Doc# OMA-BCAST-2007-0043-CR_XBS_Correction_of_examples.doc[image: image1.jpg]
Change Request

Doc# OMA-BCAST-2007-0043-CR_XBS_Correction_of_examples.doc
Change Request

Change Request

	Title:
	XBS Correction of examples
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-DLDRM-BCAST

	Doc to Change:
	OMA-TS-DRM_XBS-V1_0-20061222-D

	Submission Date:
	15 January 2007

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de
Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de

	Replaces:
	n/a

1 Reason for Change

During the first consistency review period, the table in section 7.2.3.5 OMADRMBlockLength() was changed due to optimisation. The examples in Sections 7.2.2.1 - 7.2.2.3, that use the table, were not adjusted. This CR corrects the examples.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

For the DLDRM-BCAST group to accept the CR.
6 Detailed Change Proposal

Change 1: Correct the examples
7.2.2.1 Bitmapped Bitmask

The bitmapped_bitmask() field contains a non-compressed subblock. It consists of an indicator for the length of the subblock followed by the subblock. The bitmapped_bitmask() field has the following format:

	Field
	Length
	Type

	OMADRMBitmappedBitmask() {
	
	

	
block_length()
	variable
	OMADRMBlockLength()

	
bit_map
	block_length+1
	bslbf

	}
	
	

block_length(): indicates the length of the subblock. For a subblock of length k, block_length contains the value k-1. See section 7.2.3.5 for more details on the coding of the field block_length.

bit_map: field of block_length()+1 bits, that codes the subblock.

For EXAMPLE, a subblock 0010100101011010 has a length of 16 bits, therefore block_length() contains a value 15 and is coded as 11110 101 (see section 7.2.3.5). It is followed by the 16 bits 0010100101011010.

7.2.2.2 Block Compression Method

The Block Compression Method is used when the subblock consists of alternating blocks of ones and zeros. The lengths of these blocks are specified. The block_compressed_bit_access_mask() has the following format:

	Field
	Length
	Type

	OMADRMBlockCompressedBitmap() {
	
	

	
firstbit
	1
	bslbf

	
nole()
	variable
	OMADRMNole()

	
for(i=0; i<nole+1; i++) {
	
	

	

block_length()[i]
	variable
	OMADRMBlockLength()

	
}
	
	

	}
	
	

firstbit: indicates the value of the first bit.

nole() (number of list entries): indicates the number of blocks that follow. If k blocks follow, nole contains a value k-1. This value is coded as indicated in section 7.2.3.4.

block_length(): an array that indicates the lengths of the blocks. For a block of length k, the corresponding field block_length contains a value k-1.

EXAMPLE of coding a subblock using the Block Compression Method:

Let us consider the following 512 bit subblock:

20 x '0', 15 x '1', 2 x '0', 80 x '1', 92 x '0',100 x '1', 203 x '0'.

It starts with a '0', therefore firstbit contains a 0.

There are 7 blocks; therefore nole() contains the value 6 and is coded as 00 0110 (see section 7.2.3.4).

Block 1 has a length of 20, therefore its block_length() contains the value 19 and is coded as 111110 0001, where 0001 is the binary representation of 1=19-18 (see section 7.2.3.5).

Block 2 has a length of 15; its block_length() is coded as 11110 100.

Block 3 has a length of 2; its block_length() is coded as 0 1.

Block 4 has a length of 80; its block_length() is coded as 1111110 0101101.

Block 5 has a length of 92; its block_length() is coded as 1111110 0111001.

Block 6 has a length of 100; its block_length() is coded as 1111110 1000001.

Block 7 has a length of 203, its block_length() is coded as 1111111 0000000000000000101000.
In this example 98 bits are needed in order to specify the subblock.

7.2.2.3 Outlier Compression Method

The Outlier Compression Method exploits the fact that a subblock can have a sparse amount of '1's or '0's. The outlier_compressed_bit_access_mask() has the following format:

	Field
	Length
	Type

	OMADRMOutlierCompressedBitmap() {
	
	

	
range_flag
	1
	bslbf

	
nole()
	variable
	OMADRMNole()

	
for(i=0; i<nole+2; i++) {
	
	

	

block_length()[i]
	variable
	OMADRMBlockLength()

	
}
	
	

	}
	
	

range_flag: indicates the coding type. When it is equal to 0, we have blocks of '0's separated by single '1's. When it equals 1, we have blocks of '1's separated by single '0's. A bit set to the value that is in a minority is called 'outlier'.

nole() (number of list entries): indicates the number of blocks. The amount of blocks is one more than the amount of outliers (since the coding starts with a block before the first outlier and ends with a block behind the last outlier). If there are k blocks, nole contains a value of k-2. See section 7.2.3.4 for the coding of nole.

block_length(): an array that indicates the lengths of the blocks. The first block_length() defines the length of the block in front of the first outlier, whilst the last block_length defines the length of the block behind the last outlier. Notice that a length 0 is coded as 0. See section 7.2.3.5 for more details on the coding of block_length().

EXAMPLE of coding a subblock using the Outlier Compression Method:

Let us consider the following 512-bit bit_access_mask():

1x'0', 90 x '1', 1 x '0', 80 x '1', 2 x '0', 338 x '1'.

range_flag is equal to 1, since we have blocks of '1's separated by single '0's.
Since there are 5 blocks of '1's separated by 4 single '0's, nole() contains 00 0011. Notice that 0011 is the binary representation of 3 = 5-2 (see section 7.2.3.4
).

For each of the five blocks of '1's (of which two have length 0), a block_length() field follows:

The first '0' occurs at the first position, so it is considered to be preceded by a block of length 0. Therefore the first block_length() contains 0 and is coded as 0 0.

The second '0' occurs after 90 '1's, therefore the second block_length() contains the value 90 and is coded as 1111110 0111000.

The third block_length() contains the value 80 and is coded as 1111110 0101110.

The third block is followed by two adjacent zeros. For this reason,
the fourth block_length() contains the value 0 and is coded as 0 0.

The fifth block_length() contains the value 338, and is coded as 1111111 0000000000000010110000.

In this example 68 bits are needed in order to specify the bit_access_mask().

�Add link to Section 7.2.3.4: "OMADRMNole()".

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 3 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

