vector IV�(B bytes)

KeyBlock with�i(IV+16)

KeyBlock with�i(IV+16m) =�KeyBlock with�i(IV')

Next AU with Initialization Vector IV' = IV+ B

KeyBlock with�i(IV'+16(m+1))=�KeyBlock with�i(IV'+16)

...

...

...

Plaintext

XOR

KeyBlocks

KeyBlock with�i(IV)

AU with Initialization Vector IV�(B bytes)

KeyBlock with�i(IV+16)

KeyBlock with�i(IV+16m)

Next AU with Initialization Vector IV' = IV+ B

KeyBlock with�i(IV')

�

...

Plaintext

XOR

KeyBlocks

KeyBlock with�i(IV)

KeyBlock with�i(IV'+16)

...

...

�I prefer this definition over the definition that is in the Interim Specification, OMA-BCAST-2006-0793

�I prefer this definition over the definition that is in the Interim Specification, OMA-BCAST-2006-0793

�Add link here

�Add link here

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

