OMA-BCAST-2007-0150R01-CR_XBS_KeyInfoBox.doc[image: image5.jpg]
Change Request

OMA-BCAST-2007-0150R01-CR_XBS_KeyInfoBox.doc
Change Request

Change Request

	Title:
	OMA-BCAST-2007-0150R01-CR_XBS_KeyInfoBox.doc
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-DLDRM-BCAST

	Doc to Change:
	OMA-TS-DRM_XBS-V1_0-20061222-D

	Submission Date:
	12 April 2007

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	David Castleford, Orange, david.castleford@orange-ftgroup.com
Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de
Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de

	Replaces:
	n/a

1 Reason for Change

This CR proposes a resolution for XBS follow-up Consistency Review comment XBS035:
	XBS035
	2007.01.31
	T
	New section
	Source: Orange

Form: OMA-BCAST-2007-0140

Comment:

New section explaining new boxes for DCF / PDCF protection using TEKs should be created. It should also allow storage of information defined in the recording section of SPCP. See associated SPCP comment.

Proposed Change:

Fraunhofer and Orange to propose CR.
	Status: OPEN

R01 removes RecordingInformationPresent flag as not used. Editor, please note entry in table needs to be removed
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

For the DLDRM-BCAST group to accept the CR.

6 Detailed Change Proposal

Change 1: - Changes section "12. Adapted PDCF" to "12. Adapted File Format".
- Adds a new Subsection "12.1 Common Adaptations to DCF and PDCF" including the new defined KeyInfo box.
- Moves the original section "12. Adapted PDCF" to "12.2
- Removes also sections "12.2.2.5 SmartcardProfile Box" and "12.2.2.6 DRMProfile Box".
12. Adapted File Format
This section describes adaptations to the file formats DCF and PDCF that are needed to allow broadcast support to OMA DRM v2.0.
Common adaptations to DCF and PDCF
12.1.1 Key Info Box

The ExtendedHeaders field in the OMADRMCommonHeaders box MAY include one or more instances of the Key Info Box:

aligned (8) class OMABCASTKeyInfoBox extends FullBox('obki', version, flags) {

unsigned int(8) KeyInfosNumber;

// indicates the number of key infos that follow

for (i=0;i<KeyInfosNumber;i++){

bit(1) KeyIssuerPresent;

// indicates that the key issuer URL is present

bit(1) STKMPresent;

// indicates that the STKM is present (only to be used for DCF)

bit(1) TBKPresent;

// indicates that the TerminalBindingKey information is present

bit(1) TBKIssuerURLPresent;

// indicates that the TBK issuer URL for TBK is present

bit(4) rfu;

// reserved for future use

unsigned int(8) KeyIDType;

// indicates the type of key id that follows

unsigned int(8) KeyIDLength;

// KeyID length in bytes

byte KeyID[];

// key_id

if(KeyIssuerPresent) {

unsigned int(16) KeyIssuerURLLength;

// KeyIssuer URL field length in bytes

char KeyIssuerURL[];

// KeyIssuer URL string

}

if (STKMPresent) {

// applies only to DCF, not PDCF

unsigned int(16) STKMLength;

// STKM field length in bytes

byte STKM[];

// STKM

}

if (TBKPresent) {

unsigned int(32) TBK_ID;

// TerminalBindingKeyID

if (TBKIssuerURLPresent){

unsigned int(16) TBKIssuerURLLength;
// TBK Issuer URL field length in bytes

char TBKIssuerURL[];

// TBKIssuer URL string

}

}

}

}

The OMABCASTKeyInfoBox fields are described in Table x
.

Table x:
OMABCASTKeyInfoBox fields

	Field name
	Type
	Purpose

	KeyInfosNumber
	unsigned int(8)
	indicates that the number of key infos that follow

	KeyIssuerPresent
	bit
	indicates that the key issuer URL is present

	STKMPresent
	bit
	indicates that an STKM is present (only for DCF)

	TBKPresent
	bit
	indicates that the TerminalBindingKey information is present

	TBKIssuerURLPresent
	bit
	indicates that the TBK issuer URL for TBK is present

	RecordingInformationPresent
	bit
	indicates that the recording information is present

	KeyIDType
	unsigned int(8)
	type of KeyID

	KeyIDLength
	unsigned int(8)
	length of the Key ID in bytes

	KeyID
	byte[]
	value of Key ID

	KeyIssuerURLLength
	unsigned int(16)
	length of the KeyIssuerURL (optional)

	KeyIssuerURL
	char[]
	Key Issuer URL (optional)

	STKMLength
	unsigned int(8)
	length of the STKM in bytes (optional)

	STKM
	byte[]
	STKM (optional)

	TBK_ID
	unsigned int(8)
	TerminalBindingKeyID

	TBKIssuerURLLength
	unsigned int (16)
	TBK Issuer URL field length in bytes

	TBKIssuerURL
	char[]
	TBKIssuerURLstring

The KeyIssuerURL in the Key Info box SHALL be used first. If this fails or if the KeyIssuerURL is not present, the Device MAY try the RightsIssuerURL in the OMADRMCommonHeaders box.
For this version of the specification, the following values for the KeyIDType MUST be used:

Table Y. KeyIDType values

	KeyID type
	Value
	Purpose

	OMA BCAST DRM Profile
	0x00
	OMA BCAST DRM Profile KeyID as defined in [BCAST10-ServContProt]

	OMA BCAST Smartcard Profile
	0x01
	OMA BCAST Smartcard Profile KeyID as defined in [BCAST10-ServContProt]

	3GPP MBMS
	0x02
	3GPP MBMS KeyID as defined in [3GPP TS 33.246]
Note this is one option given to MBMS. Other option is for MBMS to define their own box in the Extended Headers field. Both options will be suggested to 3GPP in an LS.

The field STKM_present_flag MAY only be set to 1 for DCF file delivery. In this case, the field STKM contains the key used to encrypt the DCF content. Refer to [BCAST10-ServContProt] for more details. In a PDCF file, this flag MUST be set to 0.
12.2 Adapted PDCF
This section allows a STKM stream (transmitted using Layer 3 of the 4-layer model for Service Protection and Content Protection of RTP streams using ISMACryp) to be stored within a PDCF. It applies to both DRM Profile and Smartcard Profile. Recording is explained in [BCAST10-ServContProt].
The existing PDCF file format as defined in OMA DRM v2.0 [DRMCF-v2] allows audio video content to be stored in a file format together with the relevant OMA DRM information. Audio and video tracks can be encrypted as defined in [DRMCF-v2] using the appropriate CEK stored in a Generalised Rights Object (GRO).
Creating adapted PDCF recordings does not require a GRO. Playback of adapted PDCF recording is governed by the protection_after_reception flags in the key stream (see [BCAST10-ServContProt]) and, for certain values of the protection_after_reception_flags, by GROs.

Content can be streamed over RTP using ISMACryp. To allow storing this kind of streamed content in a PDCF file, a couple of adaptations to the PDCF file format are made. This modified PDCF file format is called Adapted PDCF.

Section 12.1 describes the overall Adapted PDCF structure.

Section 12.2 explains how to store TEK stream information in Adapted PDCF. In the context of broadcast services, RTP streams can be encrypted at the content level (encrypting Access Units using ISMACryp as explained in [BCAST10-ServContProt]) using TEKs. This key is not the traditional CEK stored in an RO. In the broadcast context the CEK is a Service Encryption Key (SEK) or a Program Encryption Key (PEK) delivered using Layer 2. This SEK or PEK allows the TEK delivered in Traffic Encryption Key stream messages delivered in Layer 3 to be decrypted. The TEK is used to encrypt content transmitted in RTP packets using ISMACryp. As this key changes regularly, Adapted PDCF allows the storage of the relevant TEK stream information.
Section 12.3 specifies the AES_128_BYTE_CTR encryption algorithm. This algorithm is used in ISMACryp and is included in Adapted PDCF to allow the storage of ISMACryp protected AUs in a PDCF file, without re-encryption.
12.3 Overall PDCF Structure

The table below outlines the mandatory and optional ISO boxes and their order. Additional boxes MAY be added after the mandatory boxes have first appeared. Table 37 shows the nesting order of the mandatory boxes, on the left is the parent and on the right, the child. The first column indicates which fields and boxes MUST be present in PDCF and which boxes MAY appear in the PDCF. The following syntax is adopted:

M
ISO mandatory boxes

MO
mandatory OMA boxes

O
optional boxes

Table 37 includes all boxes defined by ISO in [ISO14496-12] when OMA information is specified per track. The file format structure corresponds to OMA DRM v2.0 [DRMCF-v2] and is not modified in this specification. It is fully ISO compliant.

Table 37: Logical PDCF box structure diagram for single protected track

	Present in PDCF
	Data type/value
	
	
	
	
	
	
	
	
	
	
	Field purpose

	M
	‘ftyp’
	
	
	
	
	
	
	
	
	
	
	ISO File header (fixed File Type box)

	M
	‘moov’
	
	
	
	
	
	
	
	
	
	
	ISO movie box

	M
	
	‘mvhd’
	
	
	
	
	
	
	
	
	
	ISO movie header box

	M
	
	‘trak’
	
	
	
	
	
	
	
	
	
	ISO track box

	M
	
	
	‘tkhd’
	
	
	
	
	
	
	
	
	ISO track header

	M
	
	
	‘tref’
	
	
	
	
	
	
	
	
	ISO track reference

	M
	
	
	‘mdia’
	
	
	
	
	
	
	
	
	ISO media information box

	M
	
	
	
	‘mdhd’
	
	
	
	
	
	
	
	ISO media header

	M
	
	
	
	‘hdlr’
	
	
	
	
	
	
	
	ISO handler

	M
	
	
	
	‘minf’
	
	
	
	
	
	
	
	ISO media information container

	M
	
	
	
	
	‘stbl’
	
	
	
	
	
	
	ISO sample table box, container for the time/space map

	M
	
	
	
	
	
	‘stsd’
	
	
	
	
	
	ISO sample descriptions

	M
	
	
	
	
	
	
	‘encv'
 or 'enca'
	
	
	
	
	ISO protected sample entry

	M
	
	
	
	
	
	
	
	‘sinf’
	
	
	
	ISO protection scheme information box (always present)

	M
	
	
	
	
	
	
	
	
	‘frma’
	
	
	ISO original format (always present)

	M
	
	
	
	
	
	
	
	
	‘schm’
	
	
	ISO SchemeTypeBox (when used to apply to single track)

	M
	
	
	
	
	
	
	
	
	'schi'
	
	
	ISO SchemeInformationBox (if applies to this ‘trak’ only)

	MO
	
	
	
	
	
	
	
	
	
	‘ohdr’
	
	OMA DRM Common Headers box (when used to apply to single track)

	O
	
	
	
	
	
	
	
	
	
	
	'obki'
	OMA BCAST Key Info Box

	MO
	
	
	
	
	
	
	
	
	
	'osfm'
	
	OMA Sample format Box (when used to apply to single track)

	O
	
	‘odrb’
	
	
	
	
	
	
	
	
	
	OMA Rights Object container box

Table 38 below shows the PDCF file format when the OMA information is specified at the movie box level, applying to all tracks. This implementation, however, is not ISO compliant.

Table 38: Logical PDCF box structure diagram with all tracks protected

	Present in PDCF
	Data type/value
	
	
	
	
	
	
	
	
	
	Field purpose

	M
	‘ftyp’
	
	
	
	
	
	
	
	
	
	File header (fixed File Type box)

	M
	‘moov’
	
	
	
	
	
	
	
	
	
	ISO movie box

	M
	
	‘mvhd’
	
	
	
	
	
	
	
	
	ISO movie header box

	M
	
	‘trak’
	
	
	
	
	
	
	
	
	ISO track box

	M
	
	
	‘tkhd’
	
	
	
	
	
	
	
	ISO track header

	M
	
	
	‘tref’
	
	
	
	
	
	
	
	ISO track reference

	M
	
	
	‘mdia’
	
	
	
	
	
	
	
	ISO media information box

	M
	
	
	
	‘mdhd’
	
	
	
	
	
	
	ISO media header

	M
	
	
	
	‘hdlr’
	
	
	
	
	
	
	ISO handler

	M
	
	
	
	‘minf’
	
	
	
	
	
	
	ISO media information container

	M
	
	
	
	
	‘stbl’
	
	
	
	
	
	ISO sample table box, container for the time/space map

	M
	
	
	
	
	
	‘stsd’
	
	
	
	
	ISO sample descriptions

	M
	
	
	
	
	
	
	‘encv or 'enca'
	
	
	
	ISO protected sample entry

	M
	
	
	
	
	
	
	
	‘sinf’
	
	
	ISO protection scheme information box (always present)

	M
	
	
	
	
	
	
	
	
	‘frma’
	
	ISO original format (always present)

	O
	
	‘sinf’
	
	
	
	
	
	
	
	
	ISO protection scheme information box (when used to apply to all tracks)

	O
	
	
	‘schm’
	
	
	
	
	
	
	
	ISO SchemeTypeBox

(applies to all ‘trak’s)

	O
	
	
	'schi'
	
	
	
	
	
	
	
	ISO SchemeInformationBox (when used to apply to all tracks)

	O
	
	
	
	‘ohdr’
	
	
	
	
	
	
	OMA DRM Common Headers box (when used to apply to all tracks)

	O
	
	
	
	
	'obki'
	
	
	
	
	
	OMA BCAST Key Info Box

	O
	
	
	
	‘osfm’
	
	
	
	
	
	
	OMA SampleFormat Box (when used to apply to all tracks)

	O
	
	‘odrb’
	
	
	
	
	
	
	
	
	OMA Rights Object container box

Table 39 below shows the PDCF file format when on OMA STKM track is defined, rather than an audio or video track. This format is ISO compliant.

Table 39: Logical PDCF box structure diagram showing OMA STKM track

	Present in PDCF
	Data type/value
	
	
	
	
	
	
	
	
	
	Field purpose

	M
	‘ftyp’
	
	
	
	
	
	
	
	
	
	ISO File header (fixed File Type box)

	M
	‘moov’
	
	
	
	
	
	
	
	
	
	ISO movie box

	M
	
	‘mvhd’
	
	
	
	
	
	
	
	
	ISO movie header box

	M
	
	‘trak’
	
	
	
	
	
	
	
	
	ISO track box

	M
	
	
	‘tkhd’
	
	
	
	
	
	
	
	ISO track header

	M
	
	
	‘tref’
	
	
	
	
	
	
	
	ISO track reference

	M
	
	
	‘mdia’
	
	
	
	
	
	
	
	ISO media information box

	M
	
	
	
	‘mdhd’
	
	
	
	
	
	
	ISO media header

	M
	
	
	
	‘hdlr’
	
	
	
	
	
	
	ISO handler

	M
	
	
	
	‘minf’
	
	
	
	
	
	
	ISO media information container

	M
	
	
	
	
	‘stbl’
	
	
	
	
	
	ISO sample table box, container for the time/space map

	M
	
	
	
	
	
	‘stsd’
	
	
	
	
	ISO sample descriptions

'okey' for OMA STKM track

	MO
	
	
	
	
	
	
	‘oksd’
	
	
	
	OMA key sample description box

12.4 PDCF Adaptation for Key Stream Inclusion

This section details the modifications required in the PDCF file format of OMA DRM v2.0 [DRMCF-v2] so as to allow an OMA key stream to be stored in the PDCF.

The adapted PDCF file format is schematically shown in Figure 30 below in a simplified format, as per OMA DRM v2.0. The only difference between the diagram below and the original PDCF file format is the addition of an OMA STKM track in the Movie Box and the associated OMA STKM track data in the Media Data box. Full backward compatibility with the original PDCF file format is thus ensured.

Details on the PDCF file format, STKM track and details on how to link the STKM track to appropriate audio / video tracks are given in this specification in the sections below.

Supporting the adapted PDCF format defined in this specification is OPTIONAL for a Device, as is the case for the original PDCF format in OMA DRM v2.0.
Figure 30: Example of adapted PDCF Structure
12.4.1 Movie Box and Tracks

The ISO Movie Box (‘moov’) contains one or more audio or video tracks as defined in the ISO specification [ISO14496-12] and can additionally contain one or more OMA STKM tracks as defined in this specification.

12.4.1.1 HandlerBox

The ISO HandlerBox (‘hdlr’) within a Media Box declares the process by which the media-data in the track is presented, and thus, the nature of the media in a track. For example, a video track would be handled by a video handler.

The ISO definition is shown below.

aligned(8) class HandlerBox extends FullBox(‘hdlr’, version = 0, 0) {

unsigned int(32) pre_defined = 0;

unsigned int(32) handler_type;

const unsigned int(32)[3] reserved = 0;

string name;

}

The associated parameter definitions are shown below, with the addition of a new OMA STKM track type:

	Field name
	Type
	Purpose

	pre_defined
	unsigned int (32)
	Set to 0

	handler_type
	unsigned int (32)
	Indicates track format of meta box contents:

'vide' = video track

'soun' = audio track

'hint'= hint track

'okey' = OMA STKM track

	reserved
	Const unsigned int (32)
	Reserved = 0

	name
	String
	Null-terminated string in UTF-8 characters which gives a human readable name for the track

For implementations not recognising the new OMA STKM track, it will be ignored.

12.4.1.2 SampleDescriptionBox

A new OMA key sample entry (‘okey’) contained in the ISO SampleDescriptionBox (‘stsd’) is used to describe some initialization information for decoding the STKM track that would be more convenient to put at this level than in the ProtectionSchemInfoBox of the encrypted media track, as defined below:

aligned(8) class SampleDescriptionBox (unsigned int(32) handler_type)

extends FullBox('stsd', 0, 0){

int i ;

unsigned int(32) entry_count;

for (i = 1 ; i • entry_count ; i++){ entry_count ; i++){

switch (handler_type){

case ‘soun’: // for audio tracks

AudioSampleEntry();

break;

case ‘vide’: // for video tracks

VisualSampleEntry();

break;

case ‘hint’: // Hint track

HintSampleEntry();

break;

case ‘okey’: // OMA STKM track

OMAKeySampleEntry();

break;

}

}

}
A new handler_type, called 'okey' identifies the new OMA STKM track defined in this specification.

12.4.1.3 OMAKeySampleDescriptionEntry

The new OMA STKM track is defined by OMAKeySampleDescriptionEntry box as follows:

aligned(8) class OMAKeySampleDescriptionEntry extends SampleEntry(‘oksd’) {

unsigned int(8) sample_version;

// sample version

unsigned int(8) sample_type;

// sample type

if(terminal_binding_flag_in_STKM == 1) {

// from the STKM

unsigned int(32) TerminalBindingKeyID;

// from the SG

unsigned int(16) RightsIssuerURILength;
// Rights Issuer URI field length in bytes

char RightsIssuerURL[];

// Rights Issuer URI string

}

}

The OMAKeySampleDescriptionEntry field is defined as follows:

Table 40: OMAKeySampleEntry fields
	Field name
	Type
	Purpose

	sample_version
	unsigned int (8)
	Identifies OMA key sample version

Version = 0x00 for the STKM track defined in this specification

	sample_type
	unsigned int (8)
	Identifies the OMA key sample type

0x00 for STKM for DRM profile

0x01 for STKM using MIKEY for smartcard profile using (U)SIM

0x02 STKM for BCMCS using R-UIM

There is only one OMAKeySampleDescriptionEntry box per STKM track.

12.4.1.4 Track Referencing

The presence of a STKM track in the PDCF file is insufficient as a link is required between the OMA STKM track and the audio / video track(s) it applies to. Each declared track is identified by a track_id, as defined by ISO. Following ISO convention, the STKM track refers to one or more tracks via their track_ids.

The ISO Track Reference Box (‘tref’) is placed inside the track box to indicate references to one or more tracks:

aligned(8) class TrackReferenceBox extends Box(‘tref’) {

}

aligned(8) class TrackReferenceTypeBox (unsigned int(32) reference_type) extends

Box(reference_type) {

unsigned int(32) track_ids[];

}

The Track Reference Box of an OMA STKM track contains track reference type boxes.

Parameters are as defined below:

Table 41: Track reference box fields

	Field name
	Type
	Purpose

	reference_type
	unsigned int(32)
	Reference box type identifier

'hint' = the referenced track(s) contain the original media for this hint track

'cdsc = this track describes the referenced track

'okey' = OMA DRM STKM track

	track_id[]
	unsigned int(32)
	integer that provides a reference from the containing track to another track in the

presentation. track_ids are never re-used and cannot be equal to zero

If the STKM track applies to more than one audio or video tracks, then the appropriate track_ids are placed in the reference_type box.

12.4.2 OMA DRM Information Boxes

12.4.2.1 Sample Description Transform

In encryption, the samples are transformed – encrypted – so that the underlying media cannot be accessed by readers without the appropriate information (e.g. keys). The format of the encrypted samples is "owned" and documented by the encryption system.

The purpose of the sample description transformation is twofold: The sample description prevents accidental treatment of encrypted data as if it were un-encrypted and documents the transforms applied. The documentation of the encryption scheme and its parameters is supplied in a uniform way. Note that in the following definitions that "n" in bit(n), unsigned int(n) and int(n) is always a bit count.

The transformation of the sample description is described entirely by the following procedure:

1. The 4CC of the sample description is replaced with a 4CC indicating the encryption: e.g. ‘mp4v’ or 's263' are replaced with ‘encv’ for encrypted video and e.g. ‘mp4a’ is replaced with ‘enca’ for encrypted audio.

2. A ProtectionInfoBox (defined below) is appended to the sample description, leaving all other boxes unmodified.

12.4.2.2 Protection Scheme Information

The ISO ProtectionSchemeInfoBox ‘sinf’ is used to carry DRM key management system specific information, thus it is only a container box.

It contains the ISO SchemeTypebox (‘schm’) adapted for OMA as defined in 12.2.2.3 below, the ISO SchemeInformationBox 'schi' as defined in 12.2.2.4 below and the ISO OriginalFormatBox 'frma' as defined here.

The ISO Protection Info Box contains all the information required both to understand the encryption transform applied and its parameters, and also to find other information such as the kind and location of the key management system. It also documents the original (unencrypted) format of the media. The Protection Info Box is a container Box.

	aligned(8) class ProtectionInfoBox(fmt) extends Box('sinf') {

OriginalFormatBox(fmt) original_format;

SchemeTypeBox scheme_type;

SchemeInformationBox info;

}

When used in a protected sample entry, the 'sinf' box' must contain the ISO Original Format Box ‘frma’ which holds the 4CC of the unencrypted sample description:

aligned(8) class OriginalFormatBox(codingname) extends Box ('frma') {

unsigned int(32) data_format = codingname;

// format of decrypted, encoded data

// could be 'mp4v', 'h263', 'avc1', 'mp4a', etc.

}

There MAY be several instances of the ISO Protection Scheme Information Box in a PDCF file. There must be exactly one per each protected track.

Figure 31: Possible ProtectionSchemeInfoBox positions within PDCF

[image: image1.emf]ISO-based media file

'

f

t

y

p

'

OMA DRM Common Headers

and AU Header Format

M

e

d

i

a

D

a

t

a

Encrypted and unencrypted data

time-ordered, interleaved or packetized

frames, hint instructions

OMA DRM protected content

M

o

v

i

e

B

o

x

Video Track

File type

Audio Track

OMA Key track

‘

s

i

n

f

’

M

u

t

a

b

l

e

D

R

M

I

n

f

o

r

m

a

t

i

o

n

R

i

g

h

t

s

O

b

j

e

c

t

Rights Object,

TransactionID

‘

s

c

h

m

’

'

f

r

m

a

'

‘

s

c

h

i

’

‘

o

d

k

m

’

‘

o

h

d

r

’

‘

o

d

a

f

’

‘sinf’

OMA Key stream data

This box is exactly the same as defined in [DRMCF-v2] and is not modified in this specification.

The ‘sinf’ box is very similar to the box defined in [DRMCF-v2]. In this version, Selective encryption can be activated or deactivated, and key_indicator is used.

12.4.2.3 DRM Scheme Type

The ISO SchemeTypeBox (‘schm’) includes information on which DRM system is being used to manage keys and decryption of the content. As the media file format MAY support also other key management systems than OMA DRM, the key management system in use is indicated by a 4CC in the SchemeType field.

Table 42: PDCF scheme type for OMA DRM

	scheme_type
	Value
	Semantics

	OMA DRM
	‘odkm’
	OMA DRM is used for key management in the PDCF.

Table 43: PDCF scheme version for OMA DRM

	scheme_version
	Value
	Semantics

	OMA BCAST 1.0
	0x00000300
	OMA DRM version is 2.0 extended for BCAST

(version 2.0 does not allow the STKM track)

For PDCF files conforming to this specification, the SchemeType MUST be the 4CC ‘odkm’, and SchemeVersion MUST be 0x00000300. If OMA DRM key management scheme ‘odkm’ is indicated, then the file is a PDCF and MUST contain at least one OMADRMKMSBox. A PDCF MUST support only OMA DRM for the key management system.

12.4.2.4 DRM Scheme Information

The ISO ProtectionSchemeInfoBox is used to carry DRM key management system specific information, thus it is only a container box. For OMA DRM, this box MUST include exactly one OMADRMCommonHeaders box ‘ohdr’ (see [DRMCF-v2]), as the first sub-box and exactly one OMADRMAUFormatBox, as the second sub-box.

In this version, the OMADRMAUFormatBox MUST be present.

aligned(8) class ProtectionSchemeInfoBox extends Box('schi') {

Box scheme_specific_data[];

}

aligned(8) class OMADRMCommonHeaders extends FullBox('ohdr', version, 0) {

unsigned int(8)
EncryptionMethod;
// Encryption method

unsigned int(8)
EncryptionPadding;
// Padding type

unsigned int(64)
PlaintextLength;
// Plaintext content length in bytes

unsigned int(16)
ContentIDLength;
// Length of ContentID field in bytes

unsigned int(16)
RightsIssuerURLLength;
// Rights Issuer URL field length in bytes

unsigned int(16)
TextualHeadersLength;
// Length of the TextualHeaders array in bytes

char

ContentID[];

// Content ID string

char

RightsIssuerURL[];
// Rights Issuer URL string

string

TextualHeaders[];
// Additional headers as Name:Value pairs

Box

ExtendedHeaders[];
// Extended headers boxes

}

aligned(8) class OMADRMAUFormatBox extends FullBox('odaf', 0, 0) {

bit(1) SelectiveEncryption;

bit(7) reserved;

unsigned int(8) KeyIndicatorLength;

unsigned int(8) IVLength;

}

Parameters are as defined below:

Table 44: OMA sample format box fields

	Field name
	Type
	Purpose

	SelectiveEncryption
	Bit(1)
	Indicate whether selective encryption is used or not

	Reserved
	Bit(7)
	Reserved, SHOULD be set to 0.

	KeyIndicatorLength
	Unsigned int(8)
	Size of the key indicator in bytes

	IVLength
	unsigned int(8)
	Size of the IV in bytes

If the selective encryption bit is set to 0 then all content to which the ISO ProtectionSchemeInformationBox applies is encrypted and no "encrypted" field is present in OMABCASTAUHeader.

If the selective encryption bit is set to 1 then the OMABCASTAUHeader preceding Access Units indicates whether or not a particular AU is encrypted.
12.4.2.5

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

12.4.2.6

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

12.4.2.7 OMABCASTAUHeader

This header, which MUST precede the codec-specific sample data in each Access Unit, provides the OMA DRM information whose length is specified in the OMA Sample Format box defined above (Table 44). The OMA DRM AU Header is defined as follows:

aligned(8) class OMABCASTAUHeader {

if(SelectiveEncryption == 1) {

// from the OMASampleFormatBox

bit(1)
EncryptedAU;

// Encryption indicator

bit(7)
reserved;

// Must be zero

}

else EncryptedAU = 1;

if(EncryptedAU == 1) {

unsigned int(8 * IVLength) IV;

unsigned int(8 * KeyIndicatorLength) KeyIndicator;

}

}

Table 47: OMA DRM AH header fields

	Field name
	Type
	Purpose

	EncryptedAU
	bit(1)
	Encryption Indicator for the access unit.

	IV
	unsigned int(8)
	IV preceding the access unit playload.

	KeyIndicator
	unsigned int(8)
	Key indicator field preceding the access unit payload.

Table 48: Encryption indicator values

	Encrypted
	Value
	Semantics

	None
	0
	Access unit is not encrypted.

	Encrypted
	1
	Access unit is encrypted.

A playing Device uses the header information for decryption purposes and is able to extract the actual sample(s).

Figure 32 shows how the OMABCASTAUHeader is placed before each AU.

Figure 32: OMABCASTAUHeader and access unit

12.4.3 Traffic Encryption Key Stream Storage Format

The new OMA STKM track defined in 12.2.1.2 is described by the sample description information defined in 12.2.1.3. In order to provide maximum flexibility, this information merely declares the STKM track version and size only. This section defines the actual OMA key sample format stored in the Media Data box containing OMA STKM track samples.

As needs evolve, new sample formats can be defined as this specification evolves, identifying new formats with new STKM track sample version numbers. This approach ensures future PDCF specifications will remain fully backward compatible.

aligned(8) class OMAKeySample {

unsigned int(8) KeyIndicatorLength

// key indicator length

unsigned int(8*KeyIndicatorLength) keyIndicator
// key indicator

unsigned int(8) TKMLength;

// traffic key message length

unsigned int(8**TKMLength) TKM;

// traffic key message as defined in

// [BCAST-ServContProt]

}

Even though key indicator length and key indicator value are present in the TKM, for optimization purposes, these are placed at the beginning of each OMAKeySample.

12.5 AES counter encryption in byte mode and salt

To record an ISMACryp stream directly to a PDCF file, a couple of adaptations to the OMA DRM v2.0 PDCF file format [DRMCF-v2] are needed.

The AES counter mode algorithm as appears in [DRMCF-v2], AES_128_CTR, is slightly modified. This modified version will be referred to as AES_128_BYTE_CTR. Using the AES_128_BYTE_CTR algorithm allows the storing of ISMACryp AUs without re-encryption. The two AES counter mode algorithms are explained in more detail in Section 12.3.1.

In Section 12.3.2, makes the adaptations needed to signal that the AES_128_BYTE_CTR algorithm is used. This is done by adding a new possible value for the EncryptionMethod field in the OMADRMCommonheaders box.
Section 12.3.3 handles the adaptations needed for the use of a Salt. In the AES_128_BYTE_CTR algorithm, the Salt contains the 64 most significant bits of an Initialization Vector (IV) and is transmitted only once per track. The salt omits the need to send all the bits of the IV in each AU and therefore reduces the overhead in the AU Header.

12.5.1 Description of AES counter modes

In both AES counter mode algorithms, a block of plaintext is encrypted to a block of ciphertext by xoring it with a generated pseudorandom KeyBlock based on AES encryption, which is defined as follows:

KeyBlocki = AES_ENCRYPT{CEK}(i),

where i is a 128-bit integer. Each KeyBlock has a length of 16 bytes and uses a new value of i. The kth byte in a KeyBlocki is denoted by KeyBlocki[k], where k=0 corresponds to the first byte. Similarly the nth byte of the ciphertext (in an AU) is denoted by C[n] and nth byte of the associated plaintext by P[n], where n=0 corresponds to the first byte.
The encrypter/decrypter has an internal variable CTR. This variable is used to calculate i in KeyBlocki. The exact calculation of i depends on the counter mode. To calculate the first value of CTR, the cipher algorithms need an Initialization Vector. There is one Initialization Vector per AU.
The basic difference between the two AES counter mode algorithms lies in the fact that for AES_128_ CTR the CTR is increased by 1 for each (16 byte) KeyBlock, whilst for AES_128_BYTE_CTR the CTR is increased by 1 for each byte. Furthermore, AES_128_BYTE_CTR uses a Salt, whereas AES_128_CTR does not.

12.5.1.1 AES_128_CTR
The AES_128_CTR algorithm is defined in [DRMCF-v2]. Using this algorithm, the initial value of CTR is equal to the value of the Initialization Vector IV. CTR is increased by one for each KeyBlock. The first byte of plaintext is encrypted using the first byte in KeyBlockCTR, with CTR=IV.

The plaintext on byte position n, P[n], is encrypted to the ciphertext on byte position n, C[n], as follows:
C[n] = P[n] xor KeyBlockIV+floor(n/16)[n mod 16]. The decryption is similarly done as follows:
P[n] = C[n] xor KeyBlockIV+floor(n/16)[n mod 16].

If this mode is used, it should be avoided to encrypt two different AUs using the same KeyBlock. Therefore encryption in this mode should always start with a fresh CTR value for each AU. This means that possibly unused bytes from the last KeyBlock used to encrypt the previous AU are discarded. The following figure illustrates this:

[image: image2]
12.5.1.2 AES_128_BYTE_CTR

In the case of AES_128_BYTE_CTR, the initial value of CTR is also equal to the value of the Initialization vector IV. CTR is increased by one for each byte of ciphertext/plaintext. CTR is used together with a 64-bit integer Salt to calculate the KeyBlock. The Salt is stored in the OMADRMSalt box in the ExtendedHeaders of the OMADRMCommonHeaders box. The 4 least significant bits of CTR contain the byte offset in the KeyBlocki(CTR) with i(CTR) = ((Salt << 64) xor (CTR >> 4)). Notice that i(CTR) is a function i depending on CTR.
The plaintext on byte position n, P[n], is associated with a CTR value CTR = IV + n. P[n] is encrypted to the ciphertext on byte position n, C[n], as follows: C[n] = P[n] xor KeyBlocki(CTR) [CTR & 0xF]. The decryption is similarly done as follows:
P[n] = C[n] xor KeyBlocki(CTR)[CTR & 0xF].

For encryption in this mode, it is RECOMMENDED to increase the Initialization Vector continuously over the borders of AUs: when the Initialization Vector associated an AU has a value IV and the AU contains B bytes of ciphertext, then the Initialization Vector of the next AU has the value IV+B. This allows possibly unused bytes of the last KeyBlock of one AU to be used for the encryption of the first bytes of the next AU. The following figure illustrates this case:

[image: image3]
If there are no unused KeyBlock bytes left, the next AU starts with a fresh KeyBlock, as is illustrated in the following figure:

[image: image4]
The bitsize of CTR is the same as the bitsize of the Initialization Vector, IVLength. To ensure that the CTR does not overflow, the IV MUST be reset in due time. This can be avoided by choosing the IVLength big enough.

12.5.2 The EncryptionMethod field

Because of the addition of the AES_128_BYTE_CTR algorithm, the possible values in the EncryptionMethod field in the OMADRMCommonHeaders box are extended with the value 0x03. This value signals the use of the AES_128_BYTE_CTR algorithm. Table 49 summarizes the possible values for the EncryptionMethod field.

Table 49: Possible values for the EncryptionMethod field
	Algorithm-id
	Value
	Semantics

	NULL
	0x00
	No encryption for this object. NULL encrypted Content Objects may be used without acquiring a Rights Object. Value of the PaddingScheme field MUST be 0.

	AES_128_CBC
	0x01
	AES symmetric encryption as defined by NIST [AES].

128 bit keys.

Cipher block chaining mode (CBC).

128 bit initialization vector prefixing the ciphertext (for non-streamable PDCF files this is included in the OMADRMBCASTHeader).

Padding according to RFC 2630.

	AES_128_CTR
	0x02
	AES symmetric encryption as defined by NIST [AES].

128 bit keys.

Counter mode (CTR).

128 bit initialization vector prefixes the ciphertext (for non-streamable PDCF files this is included in the OMABCASTAUHeader).

For each cipherblock the counter is incremented by 1 (modulo 2128).

No padding.

	AES_128_BYTE_CTR
	0x03
	AES symmetric encryption as defined by NIST [AES].

128 bit keys.

Counter mode (CTR).

Maximal 64 bit initialization vector prefixes the ciphertext (for non-streamable PDCF files this is included in the OMABCASTAUHeader).

For each byte of ciphertext the counter is incremented by 1.

No padding.

12.5.3 The OMADRMSalt Box

Using the AES_128_BYTE_CTR encryption method, the ExtendedHeaders field in the OMADRMCommonHeaders box MUST include one instance of the OMADRMSalt box:
aligned (8) class OMADRMSalt extends FullBox('oslt', version, 0) {

unsigned int(8) SaltLength;

// Length of the Salt field in bits. MUST be 64

unsigned int(SaltLength) Salt;

// Salt needed for AES_128_BYTE_CTR

}
The OMADRMSalt box contains the field Salt, which is needed for AES_128_BYTE_CTR encryption method.
...

...

KeyBlock with�i(IV'+16)

KeyBlock with�i(IV)

KeyBlocks

XOR

Plaintext

...

KeyBlock with�i(IV')

�

Next AU with Initialization Vector IV' = IV+ B

KeyBlock with�i(IV+16m)

KeyBlock with�i(IV+16)

AU with Initialization Vector IV�(B bytes)

KeyBlock with�i(IV)

KeyBlocks

XOR

Plaintext

...

...

...

KeyBlock with�i(IV'+16(m+1))=�KeyBlock with�i(IV'+16)

Next AU with Initialization Vector IV' = IV+ B

KeyBlock with�i(IV+16m) =�KeyBlock with�i(IV')

KeyBlock with�i(IV+16)

AU with Initialization Vector IV�(B bytes)

KeyBlocks

XOR

Plaintext

...

...

Key Block with�CTR = IV' = �IV+m+1

Next AU with Initial Vector�IV' = IV+ ceil(B/16)

Key Block�with�CTR = IV+1

Key Block�with�CTR = IV

AU with Initial Vector IV�(B bytes)

Key Block with CTR = IV+m

...

Access Unit

OMABCASTAUHeader

OMA key stream data

Rights Object

Mutable DRM Information

Media Data

Movie Box

'ohdr'

'odkm'

'ftyp'

STKM track

Movie Box containing tracks

TransactionID

Rights Object,

Audio Track

File type

Video Track

OMA DRM protected content

frames, hint instructions

time-ordered, interleaved or packetized

Encrypted and unencrypted data

ISO-based media file

�Correct table number

�Correct table number

�This should be removed by editor – not shown using change tracking if removed!

�Correct table number

�Add '

�Add a new column

�'obki' was added

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 19)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 19 (of 19)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

_1228224770.vsd
'ftyp'

ISO-based media file

Audio Track

OMA Key track

‘sinf’

Mutable DRM Information

‘sinf’

Rights Object

Rights Object,
TransactionID

OMA DRM Common Headers and AU Header Format

‘odaf’

Media Data

Encrypted and unencrypted data
time-ordered, interleaved or packetized frames, hint instructions

OMA DRM protected content

‘odkm’

‘schm’

'frma'

‘schi’

‘ohdr’

Movie Box

Video Track

OMA Key stream data

File type

