Doc# OMA-IM-2005-0074-PrAuth_CS.doc[image: image10.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-IM-2005-0074-PrAuth_CS.doc
Change Request

Change Request

	Title:
	Presence authorization – no related use case in RD
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA MWG IM

	Doc to Change:
	OMA-IMPS-WV-CSP-V1_3-20050128-D

	Submission Date:
	31 Jan 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Zoltán Ördögh, Nokia, zoltan.ordogh@nokia.com

	Replaces:
	n/a

1 Reason for Change

As described in the Delta RD (no use case for these reqs), the presence authorization-related changes should be added to the specifications. The related requirements are:
	Ref
	Use Case Title(s)
	Requirements

	PRR-5
	
	The IMPS server SHALL support both proactive and reactive authorization models.

	PRR-6
	
	The IMPS client SHALL support the proactive authorization model.

	PRR-7
	
	The IMPS client SHOULD support the reactive authorization model.

We are aware of the SonyEricsson contribution related to changing the reactive authorization transactions to proactive, however this contribution will not interfere with that as that proposal will remove the entire the reactive authorization as such – updating it for now properly does not hurt.

2 Impact on Backward Compatibility

Not backwards compatible. The negotiation of the newly mandated services disappears from this version.

3 Impact on Other Specifications

All of those that deal with service negotiation: CSP XMLS, CSP WBXML, CSP PTS, SSP specs.

4 Intellectual Property Rights

The authors of this document do not have knowledge of IPRs related to this contribution.

5 Recommendation

Working group to review and approve the change request.

6 Detailed Change Proposal

[image: image2.wmf]WV-CSP

Features

Presence-

Features

IM-Features

Group-

Features

Fundamental-

Features

GLBLU

BLENT

GCLI

CCLI

DCLI

MCLS

GETPR

UPDPR

GETWL

REACT

GETAUT

REJCM

NOTIF

FWMSG

CREAG

DELGR

GETGP

SETGP

GETGM

ADDGM

RMVGM

MBRAC

SUBGCN

GRCHN

REJEC

ContactList-

Functions

PresenceAuth-

Functions

Presence-

Delivery-

Functions

IM-Sending-

Functions

SETD

IM-Auth-

Functions

Group-Mgmt-

Functions

Group-Auth-

Functions

INVIT

CAINV

Service-

Functions

Search-

Functions

Invite-

Functions

GETSPI

GETLM

GETM

MDELIV

SRCH

STSRC

IM-Receiving-

Functions

NEWM

Group-Use-

Functions

MF (Mandatory

fundamental

functions)

MP (Mandatory

presence

functions)

MM (Mandatory

Messaging

functions)

MG (Mandatory

group

functions)

VRID

VerifyID

CAAUT

GETJU

8. Presence Feature

The relation of contact list and attribute list is described in Appendix A of [Arch].

In order to achieve minimum level of interoperability both the client and the server MUST support the following functionalities:

· 8.2 Attribute list and the related transactions [editor to add reference]
· Error! Reference source not found. Error! Reference source not found.
Additionally to the above, the server MUST support the following functionalities:

· 8.3.3 Reactive presence authorization and the related transactions [editor to add reference]
The rest of the presence-related functionalities are all OPTIONAL. The individual client or server implementations MAY decide whether if support for a particular transaction is implemented or not.

8.2.1. Transactions

[image: image3.wmf]Client

Server

CreateAttributeListRequest

Status

Figure 1. Create attribute list transaction

The user MAY create user or contact-list specific attribute list(s), but only one attribute lists per user or per contact list.

Changing an authorization will not cancel already active subscriptions. The subscriber will not be sent notifications of attributes not authorized, but if it is reauthorized he/she will be sent notifications without the need for re-subscribing.

The create attribute list transaction MUST be supported by the client and the server, therefore its support is not negotiated.

If the requested attribute list does not exist on the server, the server MUST create it. In order to modify (update) an attribute list, it MUST be overwritten by creating another attribute list for the same user-ID or contact-list-ID (e.g. there is no need to delete first) – if the attribute list exists on the server, the server MUST overwrite it without indicating error

If the ‘Default-List’ element is ‘T’, the server MUST associate the supplied attribute list with the default attribute list.

If the attribute list is empty (i.e.: it does not contain any presence attributes), the server MUST regard this as a valid – but empty – attribute list to be associated with the indicated user(s), contact list(s) and/or default list.

[image: image4.wmf]Client

Server

DeleteAttributeListRequest

Status

Figure 2. Delete attribute list transaction

A user MAY delete the default attribute list and /or the attribute list from a set of users and/or contact lists.

The delete attribute list transaction MUST be supported by the client and the server, therefore its support is not negotiated.
The server MUST delete the attribute list from every user specified in the User-ID-List element and every user contact list specified in the Contact-ID-List element.

If the specified attribute list(s) does not exist on the server, it is silently ignored without generating an error.

If the Default-List element indicates ‘T’, the server MUST clear the default attribute list.

[image: image5.wmf]Client

Server

GetAttributeListRequest

GetAttributeListResponse

Figure 3. Get attribute list(s) transaction

The publisher MAY retrieve the attributes he/she associates with a specific contact list(s) or user(s), or the default attribute list.

The get attribute list transaction MUST be supported by the client and the server, therefore its support is not negotiated.
If the Default-List element indicates ‘T’ the server MUST include the default attribute list in the response even if it is empty.

If the request contains:

· Contact-List-ID-List, the server MUST send only those attribute list(s) in the response that are associated with the particular contact list(s).

· User-ID-List, the server MUST send only those attribute list(s) in the response that are associated with the particular user(s).

If the request does not contain the Contact-List-ID-List element or the User-ID-List element, then the server MUST deliver all contact list and User-ID associations in the response.

8.3.3.1 Transactions

[image: image6.wmf]Status

PresenceAuthRequest

Server

Client

Figure 4. Reactive presence authorization request transaction

If the publisher has not proactively authorized some of the presence information that a subscriber request (either get or subscribe), and the publisher is online and has negotiated reactive presence authorization, the server MUST request reactive presence authorization from the publisher by sending a PresenceAuthRequest message to the publisher client containing the UserID of the requesting user (which identifies the authorization request also) and the list of requested presence-attributes (not present if all of them are requested). The client MUST respond with a Status primitive. Authorization does not take place upon response to this primitive – this transaction is a notification only. Authorization takes place when the client explicitly sends PresenceAuthUser request to the server.

The client SHOULD and the server MUST support the reactive presence transactions. The service leaf that allows negotiation of this transaction is ‘REACT’. Note that this feature includes two transactions: “Reactive presence authorization request transaction” and “Reactive presence authorization of user transaction”.

The Presence-Attribute-List element MAY be empty or missing – indicating that all presence attributes are requested.

[image: image7.wmf]PresenceAuthUser

Status

Server

Client

Figure 5. Reactive presence authorization of user transaction

The client MAY respond to the server in a separate transaction with a PresenceAuthUser message that contains the User-ID of the requesting user, and a list of attributes to add to the list of granted or denied presence attributes. The server MUST reply with a Status message.

From this authorization status the requesting user MAY access the authorized presence information.

The User-ID in the PresenceAuthUser primitive MUST identify the same user that requested the reactive presence authorization with PresenceAuthRequest primitive.

If the Acceptance element indicates ‘T’, the server MUST allows the specific user to access the presence attributes specified in the Presence-Attribute-List element. If the Acceptance element indicates ‘F’, the server MUST NOT allow the specific user to access the presence attributes specified in the Presence-Attribute-List element.

The Presence-Attribute-List element MAY be empty or missing – indicating that all available presence attributes are requested.

A new authorization will overwrite the existing one. Any attribute previously granted or denied that is not specified in the new authorization will not be changed – those attributes that have been requested but not specified in the response Presence-Attribute-List element MUST remain in their original state. An exception is the empty list, which will overwrite all authorizations.

[image: image8.wmf]CancelAuthRequest

Status

Server

Client

Figure 6. Cancel presence authorization transaction

A user MAY cancel a previous presence authorization. The client will send CancelAuthRequest message to the server containing the User-ID. The server MUST respond with a Status message.

The client SHOULD and the server MUST support the cancel authorization transaction. The service leaf that allows negotiation of this transaction is ‘CAAUT’.

After a cancel authorization transaction has been completed, the server MUST deny access to the previously granted attributes. After cancellation the server MUST send new authorization request if the specified user attempts to request the publisher’s unauthorized presence attributes.

[image: image9.wmf]GetReactiveAuthStatusRequest

Client

Server

GetReactiveAuthStatusResponse

Figure 7. Get reactive authorization status transaction

A client MAY retrieve a list of users that he has granted or denied authorization to along with a list of pending reactive authorization requests. The client will send a GetReactiveAuthStatusRequest message to the server. The server MUST return the current reactive authorization status.

The client SHOULD and the server MUST support the get reactive authorization status transaction. The service leaf that allows negotiation of this transaction is ‘GETAUT’.

The server MUST include the reactive authorization status for each requested User-ID. If the request specifies a set UserIDs the response MUST include only the listed users, if not, the server MUST provide the status for all reactively authorized users. If the reactive authorization applies to all available presence attributes, the server MUST omit the PresenceSubList element.

13.6.1 Functional requirements

13.6.1.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	PRSE-C-1
	Support for get list of contact lists (IDs) transaction
	0
	O
	

	PRSE-C-2
	Support for create contact list transaction
	0
	O
	

	PRSE-C-3
	Support for delete contact list transaction
	0
	O
	

	PRSE-C-4
	Support for manage contact list transaction
	0
	O
	

	PRSE-C-5
	Support for create attribute list transaction
	0
	M
	

	PRSE-C-6
	Support for delete attribute list transaction
	0
	M
	

	PRSE-C-7
	Support for get attribute list transaction
	0
	M
	

	PRSE-C-8
	Support for subscribe presence transaction
	0
	M
	

	PRSE-C-9
	Support for unsubscribe presence transaction
	0
	M
	

	PRSE-C-10
	Support for get watcher list transaction
	0
	O
	

	PRSE-C-11
	Support for presence notification transaction
	0
	M
	

	PRSE-C-12
	Support for get presence transaction
	0
	O
	

	PRSE-C-13
	Support for update presence transaction
	0
	O
	

	PRSE-C-14
	Support for reactive presence authorization request transaction
	0
	O
	PRSE-C-15

	PRSE-C-15
	Support for reactive presence authorization of user transaction
	0
	O
	PRSE-C-14

	PRSE-C-16
	Support for cancel presence authorization transaction
	0
	O
	

	PRSE-C-17
	Support for get reactive authorization status transaction
	0
	O
	

13.6.1.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	PRSE-S-1
	Support for get list of contact lists (IDs) transaction
	0
	O
	

	PRSE-S-2
	Support for create contact list transaction
	0
	O
	

	PRSE-S-3
	Support for delete contact list transaction
	0
	O
	

	PRSE-S-4
	Support for manage contact list transaction
	0
	O
	

	PRSE-S-5
	Support for create attribute list transaction
	0
	M
	

	PRSE-S-6
	Support for delete attribute list transaction
	0
	M
	

	PRSE-S-7
	Support for get attribute list transaction
	0
	M
	

	PRSE-S-8
	Support for subscribe presence transaction
	0
	M
	

	PRSE-S-9
	Support for unsubscribe presence transaction
	0
	M
	

	PRSE-S-10
	Support for get watcher list transaction
	0
	O
	

	PRSE-S-11
	Support for presence notification transaction
	0
	M
	

	PRSE-S-12
	Support for get presence transaction
	0
	O
	

	PRSE-S-13
	Support for update presence transaction
	0
	O
	

	PRSE-S-14
	Support for reactive presence authorization request transaction
	0
	M
	

	PRSE-S-15
	Support for reactive presence authorization of user transaction
	0
	M
	

	PRSE-S-16
	Support for cancel presence authorization transaction
	0
	M
	

	PRSE-S-17
	Support for get reactive authorization status transaction
	0
	M
	

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20040917]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 6 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20040917]

_1068020210.vsd

_1145099470.vsd
WV-CSP Features�

Presence-Features�

IM-Features�

Group-Features�

Fundamental-Features�

GLBLU�

BLENT�

GCLI�

CCLI�

DCLI�

MCLS�

CALI�

DALI�

GALS�

GETPR�

UPDPR�

GETWL�

IM-Receiving-Functions�

REACT�

GETAUT�

REJCM�

NOTIF�

FWMSG�

CREAG�

DELGR�

GETGP�

SETGP�

GETGM�

ADDGM�

RMVGM�

MBRAC�

SUBGCN�

GRCHN�

REJEC�

ContactList-Functions�

PresenceAuth-Functions�

Presence-Delivery-Functions�

AttributeList-Functions�

IM-Sending-Functions�

SETD�

IM-Auth-Functions�

Group-Mgmt-Functions�

Group-Auth-Functions�

NEWM�

STSRC�

INVIT�

CAINV�

Service-Functions�

Search-Functions�

Invite-Functions�

Group-Use-Functions�

GETSPI�

GETLM�

GETM�

MDELIV�

SRCH�

MF (Mandatory fundamental
functions)�

MP (Mandatory presence
functions)�

MM (Mandatory Messaging
functions)�

MG (Mandatory group
functions)�

CAAUT�

VRID�

VerifyID�

GETJU�

_1168696870.vsd

_1068020244.vsd

_1099401409.vsd

_1064827106.vsd

_1064827107.vsd

_1064916641.vsd

_1064827105.vsd

