Doc# OMA-BCAST-2007-0389-CR_remove_bsdaID_in_SPCP.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-BCAST-2007-0389-CR_remove_bsdaID_in_SPCP.doc
Change Request

Change Request

	Title:
	OMA-BCAST-2007-0389-CR_remove_bsdaID_in_SPCP
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC BCAST and DLDRM

	Doc to Change:
	OMA-TS-BCAST_SvcCntProtection-V1_0-20061218-D

	Submission Date:
	March 6, 2007

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	John Bernsen, john.ac.bernsen@philips.com

	Replaces:
	n/a

1 Reason for Change

This CR is a proposal for solving review comment:

	SG-F-060
	2007.01.26
	T
	5.4.2.5
	Source: Nokia

From: Doc 0088R01R01

Comment:

SGDD contains attribute ‘BSDAid’. However, the definition of ‘BSDAid’ is not given anywhere in the TS SG or other BCAST specs. For example, who allocates the id, what it represents, and what it is used for.
Proposed Change:
Remove attribute ‘BSDAid’ from SGDD.

Remove all occurrences of string ‘BSDAid’ from TS Service Guide.

Remove all occurrences of string ‘BSDAid’ from TS Services.

	Status: OPEN
Action to Charles to think about the use case of BSDAid and check with Menno.
Nokia proposes:

Remove attribute ‘BSDAid’ from SGDD.

Remove all occurrences of string ‘BSDAid’ from TS Service Guide.

Remove all occurrences of string ‘BSDAid’ from TS Services.

Remove ‘BSDAid’ from SPSP section 5.5.1 – three occurrences:

· ‘service_CID’

· ‘service_BCI’
· Remove the sentence ‘bsdaID is the globally …”
To re-discuss in the group whether BSDAid can be completely removed from TS SG, Service and SPCP

on OMA-TS-BCAST_SvcCntProtection-V1_0-20061218-D
This comment is a comment on the SG specification, but it does involve the SPCP document.

The comment basically says that bsdaID is not required to make service_cid and program_cid (and the derived bci values) globally unique. Instead of symply removing them, we think it is better to indicate clearly that bsdaID is not required in this BCAST specification, because other, similar specifications do need their equivalent of bsdaID, so people will get confused ans think this is erroneous.
While making this CR, we found that both ’serviceBaseCID’ and ’BaseCID’ are the wrong terms. The SG spec uses ‘baseCID’. We took the liberty of correcting that too.
2 Impact on Backward Compatibility

This CR has no impact on backwards compatibility

3 Impact on Other Specifications

None

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Members are kindly asked to agree with the indicated changes in 6.

6 Detailed Change Proposal
Change 1: Removing/replacing bsdaID in 5.4.3
5.4.3
ROs in Long Term Key Delivery Layer for service protection
In case of subscription, the Service Encryption and Authentication Key material (SEAK) associated with the service is securely delivered to the authorized terminal in an RO. Such an RO is called a Service RO. SEAK is a concatenation of 128 bits SEK (Service Encryption Key) and 128 bits SAS (Service Authentication Seed). SAS is used as a seed in a generic authentication function to derive SAK (Service Authentication Key). In general, a Service RO will contain key material associated with more than one service (with a service bundle).

In case of pay-per-view, the Program Encryption and Authentication Key material (PEAK) associated with a pay-per-view event is securely delivered to the authorized terminal directly within a RO. Such an RO is called a Program RO. PEAK is a concatenation of 128 bits PEK (Program Encryption Key) and 128 bits PAS (Program Authentication Seed). PAS is used as a seed in a generic authentication function to derive PAK (Program Authentication Key).

The ID of ROs that contain SEAKs or a PEAK needs to be structured, to allow for the management of purchase transactions in the device, or more specifically, to create an association between the purchase item in the service guide and the successful completion of the purchase transaction (when the RO related to the purchase has finally been received in the device). This is valid for both connected and especially for unconnected operation (see [DRMDRM-v2.0] for the definition of “connected” and “unconnected”), where the RO may be received by the device much later than the purchase transaction is initiated. A connected device has a direct 2-way connection to the Rights Issuer (RI) through interaction channel. On the other hand, the unconnected devices do not have access to the RI through an interaction channel but they are capable of making connection via an intermediary interactive device.

Defining a structured ID for RO will also allow the device to check later on whether ROs for all subscribed services are available (and have been renewed). The rekeying_period_number is an increasing number by which the ID of the RO related to the same purchase item can be made unique.

The ID of an RO linked with subscription (Service RO) or pay-per-view (Program RO), and bound to a device or to a domain, SHALL be constructed respectively as follows:

deviceRoID = “E” || deviceID || “_S” || stringtomakeitunique || "_I" || purchaseItemID || "_" || hex(rekeying_period_number)

domainRoID = “O” || domainID || “_S” || stringtomakeitunique || "_I" || purchaseItemID || "_" || hex(rekeying_period_number)

deviceID is the Unqiue Device Number (UDN) as discussed in [XBS DRM extensions-v1.0].
stringtomakeitunique Note that ‘deviceRoID’ and ‘domainRoID’ shall be globally unique. Note further that because of the specification of ‘purchaseItemID’ in the OMA BCAST SG, the global uniqueness is already guaranteed and therefore, ‘stringtomakeitunique’ shall be the empty string.
purchaseItemID is the GlobalPurchaseItemID associated with the purchase item and signalled in the Purchase Item Fragment of the SG(see Section ‎‎5.8).
rekeying_period_number is a 7-bit counter that is used to differentiate between different ROs with the same purchase_item_id (defined in Section 7.2 of [XBS DRM extensions-v1.0])
In the case of BCROs, the link with the corresponding subscription (Service RO) or pay-per-view (Program RO) is obtained by using the BCRO fields purchase_item_id and rekeying_period_number ([XBS DRM extensions-v1.0]).

A Service RO SHALL contain at least one (<CID>, <SEAK>) pair. The <CID> (Content Identifier) shall be constructed as specified in the paragraph defining the traffic key message (see Section ‎5.5).

After unwrapping the SEAK contained in the RO, the SEK and the SAS are obtained by splitting the unwrapped key material into two parts as follows:

SEK = first part (128 bits, since AES-128 is used to wrap the traffic or program key material)

SAS = second part (128 bits)

A Program RO SHALL contain at least one (<CID>, <PEAK>) pair. The <CID> SHALL be constructed as specified in the paragraph defining the traffic key message (see Section ‎5.5).

After unwrapping the PEAK contained in the RO, the PEK and the PAS are obtained by splitting the unwrapped key material into two parts as follows:

PEK = first part (128 bits, since AES-128 is used to wrap the traffic key material)

PAS = second part (128 bits)

Change 2: Removing/replacing bsdaID in 5.5.1
5.5.1
Coding and Semantics of Attributes
Section ‎7 introduces the coding and semantics of all Attributes common between the DRM Profile and the Smartcard Profile. Any DRM Profile specific attributes are introduced below.

next_traffic_key_flag – indicates whether or not the Short Term Key Message contains the next traffic key material:

	TKM_FLAG_FALSE
	The Short Term Key Message contains only the current traffic key material.

	TKM_FLAG_TRUE
	The Short Term Key Message contains both the current and the next traffic key material.

The next traffic key material SHALL be included at least 1 second before it becomes current. This is to enable the devices to process the traffic key material and put the necessary security associations in place before the media packets that are encrypted with the next traffic encryption key start arriving.

The above time SHALL be relative to the moment of transmission of the key stream messages.

If PEK is used to protect the traffic key material, then next traffic key material that protects a program different from the current program SHALL NOT be included.
timestamp_flag – indicates whether or not the key stream message contains a timestamp:

	TKM_FLAG_FALSE
	The key stream message does not contain a timestamp.

	TKM_FLAG_TRUE
	The key stream message contains a timestamp.

programme_flag – indicates whether or not the program key layer is present in the Short Term Key Message:

	TKM_FLAG_FALSE
	The PEK is not present, i.e. the optional program key layer is not used for the service.

	TKM_FLAG_TRUE
	The PEK is present, i.e. the optional program key layer is used for the service.

<programme_flag> and <service_flag> SHALL NOT both be 0. All other combinations are allowed, indicating that either one or both of the key layers are present.

service_flag – indicates whether or not the service block is present in the Short Term Key Message:

	TKM_FLAG_FALSE
	The SEK is not present, i.e. the optional service key layer is not used for the service.

	TKM_FLAG_TRUE
	The SEK is present, i.e. the optional service key layer is used for the service.

<programme_flag> and <service_flag> SHALL NOT both be 0. All other combinations are allowed, indicating that either one or both of the key layers are present.

security_parameter_index – provides the link to the IPsec ESP header:

Upon reception of a protected IP packet, the terminal SHALL use the security parameter index (SPI) to identify (look up) the correct security association and thereby find the decryption and authentication keys to be used for the received IPsec ESP packet. The SPI value SHALL be in the range 0x00000100 – 0xFFFFFFFF. An incoming ESP packet containing the SPI value specified in this field SHALL use the keymaterial provided in the encrypted traffic key material field as keymaterial for the decryption operation.
next_security_parameter_index – provides the link to the IPsec ESP header:

This field is present in the packet only if next traffic key flag is set to true. This field then contains the IPsec SPI value corresponding to the next_encrypted traffic key material field. The value of the SPI SHALL be in the range 0x00000100 – 0xFFFFFFFF. An incoming ESP packet containing the SPI value specified in this field SHALL use the keymaterial provided in the next encrypted traffic key material field as keymaterial for the decryption operation.

master_key_index_length – provides the length of the master_key_index field

This field gives the length of the master_key_index field in bytes.
master_key_index – provides the link to the SRTP header:

Upon reception of a protected RTP packet, the terminal SHALL use the master key index (MKI) to identify (look up) the correct security association and thereby find the decryption and authentication keys to be used for a received SRTP packet.

This field is a sequence of Octets. The sequence consists of master_key_index_length bytes. The bytes are in the same order that they will be in an SRTP packet and SHALL be in SRTP [RFC3711] network byte-order when extracting the MKI value.

next_master_key_index_flag – specifies if the master key index (MKI) for the next TEK is explicitly included in the SRTP parameters (as the next_master_key_index field). In the case that the next_master_key_index is not present in the message, the value of current MKI+1 SHALL be assumed. In the case when the next_traffic_key_flag is false there is no information related to the next traffic key included in the message and this parameter does not apply.

next_master_salt_flag – specifies if the next SRTP master salt value corresponding to the next TEK is explicitly included in the SRTP parameters (as the next_master_salt field). In the case that the next_master_salt is not present in the message, the same value as for the current master salt SHALL be assumed. In the case when the next_traffic_key_flag is false there is no information related to the next traffic key included in the message and this parameter does not apply.
master_salt_flag – specifies if the master salt is included in the SRTP parameters. In the case that the master salt is not present in the message, a NULL value consisting of 112 0-bits SHALL be assumed.

master_salt – SRTP master salt that is used along with the master key to derive SRTP session keys as defined by SRTP [RFC3711].

next_master_key_index – provides the link to the SRTP header:

This field is present in the packet only if the next_traffic_key_flag and the next_master_key_index_flag are both set to true. This field then contains the SRTP MKI value corresponding to the next_encrypted traffic key material field. An incoming protected RTP packet containing the MKI value specified in this field SHALL use the key material provided in the next encrypted traffic key material field as key material for the decryption operation.

next_master_salt – next value of the SRTP master salt that is used along with the next master key to derive SRTP session keys as defined by SRTP [RFC3711].

This field is present in the packet only if the next_traffic_key_flag and the next_master_salt_flag are both set to true. This field then contains the SRTP master salt value corresponding to the next_encrypted traffic key material field. An incoming protected RTP packet containing the next MKI value SHALL use the next master salt value provided in this field during the SRTP session key derivation.

key_indicator – value of the KeyIndicator used to identify the TEK transported in the STKM. This is used to identify the particular TEK key needed to decrypt AUs (as indicated in the OMABCASTAUHeader). The key_indicator_length parameter is part of the Session Description Protocol (SDP) and is described in Section ‎10.2.

key_identifier_length – indicates the length in bytes of the key_identifier. For ISMACryp, key_indicator_length is signaled in SDP. For DRM Profile, the key_indicator_length is also signaled in STKM. The Smartcard Profile STKM does not contain such field for ISMACryp.

key_identifier – value of the identifier used to identify the TEK key transported in the traffic key stream message. This is used to identify the particular TEK needed to decrypt DCF encoded files.

encrypted_traffic_key_material_length – is the length in bytes of the encrypted traffic key material.

The length of the traffic key material depends on the encryption and authentication algorithm, and is obtained by adding the respective key sizes. Encryption MAY require the clear-text key material to be padded.

encrypted_traffic_key_material – is the key material currently used for encryption and optional authentication of the traffic, encrypted using AES-128-CBC, with fixed IV 0, and with 0 padding in the last block, if needed.

If <programme_flag> == TKM_FLAG_TRUE, the traffic key material is encrypted with the Programme Encryption Key (PEK).

If <programme_flag> == TKM_FLAG_FALSE and <service_flag> == TKM_FLAG_TRUE, the traffic key material is encrypted with the Service Encryption Key (SEK).

After decryption (and discarding any padding), the Traffic Encryption Key (TEK) and the Traffic Authentication Key (TAK) are obtained in a way that depends on the protocol used for traffic protection:

IPsec: If no traffic authentication is used, the TEK is identical to the decrypted traffic key material (16 bytes).
If traffic authentication is used, TEK and Traffic Authentication Seed (TAS) are obtained by splitting the decrypted traffic key material into two parts, where the TEK is identical to the first 16 bytes, and the TAS is identical to the second 16 bytes. The TAK (20 bytes) is derived from the TAS, as described in Section ‎9.1.

SRTP: The master key is identical to the decrypted traffic key material and SHALL always be a 16-byte key. How the TEK and TAK are derived from the master key is defined by SRTP.
ISMACRYP: If no traffic authentication is used, the decrypted traffic key material is identical to the key used for the AES-CTR decryption and its length is 16 bytes. If authentication is used, the first 16 bytes of the decrypted traffic key material are used as the 128 bit master key (MK) together with the 112 bit master_salt (MS) to derive encryption and authentication keys as described by STRP.

For the DRM Profile, the MK SHALL be sent in the STKM, the MS SHALL be signalled via SDP.

For the Smartcard Profile, the MK SHALL be sent in the MIKEY STKM. The MS SHALL also be sent in the MIKEY STKM.

next_encrypted_traffic_key_material – is the encrypted key material used for encryption and optional authentication of the traffic after the current crypto period is over and the next crypto period starts. The structure of this attribute is the same as for the encrypted_traffic_key_material attribute.
traffic_key_lifetime – is the lifetime in seconds of the Traffic Encryption Key, relative to the first occurrence of an SPI or MKI.

If <traffic_key_lifetime> is n, then the actual lifetime is 2n seconds.

Note: Although the allowed values for the traffic_key_lifetime span from seconds to hours, service providers should not use TKM key material to realize long term key functionality. The TKM messages should be considered and used strictly for short-term key signalling. Also, the lifetime of traffic keys should be considerably shorter than the lifetime of service keys and program keys, to avoid users receiving the service or PPV event (encrypted with traffic keys) even after their service key or current program key has expired.
The following scenario may help in explaining the note. The field "next_encrypted_traffic_key_material" maybe present in the STKM. The field is encrypted with the current Service Key or current Program Key. If someone subscribes to a service, or someone purchases a PPV event, then the person obtains both the current TEK and the next TEK. At the end of the service period, or the end of a PPV event, this means that the person has also a TEK for the next service period or the next PPV event. If the person stops subscription at the end of the current service period or the end of the current PPV event, then the person still has access to the first TEK of the next service period or next PPV event. When the maximum TEK lifetime is 1.5 minutes, a subscriber can at most have 1.5 minutes of unauthorized content, which may not be considered to be excessive. If the traffic_key_lifetime becomes 2 hours, then the subscriber may have excessive access to unauthorized conetnt, especially in the case of PPV events, because the person now may have 2 hours of unauthorized content.

The TEK can be changed frequently to mitigate the risk of end-users posting the key via the interactive channel so that non-members can download that key. The cost of the attack, i.e., extracting the key, and uploading and downloading the key should be made to be more expensive than the cost of BCAST service/content. The frequency of change depends on the value of the BCAST service/content. For high-value PPV content, the TEK SHOULD be changed frequently whereas for low-value content, the TEK MAY be changed infrequently. The exact frequency is a configurable value and does not have impact on interoperability. The option to include two consecutive keys into one STKM, using next_encrypted_traffic_key_material, should be executed with care, since it allows the end user in any case to access service for 2*traffic_key_lifetime.

In the case when a Program Event is available either through subscription or as a PPV event, a STKM containing the next TEK at the end of a PPV program would allow a PPV user to view part of the next PPV event that corresponds to the next TEK. In this case, if next_encrypted_traffic_key_material is used, it SHOULD be utilized with sufficiently short Traffic Key lifetimes so as not to provide PPV users with free access to a PPV event that has not yet been purchased.
The actual duration of the crypto period SHALL be strictly shorter than the defined lifetime of the traffic key material. Typically, an SPI or MKI appears for the first time implicitly, when the “next” traffic key material is included in a STKM. Any safety margins to cope with network and transmission delays SHALL be added by the network. A typical value for the lifetime could be three times the crypto period.

The maximal value for the crypto period duration is in practice slightly shorter than the TEK lifetime, because the TKM will include the “current” and “next” traffic key material before a change of crypto period, to allow the devices to set up the security associations.

After the lifetime has expired, the security association containing the TEK can be safely deleted by the terminal. This may help managing the security association database in the terminal or enable other optimizations.

The maximum value for the TEK lifetime is defined mainly in order to have a strict upper bound for the effect of the “sneak post view” problem: the next traffic key material is distributed under the current PEK, and allows viewers to view a programme during the next crypto period. Should this possibility still be of a concern, the network MAY choose a shorter crypto period than the maximum value, or, during the crypto period where the current programme ends and a new programme starts, choose to distribute the current and the next traffic key material in separate STKMs, encrypted with their respective PEKs.

timestamp – Field containing a timestamp at the point of sending the key stream message. The timestamp SHALL be used as a reliable time of reception of the associated media stream for post-acquisition permissions. The device SHALL not use the timestamp as a reliable source for DRM time.

The format of the 40-bit mjdutc field is specified in Section ‎14. This 40-bit field contains the timestamp of the key stream message in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

As an example, 93/10/13 12:45:00 is coded as "0xC079124500".

permissions_flag – indicates whether or not permissions category is defined for the programme:

	KSM_FLAG_FALSE
	No permissions category is defined.

	KSM_FLAG_TRUE
	Permissions category is defined.

permissions_category – indicates the permissions category for the programme:

	0x00
	No permissions category, RO applies as such,

	0x01...0x3F
	Permissions_category is included in the post- acquisition permissions lookup.

	0x40...0xFF
	Reserved for future standardization.

If permissions_category is in the range 0x01...0x3F,

In case of a RO that is not a BCRO, the device SHALL use as service_CID for post-acquisition permissions lookup the text string

service_CID = stringtomakeitunique || "#S" || baseCID || "@" || hex(service_CID_extension) || "_" || hex(permissions_category)
and then apply the permissions specified in the service RO for this asset. Note that ‘service_CID’ shall be globally unique. Note further that because of the specification of ‘baseCID’ in the OMA BCAST SG, the global uniqueness is already guaranteed and therefore, ‘stringtomakeitunique’ shall be the empty string.
In case of BCRO, the device SHALL look up the permissions specified in the service BCRO for the asset that has a matching permissions_category field.

If permissions_category is in the (reserved for future standardization) range 0x40...0xFF, and the device does not support it, the device SHALL drop (i.e. ignore) all post-acquisition permissions (like play, redistribute etc.) indicated in the service RO, or if the device cannot do such permissions dropping, allow real-time rendering of the streaming content only (i.e. refuse to record the content, or to redistribute it in real time). Permissions_category has no impact on a Programme RO. The permissions delivered in a Programme RO apply as such.

encrypted_PEK – is the Programme Encryption Key (PEK) used within the current STKM to decrypt the traffic key material, encrypted using AES-128-CBC with a fixed IV equal to 0. The PEK is encrypted with the SEK.

program_CID_extension – is the extension of the program_CID which allows to identify the program key material that has been delivered to the device within a LTKM for a program.

Note that for BCRO, a binary, fixed-size version of the content ID (CID) is needed. This ID is called BCI in this specification.

The CID/BCI of the service key is constructed as:

program_CID = stringtomakeitunique || "#P" || baseCID || "@" || hex(program_CID_extension)

program_BCI = hash(stringtomakeitunique || "#P" || baseCID || "@") || program_CID_extension

The baseCID is a string value and is part of the service guide. Upon reception of a STKM, the terminal can assemble the program_CID/BCI and look up the PEK (wrapped inside a LTKM). Note that ‘program_CID’ shall be globally unique. Note further that because of the specification of ‘baseCID’ in the OMA BCAST SG, the global uniqueness is already guaranteed and therefore, ‘stringtomakeitunique’ shall be the empty string.
The hex() function is a hexadecimal presentation of the parameter containing hexadecimal characters 0-9 and a-f (in lowercase) with possible preceding zeros. As an example, for a 16 bit value 2748, hex() returns "0abc". Note that two characters are always generated for each byte.
The hash function for the construction of program_BCI is SHA1-64. It doesn’t depend on the contents of the STKM, and can thus be pre-computed.

If the permissions_category field is present and has a nonzero value, the Service_CID of the service is constructed as specified above (at description of the permissions_category field).

program_MAC – is the HMAC-SHA-1-96 according to [RFC2104] and [RFC2404] calculated over all preceding fields of the Short Term Key Message. It is used to authenticate the relevant part of the STKM in case of pay-per-view, where a PEK from a LTKM for a program is used to directly decrypt the traffic key material.

In case the terminal is accessing the STKM with a LTKM for a program, the terminal SHALL compute the program MAC, and drop the message if authentication fails. In this case, <program_MAC> MAY also be used to detect and drop duplicates (it can be expected that a particular STKM is repeated multiple times, in order to keep access times short for terminals that newly start receiving a broadcast transmission).

In case the terminal is accessing the STKM with a LTKM for a service, it will not be able to compute the program MAC, and there is no need for it to do so.

service_CID_extension – is the extension of the service_CID which allows to identify the service key material that has been delivered to the device within a LTKM for a service.

Note that for BCRO, a binary, fixed-size version of the content ID (CID) is needed. This ID is called BCI in this specification.

The CID/BCI of the service key is constructed as:

service_CID ::= stringtomakeitunique || "#S" || baseCID || "@" || ascii(service_CID_extension)

service_BCI ::= hash(stringtomakeitunique || "#S" || baseCID || "@") || service_CID_extension

The baseCID is a string value announced in the service guide (see Section ‎5.8). Upon reception of a STKM, the terminal can assemble the service_CID/BCI and look up the SEK (wrapped inside a LTKM). Note that ‘service_CID’ shall be globally unique. Note further that because of the specification of ‘baseCID’ in the OMA BCAST SG, the global uniqueness is already guaranteed and therefore, ‘stringtomakeitunique’ shall be the empty string.
The hash function for the construction of service_BCI is SHA1-64. It doesn’t depend on the contents of the STKM, and can thus be pre-computed.

service_MAC – is the HMAC-SHA-1-96 according to [RFC2104] and [RFC2404] calculated over all preceding fields of the Short Term Key Message. It is used to authenticate the STKM with SAK in case of subscription, where a SEK from a LTKM for a service is used to decrypt the PEK and further decrypt the traffic key material.

In case the terminal is accessing the STKM with a LTKM for a service, the terminal SHALL compute the service MAC, and drop the message if authentication fails, i.e. if the computed MAC doesn’t correspond to <service_MAC>. In this case, <service_MAC> MAY also be used to detect and drop duplicates (it can be expected that a particular traffic key message is repeated multiple times, in order to keep access times short for terminals that newly start receiving a broadcast transmission).

In case the terminal is accessing the STKM with a LTKM for a program, it need not to compute the service MAC.

Change 3: Removing/replacing bsdaID; correcting (service)BaseCID in 5.8
5.8
SG Signaling

SG signalling is described in [BCAST10-ESG]. The relevant fragments linking SG signalling to service and content protection are the Access, Purchase Item, Purchase Data and Purchase Channel Fragments.

The Access Fragment describes how the service may be accessed during the validity time of the access fragment. The fragment links to Session Description and indicates the delivery method. KeyManagementSystem element identifies the type of KMS that can be used to contact the RI. The value of this element for DRM Profile is oma-bcast-drm-pki. The associated attributes are ProtectionType and RightsIssuerURI. The ProtectionType attribute specifies the protection type (service protection only, content protection only or both service & content protection) offered by the DRM Profile. The RightsIsuerURI specifies the URI of RightsIssuer that should be contacted to obtain ROs.

The Purchase Channel Fragment represents a system from which access and content rights can be purchased by the terminal. The associated attribute RightsIssuerURI specifies the identity of the rights issuer associated with the BSM. For DRM Profile, RightsIssueURI SHALL be specified.

For devices that support an interaction channel, the PurchaseURL in the Purchase Channel Fragment specifies the URL to which the interactive service provisioning messages defined in [BCAST10-Services] are to be addressed. An interactive service ordering procedure will result in the delivery of a ROAP trigger to the device, which in turn uses the trigger to initiate a Rights Object Acquisition as specified in [DRMDRM-v2.0].

For broadcast-only devices, the Purchase Channel contains information on how to initiate an out-of-band purchase. For an overview of the purchase message flow, see [BCAST10-Architecture].

The Purchase Item fragment contains the GlobalPurchaseItemID, used to refer to the services, service bundles or pay-per-view programs when subscribing via the BSM.

The Purchase Data fragment contains additional information on how the purchase item can be subscribed to. Depending on the chosen purchase data, the resulting LTKM will contain different access rights.

To identify the asset in the RO needed for a service or a program, the following parameter is used in SG: baseCID. The parameter baseCID is announced in the Service Fragment of the SG.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

