Doc# OMA-BCAST-2007-0766R01_CR_keyset_protection_fix.doc[image: image5.jpg]
Change Request

Doc# OMA-BCAST-2007-XXX-CR_keyset_protection_fix.doc
Change Request

Change Request

	Title:
	Keyset protection fix
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BCAST-DRM

	Doc to Change:
	OMA-TS-DRM_XBS-V1_0-20070907-C.doc

	Submission Date:
	December 2, 2007

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Jukka Alve, Nokia, jukka.alve@nokia.com
Ilkka Oksanen, Nokia, ilkka.oksanen@nokia.com

Anja Jerichow, Nokia Siemens Networks, anja.jerichow@nsn.com
John AC Bernsen, Philips, john.ac.bernsen@philips.com
Michael Andre, Intel, michael.andre@intel.com

	Replaces:
	 n/a

1 Reason for Change

The reason why the change is required is that Trust Authorities, i.e. Roots of Trust, need to be able to ensure that keys delivered to devices can only be used by devices that are compliant with their trust model, including compliance and robustness rules. Currently it is possible to use Trust Authority specific protection methods for ROs in the interactive mode, as the method can be signaled in the RO itself using the <xenc:EncryptionMethod> field, but not in the broadcast mode, because the BCRO has no such field. It can be argued that the same method would not work in the broadcast mode, because using broadcast delivery, the same BCRO may be addressed to several devices belonging to different trust models. This CR provides similar functionality for the broadcast mode by allowing Trust Authority specific steps in the protection of the keyset that is delivered during registration operations to a single device, and is needed for gaining access to BCROs.
The selected approach for fixing the problem is justified by alignment with another related specification, IEC 62455, representing a minimal subset of Trust Authority specific functionality in that specification.
Change 1: Amend the protection of the keyset delivered during device registration

Change 2: Amend the protection of the keyset delivered during domain registration
Change 3: Add Tag value 1110 for TAA_descriptor to Table 51 in C.11.1
Change 4: Add subsection C.11.3 describing the syntax of TAA_descriptor
Revision R01:
- clarifies the reason for change including an accompanying ppt-presentation “Presentation_accompanying_OMA-BCAST-2007-0766R01-CR_keyset_protection_fix.ppt”

- adds co-signers
- uses a clearer wording in the rules for message decryption (in change 1 - step 7; in change 2 – step 6)
- adds a remark for the TAA_Descriptor in the table of change 3.
- typos/clarification (in change 4)
2 Impact on Backward Compatibility

none

3 Impact on Other Specifications

none

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Members are kindly asked to agree with the indicated changes in 6.

6 Detailed Change Proposal

Change 1: Amend the protection of the keyset delivered during device registration
7.2.2.2.3 Protection of the (Device Registration) Keyset

The device_registration_response() message is split in two parts: device global data (not time bound) and device specific (time bound).

[image: image1.wmf]Device global data

(

in the clear

)

Device specific data

Key material

„keyset“

(

encrypted

)

Other device data

(

in the clear

)

Longform

_

udn

signature

Message

_

tag

Signature over

complete

message

Figure 19: device_registration_response() message

The device global data SHALL be in the clear. The device specific data contains the keyset for the device. The key material SHALL be protected by encryption.

The RI SHALL use its private key to sign the complete message data. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device SHALL make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message SHALL adhere to the following rules:

1. Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the device_registration_response() message.

2. Determine if the trust authority has defined an algorithm for extra encryption of the keyset_block. If so, prepare the appropriate TAA descriptor for it (using the syntax defined in C.11.3).

3. For Fixed Subscriber Group addressing, concatenate TAA_descriptor from step 2, if it is present, and the following fields to form the keyset: UGK, SGK1..n, UDK, UDF, BDK, SBDF, LBDF (if applicable), RIAK, TDK under rules of [FIPS 197] and the Tag Length Format described in Section C.11.

For Flexible Subscriber Group addressing, concatenate TAA_descriptor from step 2, if it is present, and the following fields to form the keyset: UGK, UDK, UDF, BDK, SBDF, LBDF (if applicable), RIAK, TDK, flexible_device_data, FSGK1..m under rules of [FIPS 197] and the Tag Length Format described in Section C.11.

The concatenated keyset SHALL be padded with one bit with the value '1' and, after this 1-valued bit, 0 to 63 bits with the value '0', such that the length of the padded keyset is a multiple of 64 bits, see Appendix A of [NIST 800-38A]. Note that if the non-padded keyset was already a multiple of 64 bits in length, it is padded with 64 bits.
4. Encrypt the keyset using [AES_WRAP] using the generated SK as (AES-WRAP style) KEK. This will produce the keyset_block.
5. If a TAA_descriptor field has been inserted in the keyset_block, encrypt the keyset_block (result from step 4) again starting at the last bit of the TAA_descriptor while using the algorithm and parameter as indicated in the TAA_descriptor.
6. Calculate the part of the keyblock that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PKCS#1. If the keyset_block fits into one RSA block continue at step 8. Else continue at step 7.
7. If the SK plus keyset_block including PKCS#1 header, aligning, etc did not fit into one RSA block, then keep the remainder part as surplus_block().

8. Encrypt SK plus the (part of the)keyset_block that fits into the RSA block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1]. This will produce the sessionkey_block().
9. Concatenate the (non encrypted) parameters that were not used in the key_block and create the message "header" from this. Refer to 7.2.2.2.2 for details. (for reason of completeness: of course the sessionkey_block(), the (optional) surplus_block() and the signature_block are not part of the message header)
10. Concatenate the message "header" and the sessionkey_block() . If the SK plus keyset_block including PKCS#1 header, aligning, etc did not fit into one RSA block, then also concatenate surplus_block() part. The result SHALL be hashed under implementation guidelines of PKCS#1, as specified in Section C.9. This will produce the signature_input_data.

11. Sign the signature_input_data with RSA (1024 or 2048 or 4096) using the private key of the RI. The signature SHALL apply to the implementation guidelines of PKCS#1, as specified in C.9. This will produce the signature_block.

12. The device_registration_response() message comprises of the message "header" plus sessionkey_block(), optionally the surplus_block() and the signature_block.

[image: image2.wmf]surplus_block

(AES encrypted)

Sessionkey_block

(RSA encrypted)

Signature_block

(RSA signature)

SK (plus part of

keyset_block that fits into

RSA block (size)

RSA signature

Message “header”

(in the clear)

All but input for keyblocks

below

(optional) Remainder of

keyset_block that did not fit

into RSA block

Keyset_block

(AES encrypted)

Figure 10: Structure of device_registration_response() message

Concluding: The number of RSA blocks used should be kept to a minimum. The AES surplus_block() is present if and when the keyset does not completely fit into the sessionkey_block() given the RSA block size used. If present the AES surplus_block() contains those keys that did not fit into one RSA block (i.e. the sessionkey_block()). The complete keyset needed for operation after registration is included in the encrypted keyset_block, which is concatenated from the first part in the sessionkey_block() and optionally the surplus_block(). Refer to appendix for calculations on the surplus_block_size.

Decryption of the encrypted message SHALL adhere to the following rules:

1. Locate the message via message_tag

2. Verify if the message is intended for this device by comparing the long_form_udn with the UDN stored in the device.

3. Verify the signature_block of the message by using the public key from the RI.

4. Locate the sessionkey_block() and decrypt the block with the private key of the local device. Locate the session key (SK) from the header and (eventual) padding (according to PKCS#1). Then locate the keyset_block part from the header and (eventual) padding (according to PKCS#1). See Appendix C.12 for the determination of the session key length.

5. (Optionally) If there is a surplus_block() concatenate this part to the keyset_block. This will complete the keyset_block.

6. Use the SK to decrypt the keyset_block.
7. If there is no TAA_descriptor present in the decrypted keyset block from step 6, go to step 8. If there is a TAA_descriptor present, part of the keyset_block is double encrypted. In this case, take the encrypted keyset_block (i.e. result from step 5, not 6) and decrypt it anew, this time starting at the last bit of the TAA_descriptor while using the algorithm and parameter as indicated in the TAA_descriptor. Decrypt the result of this decryption using the SK and [AES_WRAP] (equivalent to step 6).
8. Allocate the individual keyset_items from the keyset_block according to [AES_WRAP] and the Tag Length Format described in Section C.11.

Note: The SK SHALL be stored into protected storage of the Device. The AES encrypted keyset_block MAY be stored as is into unprotected storage and decrypted by the Device upon use. If the encrypted keyset_block is not stored but the decrypted keys from that block are stored instead, the Device SHALL store all key data safely. In either case, the Device SHOULD use integrity protection of what is stored in unprotected storage to prevent tampering of the keys. The keys SHALL NOT leak outside the Device.
Change 2: Amend the protection of the keyset delivered during domain registration

7.7.4.3 Protection of the (Domain Registration) Keyset

The domain_registration_response() message is split in two parts: device specific (time bound) data and global (not time bound) data.

[image: image3.wmf]Device global data

(

in the clear

)

Device specific data

Key material

„keyset“

(

encrypted

)

Other device data

(

in the clear

)

Longform

_

udn

signature

Message

_

tag

Signature over

complete

message

Figure 17: domain_registration_response() message

The device global data SHALL be in the clear. The device specific data contains the keyset for the device.

The RI SHALL use its private key to sign the complete message data. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device SHALL make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message SHALL adhere to the following rules:

1. Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the domain_registration_response() message.
2. Determine if the trust authority has defined an algorithm for extra encryption of the keyset_block. If so, prepare the appropriate TAA descriptor item for it (using the syntax defined in C.11.3).
3. Concatenate the TAA descriptor item from step 2 if it is present, the keyset (BDK, SBDF plus optional LBDF if applicable) under rules of [FIPS 197] and the Tag Length Format described in Section C.11. The concatenated keyset SHALL be padded with one bit with the value'1' and, after this 1-valued bit, 0 to 63 bits with the value '0', such that the length of the padded keyset is a multiple of 64 bits, see Appendix A of [NIST 800-38A]. Note that if the non-padded keyset was already a multiple of 64 bits in length, it is padded with 64 bits. More than one context is allowed up to the RSA blocksize.
4. Encrypt the keyset using [AES_WRAP] using the generated SK as (AES-WRAP style) KEK. This will produce the keyset_block.
5. If a TAA descriptor has been inserted in the keyset_block,encrypt the keyset_block (result from step 4) again starting at the last bit of the TAA_descriptor while using the algorithm and parameter as indicated in the TAA_descriptor.

6. Calculate the part of the keyset_block that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PKCS#1.

7. Encrypt SK plus the keyset_block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1]. This will produce the sessionkey_block().

8. Concatenate the (non encrypted) parameters that were not used in the key_block and create the message "header" from this. Refer to 7.7.4.1.1 for details. (for reason of completeness: of course the sessionkey_block() and the signature_block are not part of the message header)

9. Concatenate the message "header" and the sessionkey_block(). The result SHALL be hashed under implementation guidelines of [PKCS#1] as specified in Section C.9. This will produce the signature_input_data.

10. Sign the signature_input_data with RSA (1024 or 2048 or 4096) using the private key of the RI. The signature SHALL apply to the implementation guidelines of PKCS#1, as specified in C.9. This will produce the signature_block.

11. The domain_registration_response() message comprises of the message "header" plus sessionkey_block() and the signature_block.

[image: image4.wmf]Sessionkey_block

(RSA encrypted)

Signature_block

(RSA signature)

SK (plus keyset_block that

fits into RSA block (size)

RSA signature

Message “header”

(in the clear)

All but input for keyblocks

below

Keyset_block

(AES encrypted)

Figure 18: Structure of domain_registration_response() message.

Decryption of the encrypted message SHALL adhere to the following rules:

1. Locate the message via message_tag

2. Verify if the message is intended for this device by comparing the long_form_udn with the UDN stored in the device.

3. Verify the signature_block of the message by using the public key from the RI.

4. Locate the sessionkey_block() and decrypt the block with the private key of the local device. Locate the session key (SK) from the header and (eventual) padding (according to PKCS#1). Then locate the keyset_block part from the header and (eventual) padding (according to PKCS#1). See Appendix C.12 for the determination of the session key length.

5. Use the SK to decrypt the keyset_block.
6. If there is no TAA_descriptor present in the decrypted keyset block from step 5, go to step 7. If there is a TAA_descriptor present, part of the keyset_block is double encrypted. In this case, take the encrypted keyset_block (i.e. result from step 4, not 5) and decrypt it anew, this time starting at the last bit of the TAA_descriptor while using the algorithm and parameter as indicated in the TAA_descriptor. Decrypt the result of this decryption using the SK and [AES_WRAP] (equivalent to step 5).
7. Allocate the individual keyset_items from the keyset_block according to [AES_WRAP] and the Tag Length Format described in Section C.11.

Note: the SK SHALL be stored into protected storage. The AES encrypted keyset_block MAY be stored as is into unprotected storage and decrypted by the device upon use. If the keyset_block is not stored but the decrypted keys from that block are stored instead, the device SHALL store all key data safely. The keys SHALL NOT leak outside the device.
Change 3: Add Tag value 1110 for TAA_descriptor to Table 51 in C.11.1

Table 51: Defined tag values

	Keyset_item
	Tag (b)
	Remark

	UGK
	0000
	

	SGK
	0001
	

	UDK
	0010
	

	UDF
	0011
	

	BDK
	0100
	

	SBDF
	0101
	shortform_domain_id

	LBDF
	0110
	

	RIAK
	0111
	

	TDK
	1000
	

	flexible_device_data()
	1001
	

	FSGK block
	1010
	

	reserved for future use
	1011-1101
	not used in this version of the spec

	TAA_descriptor
	1110
	For the specification of TAA_decscriptor, see C.11.3
If present in a keyset block, the TAA_descriptor shall be the first keyset item

	reserved for future use
	1111
	not used in this version of the spec

Change 4: Add subsection C.11.3 describing the syntax of TAA_descriptor
C.11.3 TAA_descriptor Syntax
The syntax of the Trust Authority Algorithm descriptor (TAA_descriptor) is specified in Table ###
Table ### – TAA_descriptor syntax

	Field
	Length
	Value
	Type

	TAA_descriptor() {
	
	
	

	
tag
	4
	1110b
	bslbf

	
clarifier
	10
	
	uimsbf

	
length
	3
	111b
	bslbf

	
ROT_ID
	10
	
	uimsbf

	
parameter
	8*clarifier - 10 – n
	
	bslbf

	
padding
	n
	0b (n times)
	bslbf

	}
	
	
	

tag – This is the tag for TAA_descriptor, see Table 2
clarifier – This is the clarifier for TAA_descriptor. It shall represent the length of the keyset_item in bytes (excluding the tag, clarifier and length fields).

length – This has the nil (111) value, as the actual length is specified by the clarifier

ROT_ID – This field contains, in binary format, the identifier (allocated by OMNA) of the Trust Authority that defined the algorithms for extra encryption of the keyset block in which this descriptor is located.

parameter – This field contains Trust Authority specific parameter(s).

padding – This field is an n-bit zero-valued padding field.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 5 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

_1218617834.vsd
Device global data
(in the clear)

Device specific data

Key material
„keyset“
(encrypted)

Other device data (in the clear)

Longform_udn

signature

Message_tag

_1218618314.vsd
Device global data
(in the clear)

Device specific data

Key material
„keyset“ (encrypted)

Other device data (in the clear)

Longform_udn

signature

Message_tag

_1171444797.vsd
surplus_block
(AES encrypted)�

Sessionkey_block
(RSA encrypted)�

Signature_block
(RSA signature)�

(optional) Remainder of keyset_block that did not fit into RSA block�

SK (plus part of keyset_block that fits into RSA block (size)�

RSA signature�

Message �header�
(in the clear)�

All but input for keyblocks below�

Keyset_block
(AES encrypted)�

_1175965624.vsd
Sessionkey_block
(RSA encrypted)�

Signature_block
(RSA signature)�

SK (plus keyset_block that fits into RSA block (size)�

RSA signature�

Message �header�
(in the clear)�

All but input for keyblocks below�

Keyset_block
(AES encrypted)�

