Doc# OMA-DM-DMNG-2013-0097-CR_DM_Session.doc[image: image5.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-DM-DMNG-2013-0097-CR_DM_Session.doc
Change Request

Change Request

	Title:
	DM Session
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DM WG

	Doc to Change:
	OMA-TS-DM_Protocol-V2_0-20131008-D

	Submission Date:
	<24 Oct 2013>

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Salvatore Scarpina, Telecom Italia S.p.A., salvatore.scarpina@telecomitalia.it

Marco Sapienza, Telecom Italia S.p.A., marco1.sapienza@telecomitalia.it

	Replaces:
	n/a

1 Reason for Change

The present CR aims to fix DM Session definition and usage in TS, solving the following comment in CONRR.
	
	2013.03.21
	T
	5.2
	Source: TI
Form: 0039
Comment: fix DM Session definition including DM Notification

Proposed Change: refer to
	Status: OPEN

2 Impact on Backward Compatibility

n/a
3 Impact on Other Specifications

n/a
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

DM WG is asked to review this contribution and agree on its content.
6 Detailed Change Proposal

Change 1: Chapter 5.1 and following
7.1 Protocol Overview
7.1.1 Transaction Model

OMA DM 2.0 Protocol runs within the context of a DM Session. DM Sessions are always initiated by the DM Client. However, a DM Server can trigger the DM Client to initiate a DM Session by sending the DM Notification to the DM Client. Once a DM Session is established, the DM Server sends DM Commands to the DM Client and receives responses from the DM Client. The DM Client also informs the DM Sever about events that have occurred on the device, via Generic Alerts. Only the DM Server sends DM Commands to the DM Client, and the DM Client cannot send any DM Commands. The DM Server terminates the DM Session by sending the END command to the DM Client.
The OMA DM 2.0 supports the notion of DM Packages. The originator of this DM package should wait for the response from the recipient before sending another DM package. Since processing of DM packages can consume unpredictable amount of time, the OMA DM Protocol does not specify any timeouts between DM packages.
The DM package is closely related to the HTTP message, and can only be transferred on top of the HTTP compatible protocols.

7.1.2 Security Considerations
Management of device is a sensitive operation which can involve secrets and confidential data (i.e. password), so it is recommended to perform DM operation in a secure and authenticated context. OMA DM specifications do not provide the full security features for the secure management operations, provided that underlying layer mechanisms can be employed. Plese refer to section 9 for Security.
7.1.3 DM Protocol Interface

Please refer to the OMA DM 2.0 AD [DM-AD] specification for protocol interfaces details.
7.1.4 Management Data Delivery using HTTP
The DM Server can send specific DM Commands (defined in this specification) to the DM Client for retrieving or sending management data from or to the Data Repository: . this management is carried over HTTP protocol.
In this specification some serialization formats (MIME) allowing the transfer of management data over HTTP protocol are defined, but others are not precluded.
7.1.5 Web-based User Interaction

OMA DM 2.0 supports the web-based user interaction, which enables the DM Server to use the web pages to interact with the user. For this reason, the Web Browser Component and the Web Server Component are introduced, and a DM Command SHOW is specified. The interface between the Web Browser Component and the Web Server Component is out-of-scope of this specification, and the UI session for performing the user interaction is separated from the DM session. The Web Browser Component can be integrated in the DM Client or can run as a standalone application. More details are specified in the section 5.3.7.
7.2 Package Flow

The package flow between the DM Server and the DM Client are shown below. The contents for each DM Package are described in the section 8.
The DM Server and the DM Client MUST support this package flow.

[image: image1.emf]If the DM session continues

0. (Package#0) DM Notification (server initiated case)

1. (Package#1) DM session Initiation

2. (Package#2) DM commands

4. (Package#3) Results and Alerts

3. Processing DM commands

(END cmd terminates

DM session)

DM Client DM Server

Figure 1: DM Package Flow
Step 0 (Package#0): the DM Server requests the DM Client to start a DM Session by sending the DM notification. This DM Notification is called “Package#0”. This is an optional package flow since the DM Notification is not needed in the client initiated case.

Step 1 (Package#1): the DM Client initiates the DM session sending the “Package#1”: this package can contain the information of the MOs supported by the DM Client, that can be used by the DM Server for management operations.
Step 2 (Package#2): after receiving the Package#1 or the Package#3, the DM Server sends the management commands to the DM Client: the DM Package containing the DM Commands is conventionally called “Package#2”.

Step 3 (Command Processing): the DM Client processes sequentially the DM Commands received in the Package#2; it MAY interact with external components other than the DM Server (e.g., the Web Browser Component in case of the SHOW command, the Data Repository in case of the HGET/HPOST/HPUT command).

Step 4 (Package#3): if the Package#2 does not include the END command, the DM Session continues and the DM Client responses to the DM Server sending the “Package#3”, which contains the results of the DM Command execution. After the Package#3, the package flow goes back to the Step 2, with the Package#2 sent by the DM Server.
The DM Session is defined by the Package#1 to Package#3 flow; the Package#0 and the HTTP transactions initiated by DM Client to execute the provided DM Commands are not formally part of the DM Session.
7.2.1 Package#0: DM Notification
Many devices cannot continuously listen for connections from a management server. Other devices simply do not wish to “open a port” (i.e. accept connections) for security reasons. However, most devices can receive unsolicited messages, sometimes called “notifications”. Some handsets, for example, can receive SMS messages. Other devices may have the ability to receive other, similar datagram messages. A DM Server can use this notification capability to request the DM Client to initiate the DM Session.

DM Notification consists of a number of mandatory parameters, called Headers, and a number of optional parameters, called Options: the number of Options is determined by the Header. The format of this package is specified in the section 7.1.
The DM Server MUST support the Package#0. If the DM Client support at least one of the transport mechanism described in Appendix E, then it MUST support the Package#0.
7.2.1.1 Package Headers
All headers MUST be present in the DM Notification: the DM Server and the DM Client MUST support the Package headers described in this section.

The following headers are defined in this specification:

· Version (VER)
The VER field specifies the version of the DM Notification sent by the DM Server. The value for this specification MUST be 0x02. Note that this is not the DM Protocol version, but the DM Notification version.
· Options Count (OC)
The OC field specifies the number of Options in the DM Notification.
7.2.1.2 Package Options
Each Option MUST be uniquely identified with an Option Number, and MAY be present in the DM Notification. The standard Options defined in this specification are as follows:

	Option No
	Name
	Value Format
	DM Client Support
	DM Server Support
	Occurrence

	1
	SERVER-ID
	String
	Mandatory
	Mandatory
	ZeroOrOne

	2
	PREFERRED-CON-TYPE
	Opaque
	Mandatory
	Mandatory
	ZeroOrOne

	3
	NOTIFICATION-ID
	Uint
	Optional
	Mandatory
	ZeroOrOne

	4
	SHA256-DIGEST
	Opaque
	Optional
	Mandatory
	ZeroOrOne

	5
	TIMESTAMP
	Opaque
	Optional
	Mandatory
	ZeroOrOne

	6
	REQ-MOS
	Null
	Mandatory
	Mandatory
	ZeroOrOne

Table 1: Standard Options
Option carries the value whose format MUST be one of the followings:

· Uint: A non-negative integer which is represented in network byte order using the bytes which Option Length decides. The Option Value range is calculated by 2 to the power of Option Length in bit. For example if the Option Length is 2, Option Value range is 0-65535 in decimal.

· String: A Unicode string which is encoded using UTF-8 [RFC3629] in Net-Unicode form [RFC5198]. Note that ASCII strings (that do not make use of special control characters) are always valid UTF-8 Net-Unicode strings.

· Opaque: An opaque sequence of bytes. This type could be used when the other types than Uint or String is required. How to handle this type depends on the Option using this type.
· Null: The Option carries no value.
The detailed explanations for each Options as follows:
· Server ID Option (SERVER-ID)
The SERVER-ID Option specifies the Server Identifier of the DM Server. This is the same identifier as in the DM Account MO. This Option MAY NOT be present if the DM Client is able to discover the Server Identifier of the DM Server that sent the DM Notification.
· Preferred Connection Type Option (PREFERRED-CON-TYPE)
The PREFERRED-CON-TYPE Option specifies the preferred connection that the DM Client is requested to use for connecting to the DM Server. If multiple preferred connections are specified, the connection which appears first is to have higher priority over the rest of available bearers. The DM Client SHOULD use the preferred connections with higher priority first if they are available. If none of indicated preferred connections is available, the DM Client SHOULD wait until one of them becomes available unless "ANY_AVAILABLE" is used. If "ANY_AVAILABLE" is used, it MUST be put at the end of the preferred connection, and the DM Client SHOULD select any connection type that is currently available if all higher prior connections are not currently available.
The values of this Option MUST be one of the following:
	Value
	Semantics
	Description

	0x00
	ANY_AVAILABLE
	Indicates the preferred connection is anything currently available

	0x01
	MOBILE
	Indicates the preferred connection is mobile

	0x02
	WIRELESS
	Indicates the preferred connection is wireless

	0x03
	WIRELINE
	Indicates the preferred connection is wireline

· Notification ID Option (NOTIFICATION-ID)
The NOTIFICATION-ID Option specifies 16-bit unsigned integer used for detecting the duplication of the DM Notification. This Option MAY NOT be presented if the underlying transport provides the functionality to discard the duplicated DM Notification. The length of this Option MUST be 2 bytes.

The DM Client might receive the same DM Notification multiple times, and the duplication can be detected by this Option and the Server Identifier of the DM Server that sends the DM Notification. The DM Client MUST drop the duplicated DM Notification.

The DM Server MUST properly set this Option for the DM Client to detect the duplication. For instance, the DM Server may sequentially increase this field for each separate DM Notification.
· SHA256 Digest Option (SHA256-DIGEST)
The SHA256-DIGEST Option specifies the digest for the DM Notification. The length of this Option MUST be 32 bytes. The DM Sever MUST set this Option as follows:

· Step1: The DM Server prepares the DM Notification with this Option. The value of this Option MUST be initially set to all zero (zero-digest), and all other Options MUST be properly set.

· Step2: The DM Server calculates the SHA256 digest according to [RFC6234]. The Input to the hash function MUST be the concatenation of the DM Server secret and the DM Notification (i.e., Digest=Hash(server-secret|notification-message|auth-data). Note that the DM Notification contains all zero for the digest (zero-digest) at this step.

· Step3: The DM Server replaces the zero-digest with the computed digest.

If the DM Account MO is used for providing the credentials for this Option, the server-secret MUST be provided at the <x>/Credentials/Noti/AuthSecret node in the DM Account MO, and the auth-data MUST be provided at the <x>/Credentials/Noti/AuthData node in the DM Account MO.

When receiving the DM Notification with this Option, the DM Client MUST ignore the DM Notification for below cases:

· The DM Server secret is not properly provided at the AuthNoti sub-tree in the DM Account MO, or
· The digest in the Option is incorrect.

· Timestamp Option (TIMESTAMP)
The TIMESTAMP Option specifies the time when the DM Server sends the DM Notification. This time information can be used to prevent the reply attacks. The value of this Option MUST be the time in POSIX format [POSIX].

When receiving the DM Notification with this Option, the DM Client MAY ignore the DM Notification if the time indicates in this Option is too old (implementation specific decision).

· Request MOS Option (REQ-MOS)

The REQ-MOS Option requests that the MOS array MUST be sent in the Package #1 as specified in the section 5.2.2. This Option carries no value.
7.2.2 Package#1: DM Session Initiation by DM Client

DM Session is initiated by the DM Client which sends the Package#1 to initiate to the DM Server.
The DM Server and the DM Client MUST support this package.
This package MUST be implemented as HTTP POST Request, and the OMADM-DevID HTTP header MUST be presented to contain the value of the DevInfo/DevID node in the DevInfo MO (section 11.1).

The Package#1 is used by the DM Client:

· To send to the DM Server the list of supported MOs if the REQ-MOS Option is used in the Package#0: in this case one “MOS” array MUST be included in the Package#1. Each item of the array, representing a supported MO, MUST contain the following information:

· The link to the DDF file. Details for DDF can be found at the section 6.4.

· The MOID of the MO

· The array containing the list of the MIID for the MOID

The MOID MUST be provided to the DM Server only if the DM Server provisioned the MOID during the bootstrap. Once the MOID is provided to the DM Server, the MIID for the MOID MUST be provided to the DM Server if the DM Server has any permission for the MO instance.

· To inform the DM Server of any Client Initiated Alerts; one “Alert” array MUST be included:
· If the DM Session has been started as response to a DM Notification, then the DM Client MUST include a Generic Alert with “urn:oma:at:dm:2.0:ServerInitiatedMgmt” type and the Data property of the Generic Alert MUST include the NOTIFICATION-ID provided by the DM Notification.
· If the DM Session has been started by the DM Client independently, then the DM Client MUST include a Generic Alert with “urn:oma:at:dm:2.0:ClientInitiatedMgmt” type.
· If the DM Session has been started as a consequence of successful bootstrap, then the DM Client MUST include a Generic Alert with “urn:oma:at:dm:2.0:BootstrapComplete” type.
7.2.3 Package#2: DM Commands from DM Server to DM Client

The DM Server sends the Package#2 to the DM Client as a response to the Package#1 or the Package#3, in order to send the DM Commands. Multiple DM Command can be listed, and the DM Commands MUST be ordered in a sequence since the DM Client MUST sequentially process the DM Command according to this order. The same DM Command can be listed multiple times also.

The DM Server and the DM Client MUST support this package.
This package MUST be implemented as HTTP Response [RFC2616] to HTTP Request that carries the Package#1.
The Package#2 is used by the DM Server to send to the DM Client the ordered list of DM Commands to be executed; each item of the list contains:

· The DM Command (see Chapter 5.3)

· The list of the parameters for the DM Command

7.2.4 Package#3: Response Package from DM Client to DM Server

The DM Client sends the Package#3 to the DM Server as a response to the Package#2. If the Package#2 includes the END command, this Package#3 MUST NOT be sent.
The DM Server and the DM Client MUST support this package.
This package MUST be implemented as HTTP POST Request, and the OMADM-DevID HTTP header MUST be presented to contain the value of the DevInfo/DevID node in the DevInfo MO (section 11.1).

The Package#3 is used by the DM Client:

· To send to the DM Server the list of status codes for the DM Commands indicated in the Package#2; each item of the list MUST contain the status code: see Appendix C for the valid list of status codes. Additional information (e.g., the stored location of data for the HGET command) MAY be returned with the status code.

· To send to the DM Server new optional Client Initiated Alerts raised during the session: in this case one “Alert” array MUST be included.
7.3 DM Commands

This specification supports the following DM Commands.
	Command
	Description
	DM Server support
	DM Client support

	HGET
	The DM Server uses this command to requests the DM Client to retrieve data from the Data Repository using HTTP GET, and add or replace the received data into the DM Tree
	MUST
	MUST

	HPUT
	The DM Server uses this command to request the DM Client to send data to the Data Repository using HTTP PUT
	MUST
	MUST

	HPOST
	The DM Server uses this command to request the DM Client to send data to the Data Repository using HTTP POST
	MUST
	MUST

	DELETE
	The DM Server uses this command to delete data in the DM Tree
	MUST
	MUST

	EXEC
	The DM Server uses this command to execute an executable node in the DM Tree
	MUST
	MUST

	GET
	The DM Server uses this command to retrieve data from the DM Tree. The DM Client sends the data within the current DM Session
	MUST
	SHOULD

	SHOW
	The DM Server uses this command to initiate a UI Session between the Web Browser Component and the Web Server Component
	MUST
	SHOULD

	CONT
	The DM Server uses this command for the DM Client to continue the DM Session with the specified DM Server URI
	MUST
	MUST

	END
	This command is used by the DM Server to terminate the DM session
	MUST
	MUST

	DEFAULT
	Configure the DM Client to use a specific address to capture configuration if that is missing in the device for an specific MOID
	MUST
	SHOULD

	SUB
	The DM Server uses this command to request to the DM Client to report (subscribe) changes in the DM Tree part identified by the provided ClientURI
	SHOULD
	SHOULD

	UNSUB
	The DM Server uses this command to request to the DM Client to revoke previous subscription to notification for changes in the DM Tree part identified by the provided ClientURI
	SHOULD
	SHOULD

7.3.1 HGET
This command supports the following parameters:

	Parameter
	Format
	Occurrence

	ServerURI
	ServerURI as specified in the section 6.2
	One

	ClientURI
	ClientURI as specified in the section 6.1
	ZeroOrOne

The DM Client will perform a HTTP GET request against the provided ServerURI to retrieve MO data, and then will add or replace the received data into the DM Tree. The ServerURI refers to a location in the Data Repository. If the ClientURI is specified, the DM Client will try to store the retrieved data at the ClientURI position replacing all existing data, if any.
If the ClientURI is not specified, then the DM Client will choose the location where to store the data and this location MUST be returned with the status codes. Multiple ClientURIs MUST be returned if retrieved data is stored at the multiple locations in the DM Tree.

This command can be used by the DM Server to create an MO instance in the device. When an MO instance is created, the MIID MUST be assigned by the DM Client.
The message flows and the detailed explanations for this DM Command are shown below. Please note that below message flow is simplified not showing the interaction between the DM Client and the DM Server.

[image: image2.emf]DM Client

Data

Repository

2. HTTP response containing MO data

1. HTTP GET to ServerURI

3. store the received MO data

Figure 2: Example for the HGET command
Before the Step 1, the DM Server sends HGET command to the DM Client using the Package#2.

Step 1: The DM Client sends the HTTP request (HTTP GET) to the ServerURI. In the HTTP request message, Accept HTTP header can indicate the Media Types that the DM Client supports.

Step 2: The Data Repository returns the HTTP response containing the MO data requested. The Data Repository serves the DM Client with the proper MO data format, indicated by Content-Type HTTP header, based on the Accept HTTP header specified in the previous Step 1.

Step 3: The DM Client stores the received MO data in the DM Tree.
7.3.2 HPUT
This command supports the following parameters:

	Parameter
	Format
	Occurrence

	ServerURI
	ServerURI as specified in the section 6.2
	One

	ClientURI
	ClientURI as specified in the section 6.1
	OneOrMore

The DM Client will perform a HTTP PUT request against the provided ServerURI (identifying a location in the Data Repository) sending the requested data whose location is identified by all ClientURIs. The data requested MAY be formatted according to the section 7, but other formats are not precluded.

The message flows and the detailed explanations for this DM Command are shown below. Please note that below message flow is simplified not showing the interaction between the DM Client and the DM Server.

[image: image3.emf]DM Client

Data

Repository

2. HTTP response

1. HTTP POST to ServerURI with MO data

Figure 3: Example for the HPUT command
Before the Step 1, the DM Server sends the HPUT command to the DM Client using the Package#2.

Step 1: The DM Client performes the HTTP PUT request against the ServerURI.

Step 2: The Data Repository returns the HTTP response.
7.3.3 HPOST
The flow for this DM Command is the same of HPUT DM Command, with the difference that the DM Client sends the data performing a HTTP POST request.
7.3.4 DELETE
This command supports the following parameters:
	Parameter
	Format
	Occurrence

	ClientURI
	ClientURI as specified in the section 6.1
	One

The DM Client will delete the node identified by the ClientURI in the DM Tree. All child nodes will be deleted as well if the node identified by the ClientURI is an interior node with child nodes.
7.3.5 EXEC
This command supports the following parameters:

	Parameter
	Format
	Occurrence

	ClientURI
	ClientURI as specified in the section 6.1
	One

	ServerURI
	ServerURI as specified in the section 6.2
	ZeroOrOne

The DM Client will perform the EXEC operation on the node identified by the ClientURI. If the ServerURI is specified then the asynchronous reporting mechanism MUST be used and the Generic Alert MUST be sent to the ServerURI in a new DM Session (i.e., in the Package#1 or in the Package#3).
7.3.6 GET
This command supports the following parameter:

	Parameter
	Format
	Occurrence

	ClientURI
	ClientURI as specified in the section 6.1
	One

The DM Client will send to the DM Server the requested data identified by the ClientURI. Please refer to Appendix F for the execution of this command.
7.3.7 SHOW
This command supports the following parameter:

	Parameter
	Format
	Occurrence

	ServerURI
	ServerURI as specified in the section 6.2
	One

SHOW command can be used for the DM Server to communicate with the user via the web-based user interaction. This user interaction is accomplished via a UI session, separated from the DM Session, between the Web Browser Component and the Web Server Component. The DM Server and the DM Client do not have knowledge of the context of the UI session, and the results of the UI session is transmitted using the internal interface between the Web Server Component and the DM Server. The DM Server can decide the next management operations according to the results of the user interaction. The internal interface between the Web Server Component and the DM Server is out of scope and left to implementations.
The ServerURI MAY contain the necessary information to identify each UI session (i.e. URI query string), and this information can be used when the DM Server retrieves the results for the user interaction from the Web Server Component.
Once received the SHOW command, the DM Client SHALL initiate the Web Browser Component to load the ServerURI and show the web pages to the user. After the Web Browser Component is successfully initiated, the DM Client MUST process the next DM Command not waiting for the conclusion of UI session: In fact, the DM Client cannot know when the UI session has been finished since the user interaction might consist of several web pages. If the DM Client fails to initiate the Web Browser Component, the DM Client MUST process the next DM Command.
The message flows for this DM Command are shown below with detailed explanations.

[image: image4.emf]DM Client DM Server

Web Browser

Component

Web Server

Component

1. Initiate to load the ServerURI

2. HTTP request to the ServerURI

UI session continues

3. Store the results for the

user interaction

4. Transmit the results

for the user interaction

Figure 4: Example for the SHOW command
Before the Step 1, the DM Server sends the SHOW command to the DM Client using the Package#2. The SHOW command takes the ServerURI parameter.
Step 1: to process the SHOW command, the DM Client initiates the Web Browser Component to load the ServerURI and show the web pages to the user. The ServerURI can contain the information to identify this UI session, for example, the query component "?uiid=1234" (user interaction ID). The DM Client continues to the next DM command after the Web Browser Component is initiated.

Step 2: the Web Browser Component sends the HTTP request to the ServerURI, and the user interaction begins; it might consists of several web pages. This user interaction can takes time, or user might not respond.

Step 3: once the user interaction is finished, the Web Server Component stores the results of the user interaction. In case that the user interaction is failed, the error code can be also stored.

Step 4: the results of the user interaction are transmitted between the Web Server Component and the DM Server via an out-of-scope interface.
7.3.8 CONT
This command supports the following parameters:

	Parameter
	Format
	Occurrence

	ServerURI
	ServerURI as specified in the section 6.2
	One

This command is used by the DM Server to inform the DM Client to continue the current DM Session against the specified ServerURI. Once received the CONT command, the DM Client MUST send any response packages (i.e., the Package#3) to the specified ServerURI, and MUST keep using this ServerURI for all further response packages in the same DM Session.
7.3.9 END
This command supports no parameters.
The DM Server MUST send this command to terminate the current DM session. On receiving this command, the DM Client MUST process all commands included in the DM package, but MUST NOT return any status and results back to the DM Server.

7.3.10 DEFAULT
This command supports the following parameters:
	Parameter
	Format
	Occurrence

	ServerURI
	ServerURI as specified in the section 6.2
	One

	MOID
	MOID
	One

The DM Client stores the ServerURI and can use it when needs configuration for a specific MOID, for example when an application running locally on the Device requests information about a specific MOID which is not available in the DM Tree. In this case, the DM Client MUST perform the operations specified for HGET DM Command against the stored ServerURI, providing no status back to the DM Server.

When the DM Client receives a DEFAULT command for an already provisioned MOID, the old ServerURI MUST be replaced with the new ServerURI:. that means that the DM Client is able to store just one ServerURI per each supported MOID.

7.3.11 SUB

This command supports the following parameters:
	Parameter
	Format
	Occurrence

	ServerURI
	ServerURI as specified in the section 6.2
	One

	ClientURI
	ClientURI as specified in the section 6.1
	One

The DM Server will subscribe to any change occurring in any part of the tree identified by the ClientURI. When a change occurs, the DM Client will perform a HTTP PUT request against the provided ServerURI sending the subtree indentified by the ClientURI. The data MAY be formatted according to the section 7, but other formats are not precluded: if the format is not supported by DM Server, the DM Server MUST return “415 Unsupported Media Type” response code and MUST include the OMADM-Accept HTTP header (see section 5.5) indicating the supported MIMEs, then the DM Client SHOULD retry the request using one of the indicated MIMEs, if supported.

7.3.12 UNSUB

This command supports the following parameter:
	Parameter
	Format
	Occurrence

	ClientURI
	ClientURI as specified in the section 6.1
	One

The DM Server will unsubscribe to a previous SUB command identified by the ClientURI: the ClientURI MUST be the same one used in a previous SUB command, otherwise the DM Client MUST return “404 Not Found” response code.
If the DM client support the SUB command, then it MUST support the UNSUB command.
7.4 Generic Alert
The DM Server and the DM Client MUST support the Generic Alert mechanism.

The protocol defines a Generic Alert message for alerts generated by the DM Client that can have a relation to a MO: in this case the SourceURI property MUST identify the address to the MO.

Anytime after the Generic Alert is generated, the DM Client MAY send a Generic Alert message to the DM Server using the Package#1 or the Package#3. The Generic Alert message SHALL only be sent from the DM Client to the DM Server.

Generic Alerts MAY have additional requirements for the format and content of the Data property: in case a unrecognized AlertType or a unrecognized Data property is received, the DM Server MUST silently ignore the Generic Alert. The DM Server MUST NOT send any status codes for the Generic Alerts back to DM Client, regardless of that the DM Server successfully processes the Generic Alert or not.
The following table summarizes the properties supported by a Generic Alert:
	Property
	Description
	Occurrence

	AlertType
	The type of the Generic Alert
	One

	SourceURI
	The address to the node in the MO that is related to this Generic Alert
	ZeroOrOne

	TargetURI
	The additional address related to the Generic Alert. This MUST be a ClientURI as specified in the section 6.1. The usage of the TargetURI is not specified in this specification.
	ZeroOrOne

	Mark
	The importance level. The following values are defined: "fatal", "critical", "minor", "warning", "informational", "harmless" and "indeterminate". If the parameter is omitted then the default importance level "informational" is assumed.
	ZeroOrOne

	DataType
	The Media Type of the Data content. This property MUST be present if the Data property exists.
	ZeroOrOne

	Data
	The additional data for the Generic Alert. The format and the content of the Data are not specified in this specification
	ZeroOrOne

OMA DM 1.x Protocol also specifies the Generic Alert that is widely used in MOs. The interworking issues between the OMA DM 2.0 Generic Alert and the OMA DM 1.x Generic Alerts are discussed in the section 13.1.

7.4.1 Asynchronous Reporting for DM Commands
The DM Server and the DM Client MUST support Synchronous and Asynchronous reporting mechanisms.

Synchronous reporting MUST be used for all DM commands except the EXEC command. For the EXEC command, the DM Client returns the status of the EXEC command either synchronously (i.e. the final status code in the response package) or asynchronously, via the Generic Alert mechanism. If the ServerURI is present in the EXEC command, the DM Client MUST use the asynchronous reporting; otherwise it is up to the DM Client to decide which reporting mechanism is used for the EXEC command depending on the nature of the management operation.

If the asynchronous reporting is used, the DM Client MUST return the status code "202 Accepted" response code in the response Package#3. After completing the EXEC command, the final status code will be returned in the Generic Alert either in the Package#1 or Package#3. Additional Generic Alert data for the asynchronous reporting might be defined for each EXEC command, which is out-of-scope of this specification.
7.5 Object serialization format handshake
According to [RFC2616], the DM Client SHOULD use the Accept HTTP header in order to inform the DM Server in a HTTP request about the supported MIMEs to be used to format the content of the HTTP response. In case the DM Server does not support any of the MIMEs requested by the DM Client, “406 Not Acceptable” response code MUST be returned in the HTTP response; in case the format used by DM Client in a HTTP request if not supported by DM Server, “415 Unsupported Media Type” response code MUST be returned in the HTTP response.

If the DM Server supports other MIME than the ones mandated by this specification (see Section 7), it MUST use the OMADM-Accept HTTP header in order to inform the DM Client in a HTTP response about the supported MIMEs to be used to format the content of following HTTP requests (HTTP PUT and POST): for example, the DM Server can include it the HTTP request carrying the Package#2 in order to inform the DM Client about the supported MIMEs which can be acceptable for formatting data requested by a HPUT or HPOST DM Command. The OMADM-Accept HTTP header format is the same of HTTP Accept header [RFC2616]. If the DM Client doesn’t support any of the MIME requested by DM Server, the “406 Not Acceptable” response code (see Appendix C) MUST be returned in the Package#3 for that DM Command.

7.6 HTTP Error handling
If the DM Client receives a “4XX” response code to a HTTP request and it is not able to recover from it, the DM Session MUST be considered as aborted; the DM Client MUST NOT retry to connect to the DM Server.

If the DM Client receives a “5XX” response code to a HTTP request or if the HTTP request expires (due to connectivity issues), the DM Session MUST be considered as aborted; the DM Client MUST NOT retry to connect to the DM Server.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 10 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

_1414290149.vsd
�

�

DM Client

Data
Repository

2. HTTP response

1. HTTP POST to ServerURI with MO data

_1414290239.vsd
�

�

�

DM Client

1. HTTP GET to ServerURI

Data
Repository

2. HTTP response containing MO data

3. store the received MO data

_1418656273.vsd
�

�

�

DM Client

DM Server

Web Browser
Component

Web Server
Component

1. Initiate to load the ServerURI

2. HTTP request to the ServerURI

UI session continues

3. Store the results for the user interaction

4. Transmit the results
for the user interaction

_1414288938.vsd
�

�

DM Client

DM Server

If the DM session continues

3. Processing DM commands (END cmd terminates
DM session)

0. (Package#0) DM Notification (server initiated case)

1. (Package#1) DM session Initiation

2. (Package#2) DM commands

4. (Package#3) Results and Alerts

