Doc# OMA-BCAST-2008-0419R02-CR_UDN_Checksum_Bugfix.doc[image: image4.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-BCAST-2008-0419R02-CR_UDN_Checksum_Bugfix.doc
Change Request

Change Request

	Title:
	UDN checksum bug fix
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BCAST

	Submission Date:
	1 September 2008

	Against Doc
	OMA-TS-DRM_XBS-V1_0-20080801-D.doc

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Ciara Byrne, Ciara.Byrne@nl.safenet–inc.com

	Replaces:
	n/a

1 Reason for Change

Calculation of the checksum for the UDN (Unique device number) for unconnected devices is defined in Annex C.6.2 of this document. However, there are a number of errors and inconsistencies in the text for calculating the UDN checksum. This CR corrects these errors and makes the description consistent with the other checksum calculation descriptions in the document, e.g. checksum on ARC.
2 Impact on Backward Compatibility

-
3 Impact on Other Specifications

-
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

BCAST working group is asked to agree this CR.
6 Detailed Change Proposal

C.6.2 Checksum on UDN
Definition

The checksum on the UDN is calculates by F-UDN

We use codes over Zp, the integers modulo p,where p=11. That is to say, codewords are strings with entries from for
[image: image1.wmf]{

}

1

,....

1

,

0

-

p

. We consider codes of length n defined by r parity equitions: a string
[image: image2.wmf](

)

cn

c

c

...,

2

,

1

 with elements from Zp is a codeword if and only if it satisfies the following equations:

for
[image: image3.wmf])

(mod

0

,

,...

2

,

1

1

)

(

p

cj

r

i

n

j

i

aj

º

=

å

=

We now describe a [20,17] code, that is deﬁned over 20 symbols from Z11 using the three following check equations as described in the matrix H3 below:

Take n=17, r=3 and p=11. We consider the code deﬁned by the r=3 and the following parity check equations:

1*c1 + 0*c2 + 1*c3... + 1*c18 = 0 (modulo 11)

0*c1 + 1*c2 + 0*c3... + 1*c19 = 0 (modulo 11)

10*c1 + 1*c2 + 9*c3...+ 1*c20 = 0 (modulo 11)

In other words, a string (c1,c2,...,c20) with elements from Z11is a codeword if and only if it has inner product zero (modulo 11) with the rows of the following matrix H3:

	
	n1
	n2
	n3
	n4
	n5
	n6
	n7
	n8
	n9
	n10
	n11
	n12
	n13
	n14
	n15
	n16
	n17
	n18
	n19
	n20

	H3
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	2
	3
	4
	5
	7
	8
	1
	0
	0

	
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	2
	3
	4
	6
	7
	0
	1
	0

	
	10
	1
	9
	2
	8
	3
	7
	4
	6
	5
	4
	5
	7
	10
	3
	2
	8
	0
	0
	1

Error detection simply takes place by checking if the received word r = (r1,r2,...,r20) satisﬁes the three parity check equations. Encoding can for example be done as follows:

Choose c1,c2,...,c17 in any way. If we deﬁne the checksum digits as follows:
C18 = - (1*c1 + 0*c2 + 1*c3 +...+ 8*c17) modulo 11

c19 = - (0*c1 + 1*c2 + 0*c3 +...+ 7*c17) modulo 11

c20 = - (10*c1 + 1*c2 + 9*c3 +...+ 8*c17) modulo 11

then (c1,c2,...,c20) is a codeword. We can view c18, c19 and c20 as parity check digits. Note that we may restrict c1,c2,...,c17 to be any of the numbers 0,1,2. . . ,9. Any of the three parity check digits can be ’10’. This ’10’ can be represented by an alphanumerical character different from 0,1,. . . ,9, for example X or Z.

Decoding is done by:
s18 = (1*c1 + 0*c2 + 1*c3 +...+ 1*c18) modulo 11

s19 = (0*c1 + 1*c2 + 0*c3 +...+ 1*c19) modulo 11
s20 = (10*c1 + 1*c2 + 9*c3 +...+ 1*c20) modulo 11

Summarizing, the code deﬁned with H3 detects all errors of any of the following types:

· Single and double substitution errors.

· Single and double transposition errors.

· Any combination of a single substitution error and a single transposition error.

· All three consecutive substitution errors.

where a transposition is ab => ba and a substitution is a => b.

Example:

N.b.: following example illustrates the use of the algorithm on valid UDN as input number :

	position (n)
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	

	inputnumber
	8
	5
	6
	2
	8
	7
	0
	1
	2
	1
	5
	3
	2
	9
	5
	6
	7
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	matrix H3
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	2
	3
	4
	5
	7
	8
	1
	0
	0
	line for C18 & S18

	
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	2
	3
	4
	6
	7
	0
	1
	0
	line for C19 & S19

	
	10
	1
	9
	2
	8
	3
	7
	4
	6
	5
	4
	5
	7
	10
	3
	2
	8
	0
	0
	1
	line for C20 & S20

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	coding
	checkdigit = -sum(n1..n17) mod 11

	C18
	8
	0
	6
	0
	8
	0
	0
	0
	2
	0
	5
	6
	6
	36
	25
	42
	56
	
	
	
	9

	C19
	0
	5
	0
	2
	0
	7
	0
	1
	0
	1
	0
	3
	4
	27
	20
	36
	49
	
	
	
	10

	C20
	80
	5
	54
	4
	64
	21
	0
	4
	12
	5
	20
	15
	14
	90
	15
	12
	56
	
	
	
	2

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	codeword
	8
	5
	6
	2
	8
	7
	0
	1
	2
	1
	5
	3
	2
	9
	5
	6
	7
	9
	10
	2
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	decoding
	checkdigit = +sum(n1..n18 or n19 or n20) mod 11

	S18
	8
	0
	6
	0
	8
	0
	0
	0
	2
	0
	5
	6
	6
	36
	25
	42
	56
	9
	0
	0
	0

	S19
	0
	5
	0
	2
	0
	7
	0
	1
	0
	1
	0
	3
	4
	27
	20
	36
	49
	0
	10
	0
	0

	S20
	80
	5
	54
	4
	64
	21
	0
	4
	12
	5
	20
	15
	14
	90
	15
	12
	56
	0
	0
	2
	0

Please take note that the value ’10’ of checksum digit C19 can be represented by an alphanumerical character different from {0,1,. . . ,9}, for example X or Z.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 3)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 3)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

_1174125364.unknown

_1174125459.unknown

_1174125186.unknown

