Doc# OMA-IM-2005-0237-IMPS13_PrAuthModelEnchance_CSP.doc[image: image10.jpg]"sOMaQa

Open Mobile Alliance




Change Request

Doc# OMA-IM-2005-0237-IMPS13_PrAuthModelEnchance_CSP.doc
Change Request



Change Request

	Title:
	Presence Authorization Model enhancement
	 FORMCHECKBOX 
 Public       FORMCHECKBOX 
 OMA Confidential

	To:
	OMA MWG IM

	Doc to Change:
	OMA-IMPS-CSP-V1_3-20050404-D

	Submission Date:
	15 April 2005

	Classification:
	 FORMCHECKBOX 
 0: New Functionality
 FORMCHECKBOX 
 1: Major Change
 FORMCHECKBOX 
 2: Bug Fix
 FORMCHECKBOX 
 3: Clerical

	Source:
	Zoltán Ördögh, Nokia, zoltan.ordogh@nokia.com

	Replaces:
	OMA-IM-2005-0237-IMPS13_PrAuthModelEnchance_CSP


1 Reason for Change

The working group agreed OMA-IM-2005-0097R02-IMPS-1_3-Presence-Authorization-Model. Nokia had comments, but we agreed to handle it separately to avoid reviewing such a contribution again.

CreateAttributeListRequest and GetAttributeListResponse primitives include a new element called Notify. According to OMA-IM-2005-0097R02-IMPS-1_3-Presence-Authorization-Model, the user can choose whether he would like to be notified when another user requests – either via subscription or get presence – more presence attributes than those that are currently authorized via an individual authorization.

The problem:

The Notify element is in the “root” of both primitives, meaning that it applies to all users that are listed in this primitive. While there is no problem with it in the CreateAttributeListRequest, there is a problem in GetAttributeListResponse .Our understanding is that the user should be able to choose these user-by-user, and not to all users at once. The description included in OMA-IM-2005-0097R02-IMPS-1_3-Presence-Authorization-Model describes this, however the GetAttributeListResponse primitive does not support it. In order to achieve this, the Notify element needs to be removed from the GetAttributeListResponse primitive entirely, and include it in the Presence element. Here are the related elements from the DTD:

<!ELEMENT GetAttributeList-Response (Result, DefaultAttributeList?, Presence*)>

<!ELEMENT Presence ((UserID | ContactList), PresenceSubList*)>

<!ELEMENT PresenceSubList (#PCDATA)>

<!ATTLIST PresenceSubList
xmlns CDATA #REQUIRED












 
xmlns:Ext CDATA #IMPLIED>

The Siemens proposal adds it to the root:

<!ELEMENT GetAttributeList-Response (Result, DefaultAttributeList?, Presence*, Notify)>

while this would apply to all users in the list and not the individual users. To allow choosing notification on and individual user basis, the Presence element shall be changed and not the GetAttributeListResponse:

<!ELEMENT Presence ((UserID | ContactList), Notify?, PresenceSubList*)>

We also suggest changing the information element name in CreateAttributeListRequest from Notify to User-Notify.

The second issue is that Nokia we also sees value in turning these reactive authorization notifications on and off for the default list as well. This requires two changes: one in the CSP, where a similar Notify element - DefaultList-Notify - shall be added to in the CreateAttributeListRequest, while the second change is necessary in the DTD for the same reason as above for GetAttributeListResponse:

<!ELEMENT DefaultAttributeList (DefaultNotify, PresenceSubList*)>

The third issue is that Nokia we also sees value in turning these reactive authorization notifications on and off for the contact list authorizations as well. This requires only one change: in the CSP, where a similar Notify element - ContactList-Notify - shall be added to in the CreateAttributeListRequest. The DTD change is already covered by the very first change.

At this point Siemens did not provide the CR towards the XMLS (and the other documents). We have no problem providing these changes requests separately from the other Siemens contributions, however we would like to include this before that happens to make sure that the model is consistent. 

Additionally some typos have been fixed, and clarifications added.

2 Impact on Backward Compatibility

Not backwards compatible similarly to the Siemens contribution.

3 Impact on Other Specifications

Yes, all CSP and SSP specifications.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification.  This obligation does not imply an obligation on Members to conduct IPR searches.  This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn.  Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration.  These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.
5 Recommendation

Working group to review and approve the change request.
6 Detailed Change Proposal

8.2 Authorization of Presence Attributes

8.2.1 Overview

The authorization of presence attributes is divided into two models: proactive authorization in which the IMPS user authorizes presence attributes before anyone has requested the attributes, and reactive authorization in which the IMPS user authorizes presence attributes on request.

The model and tools for authorization of the presence attributes is presented in Figure 1.


[image: image1.wmf]Watcher List

Contact List

User List

User

Attribute

List

User List

Attribute

List

Default

Attribute

List


Figure 1. Authorization model for presence attributes

The authorization MAY be targeted to either individual users, to a group of users through a Contact List, or to the general public through the Default Attribute list.

The actual attributes that are authorized MUST be defined in an attribute list.

8.2.2 Proactive Authorization

In the proactive authorization model, the publisher MAY use individual authorization, list authorization or default authorization.
For list authorization, the publisher MUST specify the presence attributes to be associated with a Contact List. The presence attributes assigned to the Contact List MUST be accessible by all users in that Contact List except those users, that have individual authorization – individual authorization has the highest priority. There MUST NOT be more than one attribute list per Contact List.

When a user is in multiple Contact Lists that have attribute lists assigned, the union of all attributes in those attribute lists MUST be accessible to the user.

For individual authorization, the publisher MUST specify a list of presence attributes to be associated with a user. There MUST NOT be more than one attribute list per user.

When a user has been authorized individually, and he/she is also authorized via a Contact List, then the individual authorization MUST have priority over list authorization, i.e. the individual’s attributes override the attributes of the Contact List.

For individual authorization, the user MAY specify that he wants to be notified if the authorized watcher request other attributes then the one authorized.  If the watcher, requested other presence attributes then those authorized by the publisher, reactive authorization MUST be applied (see chapter: editors note: add reference to reactive authorization chapter) 

The publisher MAY specify a list of default presence attributes. These presence attributes MUST only be available for all users who do not have individual or list authorization.

The following section describes how the authorization of presence attributes MUST be calculated.   There are two users involved, the subscriber and the publisher. The subscriber is subscribing to or requesting presence information of the publisher.
The following sets are used:
  PAnotif : is the set of presence attributes the subscriber MUST get notifications for. If any of the publisher’s presence attributes that are in this set have been changed, the subscriber MUST get a notification.
  PAsubscribe  : is the set of the publisher’s presence attributes that the subscriber has subscribed to.
  PAlist :is the set of presence attributes that the publisher has authorized to all of the users in a contact list via an attribute list that is attached to the contact list. If the set is empty, then PAlist is used for the purpose of blocking all users in the particular contact list from accessing any presence attributes. If there is no attribute list attached, authorization has not been done.
  PAindividual : is the set of presence attributes that the publisher has authorized for the subscriber individually via an attribute list that is assigned to the subscriber. If the set is empty, then PAindividual is used for the purpose of blocking the specific subscriber from accessing any presence attributes. If there is no attribute list assigned, authorization has not been done.

   PAdefault : is the set of presence attributes that the publisher has authorized to all subscribers – the general public – which have not been authorized using individual or list authorization. If the set is empty or not present, the publisher has no default attribute list.

   PAauthorize : is the total set of presence attributes that the publisher has authorized the subscriber to access.
   Calculating PAnotif :

A subscriber MUST be notified of presence changes in the publisher’s presence attributes according to the following formula:

[image: image2.wmf]authorize

subscribe

notif

PA

PA

PA

I

=


Calculating PAAuthorize : 

The authorized presence attributes are calculated as follows

If the publisher has associated an individual authorization with the subscriber, then 

[image: image3.wmf]individual

authorize

PA

PA

=


Otherwise, find all the publisher’s contact lists x1…..xn where subscriber is in the list of users and the publisher has associated an attribute list with the contact list. If any such contact list exists, then


[image: image4.wmf]U

n

i

list

authorize

i

x

PA

PA

1

=

=


If no such contact list exists, then

                    
[image: image5.wmf]default

authorize

PA

PA

=


The attribute list management functions - [editor to add reference to 8.2.4 Transactions] - include creation/update/deletion of attribute lists to individual users/contact lists/the default list.
8.2.3 Reactive Authorization

If the publisher did not proactively authorize the subscriber in any way (no individual or list authorization and the requested presence attributes are not covered in the default presence attribute list), and the publisher requested to be notified about additional presence attribute requests than those authorized via the Default List, the server MUST notify the publisher, using the generic notification mechanism (see chapter Editor note: CR from SEMC).  The notification MUST contain the User-ID of the subscriber and the entire list of requested presence attributes that are currently not authorized.   The notified user MAY use proactive authorization to authorize the subscriber via individual, list, or Default List authorization.  The Client SHOULD permit the notified User to trigger the proactive authorisation with minimal user interaction.
If the publisher proactively authorized the subscriber via individual authorization with indication that he wants to be notified when the authorized subscriber requests other attributes than the ones that are already authorized,  the server MUST notify the publisher using the generic notification mechanism (see chapter Editor note: CR from SEMC).  The notification MUST contain the User-ID of the subscriber and the list of requested presence attributes that are currently not authorized.   The notified user MAY use proactive authorization to authorize the subscriber via individual, list, or Default List authorization. The Client SHOULD permit the notified User to trigger the proactive authorisation with minimal user interaction.
If the publisher proactively authorized the subscriber via list authorization with indication that he wants to be notified when the authorized subscriber requests other attributes than the ones that are already authorized across all contact lists, the server MUST notify the publisher using the generic notification mechanism (see chapter Editor note: CR from SEMC).  The notification MUST contain the User-ID of the subscriber and the list of requested presence attributes that are currently not authorized. The notified user MAY use proactive authorization to authorize the subscriber via individual, list, or Default List authorization. The Client SHOULD permit the notified User to trigger the proactive authorisation with minimal user interaction.
8.2.4 Transactions


[image: image6.wmf]Client

Server

CreateAttributeListRequest

Status


Figure 2. Create attribute list transaction

The user MAY create user or contact-list specific attribute list(s), but only one attribute lists per user or per contact list. 

Changing an authorization MUST NOT cancel already active subscriptions. The subscriber MUST NOT receive notifications of attributes that are unauthorized, but if the attributes are reauthorized the subscriber MUST  receive notifications without the need for re-subscription.

The create attribute list transaction MAY be supported by the client and the server. The service leaf that allows negotiation of this transaction is ‘CALI’.

If the requested attribute list does not exist on the server, the server MUST create it. In order to modify (update) an attribute list, it MUST be overwritten by creating another attribute list for the same User-ID or contact list ID (e.g. there is no need to delete first) – if the attribute list exists on the server, the server MUST overwrite it without indicating error.

If the ‘Default-List’ element is ‘T’, the server MUST associate the supplied attribute list with the default attribute list.

If the attribute list is empty (i.e.: it does not contain any presence attributes), the server MUST regard this as a valid – but empty – attribute list to be associated with the indicated user(s), contact list(s) and/or default list.


[image: image7.wmf]Client

Server

DeleteAttributeListRequest

Status


Figure 3. Delete attribute list transaction

A user MAY delete the default attribute list and /or the attribute list from a set of users and/or contact lists.

The delete attribute list transaction MAY be supported by the client and the server. The service leaf that allows negotiation of this transaction is ‘DALI’.

The server MUST delete the attribute list from every user specified in the User-ID-List element and every user contact list specified in the Contact-List-ID-List element.

If the specified attribute list(s) does not exist on the server, it MUST be silently ignored without generating an error.

If the Default-List element indicates ‘T’, the server MUST clear the default attribute list.


[image: image8.wmf]Client

Server

GetAttributeListRequest

GetAttributeListResponse


Figure 4. Get attribute list(s) transaction

The publisher MAY retrieve the attributes he/she associates with a specific contact list(s) or user(s), or the default attribute list. 

The get attribute list transaction MAY be supported by the client and the server. The service leaf that allows negotiation of this transaction is ‘GALS’.

If the Default-List element indicates ‘T’ the server MUST include the default attribute list in the response even if it is empty – which ultimately means clearing the default attribute list.

If the request contains:

· Contact-List-ID-List, the server MUST send only those attribute list(s) in the response that are associated with the particular contact list(s).

· User-ID-List, the server MUST send only those attribute list(s) in the response that are associated with the particular user(s).

If the request does not contain the Contact-List-ID-List element or the User-ID-List element, then the server MUST deliver all contact list and User-ID associations in the response.

The server MUST deliver the notification preferences for the users/contact lists/default list within the requested lists.
8.2.2 Error conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

CreateAttributeListRequest error conditions:

· Unknown user ID. (531)

· Contact list does not exist. (700)

· Unknown presence attribute (not defined in [PA]). (750)

· The maximum number of attribute lists has been reached for the user (755)

DeleteAttributeListRequest error conditions:

· Unknown user ID. (531)

· Contact list does not exist. (700)

GetAttributeListRequest error conditions:

· Unknown user ID. (531)

· Contact list does not exist. (700)

8.2.3 Primitives and information elements

	Primitive
	Direction

	CreateAttributeListRequest
	Client ( Server

	Status
	Client ( Server

	DeleteAttributeListRequest
	Client ( Server

	Status
	Client ( Server

	GetAttributeListRequest
	Client ( Server

	GetAttributeListResponse
	Client ( Server


Table 1. Primitive directions for attribute list management

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	CreateAttribute
ListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	Presence-Attribute-List
	M
	Structure
	A list of presence attributes. These will be authorized to the user.

	User-ID-List
	O
	Structure
	Identifies the user(s) to assign the attribute list association.

	Contact-List-ID-List
	O
	Structure
	Identifies the contact list(s) to assign the attribute list association.

	Default-List
	M
	Boolean
	Indicates if the attributes are targeted to the default attribute list in addition to the lists specified by the fields User-ID-List and Contact-List-ID-List above.

	Default-Notify
	M
	Boolean
	Indicates if the user wants to be notified when subscriber without authorization requests other attributes than those available in the Default List.

	User-Notify
	O
	Boolean
	Indicates if the user wants to be notified when subscriber with individual authorization requests other attributes than those available in the individual authorization. The element MUST be present only when the primitive contains User-ID-List. 

	ContactList-Notify
	O
	Boolean
	Indicates if the user wants to be notified when subscriber with contact list authorization requests other attributes than those available across all contact list authorizations. The element MUST be present only when the primitive contains Contact-List-ID-List.


Table 2. Information elements in CreateAttributeListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	DeleteAttributeListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	Contact-List-ID-List
	O
	Structure
	Identifies the contact list(s) to remove the attribute list association

	User-ID-List
	O
	Structure
	Identifies the user(s) to remove the attribute list association.

	Default-List
	M
	Boolean
	Indicates if the default attribute list SHOULD be cleared.


Table 3. Information elements in DeleteAttributeListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetAttributeListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	Default-List
	M
	Boolean
	Indicates if the default attribute list is requested.

	Contact-List-ID-List
	O
	Structure
	Identifies the contact list(s) to retrieve the associated attribute lists for.

	User-ID-List
	O
	Structure
	Identifies the user(s) to retrieve the associated attribute lists for.


Table 4. Information elements in GetAttributeListRequest primitive.

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetAttributeListResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	Result
	M
	Structure
	Result of the request.

	Attribute-Association-List
	O
	Structure
	The list of user, and contact-list presence attribute associations.

	Default-Association-List
	O
	Structure
	The list of presence attributes associated with the default list.

	
	
	
	


Table 5. Information elements in GetAttributeListResponse primitive.

8.3 Presence Information delivery

8.3.1 Presence Information

To ensure interoperability, a set of interoperable presence attributes is defined. This is accomplished by dividing the presence information into client status and user status classes described below and by defining the most common presence attributes within these classes. See [PA] for more information.

8.3.2 Subscribed Presence Transactions

In order to achieve minimum level of interoperability both the client and the server MUST support the following functionalities: 

· 0Subscribe Presence transaction

· 0 Unsubscribe Presence transaction

· 0 Presence Notification transaction

The rest of the presence information delivery-related functionalities are all OPTIONAL. The individual client or server implementations MAY decide whether support for a particular transaction is implemented or not.

8.3.2.1 Transactions


[image: image9.wmf]SubscribePresenceRequest

Client

Server

Status


Figure 5. Subscribe presence transaction

The requesting client MAY send a SubscribePresenceRequest primitive to the server. The server MUST respond with a Status primitive. After a successful subscription the server MUST initially send all available and authorized attributes (Editor note: See chapter 8.2) to the requesting client using the ‘presence notification transaction’ – when there are no such attributes, the server MUST send an empty presence notification. While there are active subscriptions the server MUST send subsequent presence notifications when the publisher’s presence information is updated or when the publisher has newly authorized a presence attribute that was already subscribed earlier.  The server MAY deliver only those presence attributes in the ‘presence notification transaction’ that have been updated or newly authorized.










NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 1 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

© 2005 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 2 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

_1172996330.unknown

_1173853942.vsd
Contact List�

User List�

User�

Attribute List�

Watcher List�

User List�

Attribute List�

Default Attribute List�


_1173854457.unknown

_1174366494.unknown

_1172996409.unknown

_1064827106.vsd

_1064827107.vsd

_1064827105.vsd

_1060430573.vsd

