Doc# OMA-Template-ChangeRequest-20100101-I.doc[image: image3.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-Template-ChangeRequest-20091105-I.doc
Change Request

Change Request

	Title:
	Request with Indirect CV
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DM WG

	Doc to Change:
	The latest DMNG TS

	Submission Date:
	4 Jul 2012

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Seungkyu Park, seungk.park@lge.com
Seongyun Kim, seongyoon.kim@lge.com

	Replaces:
	n/a

1 Reason for Change

This CR proposes to request the part of the cacheable MO data with the indirect change validator.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

DM WG to review and agree this CR
6 Detailed Change Proposal

Change 1: Descriptions for this change here
9. DM Resource Cache
When the DM Server retrieves an MO data (an entire MO or a part of an MO) from the DM Client, the DM resource cache can be utilized for reducing network traffic and the response latency. The DM resource cache is a mechanism to locally store the copy (i.e. cache) of the MO data in the DM Server, and the subsequent requests for the same MOs may refer to the cache if a certain conditions are met; the cache hit.

The DM Client MAY support this mechanism, and the DM Server MUST support this mechanism.

9.1 Change Validation and Change Validator

Change validation is a certain process to check whether the cache is still good or becomes stale. A change validator is an entity which gives the freshness information during the change validation. The typical examples of change validator are a timestamp or an opaque identifier like a HTTP ETag. To enable the DM resource cache, the device needs to manage the change validator for the MO data. The DM Server can selectively assign change validators to specific MO data. Only the MO data with a change validator can be cached between the DM Server and the DM Client, and called as a cacheable MO data.

Note: how the server controls whether MO data is cacheable or not is TBD

If an MO data is not cacheable, the device doesn’t manage the change validator for it, and the device always transmits the requested MO data. In the cache hit case, the DM Server can refer to the cached resource instead of retrieving the whole MO data from the DM Client.

9.2 Change validator Update

An MO data is cacheable if a change validator is assigned to the root of the MO data. In the Figure 5, the whole MO, type MO1, located at “./a” is cacheable since the change validator CVa is assigned to the root of the MO1 (“./a”), and the leaf node located at “./b/d/f” is also cacheable since the change validator CVf is assigned to it.

The coverage of a change validator indicates the range of data that cause the update of the change validator, and it is different according to the node type (interior or leaf node). The change validator for an interior node covers the whole sub-tree having the interior node as a root, and also covers the interior node itself. In this case, any changes in the sub-tree including the root interior node trigger the update of the change validator. The change validator for a leaf node only covers the leaf node. In this case, any changes to the leaf node trigger the update of the change validator.

Examples for updating the change validators are as follows.

· For the leaf node “./b/d/g/h”, the value change triggers the update of CVg and CVb.

· For the interior node “./a”, the node name change triggers the update of CVa.

· Adding a new node “./a/i" triggers the update of CVa.

· Deleting the sub-tree “./b/d” triggers the update of CVb.

[image: image1.png]CVy
CV, CV,
a a b b
Type:MO1 Type:MO2 I
c d e
orange grape
CVs f CVq

apple

Cache validator
assigned to the node x

Figure 5: Example for Change validator Updates

9.3 Request and Response for a Cacheable MO Data

The Figure 6 shows an illustrative example for requesting a cacheable MO data.

[image: image2.emf]DM Server DM Client

1. DM Server requests the MO data identified by URI

2. DM Client sends the MO data and cache validator CV1

3. DM Server stores MO data

and cache validator CV1

4. DM Server requests the MO data with URI, CV1

6. DM Client sends Status Code (Not Modified)

7. The Device updates the MO data identified

by URI and the cache validator to CV2

8. DM Server requests the MO data with URI, CV1

10. DM Client sends the updated MO data and CV2

≈ ≈

≈ ≈

11. DM Server stores MO data

and cache validator CV2

...

...

...

≈ ≈

5. The Device performs

the cache validation process

9. The Device performs

the cache validation process

Figure 6: Request and Response for the Cacheable MO

Step 1: The DM Server requests an MO data identified by a URI. At the first time, the DM Server doesn’t have a local cache for the requested MO data, and may not know whether the requested MO data is cacheable or not. The request doesn’t include any change validator.

Step 2: The DM Client sends the requested MO data, and the change validator CV1.

Step 3: The DM Server locally stores the received MO data and the associated change validator CV1. On receiving the change validator CV1, the DM Server learns that the requested MO data is cacheable.

Step 4: The DM Server requests the MO data identified by the URI in the subsequent request. The request includes the associated change validator CV1.

Step 5: On receiving the request, the DM Client runs the change validation process to check whether the cache at the DM Server is fresh or not. In this example, the change validation process returns true (the cache is fresh).

Step 6: The DM Client sends the Status Code (Not Modified) instead of sending the whole MO data. On receiving the Status Code (Not Modified), the DM Server considers the local cache fresh.

Step 7: The device updates the MO data identified by the URI, and also update the associated change validator. In this example, the updated change validator is CV2.

Step 8: The DM Server requests the MO data identified by the URI, and the request also includes the change validator CV1 stored at the DM Server.

Step 9: The DM Client performs the change validation process. Since the change validator is updated to CV2, the change validation process returns false (the local cache at the DM Server becomes stale).

Step 10: The DM Client sends the updated MO with the updated change validator CV2.

Step 11: The DM Server stores the updated MO data and the change validator CV2.

Request the part of the cacheable MO data
For the locally cached MO data, the DM Server can request the MO data with the change validator, and the DM Client can return the status code “Not Modified” if the change validation returns true; the cache hit. Every cacheable MO data can be requested with the change validator once it is locally cached. An example with the Figure 5 is the DM Server can request the MO data of the interior node “./b/d/g” with the change validator CVg if the MO data is cached.
The MO data of the leaf node “./b/d/g/h” is not cacheable since the change validator is not assigned to this node, and the DM Server cannot request it with the change validator. However, the change validator CVg assigned to the parent node “./b/d/g” can be utilized to request the MO data of “./b/d/g/h” that is not cacheable. This section describes how the change validator of the ancestor node can be used to request the uncacheable MO data under the ancestor node.
For the further explanations, two terms are defined to distinguish the type of change validators.

· Direct Change Validator (Direct CV)
For a given MO data, the direct CV is the CV assigned to the root node of the MO data. There exists at most one direct CV for a node. For example, the MO data represented by the “./b/d” doesn’t have the direct CV, while the MO data represented by the “./b/d/g” has the direct CV. The direct CV gives the freshness information for the MO data itself.
· Indirect Change Validator (Indirect CV)
For a given MO data, the indirect CV is the CV assigned to the ancestor node of the root node of the MO data. The indirect CV may not exist in case that no ancestor node has the CV, or it is also possible to have multiple indirect CVs for an MO data. For example, the MO data represented by the “./b/d/g/h” has two indirect CVs (CVb and CVg).
To request an MO data, the DM Server can use the indirect CV if the direct CV doesn’t exist for the MO data. This is because the MO data associated with the indirect CV includes the requested MO data. Hence, if the MO data for the indirect CV is not modified, it also means the requested MO data is not modified. In this way, the DM Client can validate the freshness of the requested MO data indirectly with the indirect CV.
To use the indirect CV for requesting an MO data, the DM Server MUST follow below steps:
Step S1: The DM Server tries to send a request for the MO data identified by a URI.
Step S2: The DM Server checks whether the direct CV for the MO data exists. If the direct CV exists for the MO data, the DM Server MUST send the request for the MO data with the URI and the direct CV.
Step S3: If the direct CV doesn’t exist, the DM Server can select one of the indirect CVs to be used for requesting the MO data. For this, the DM Server starts with the parent node of the root node of the MO data, and checks whether the node has the CV. If the node doesn’t have the CV, then the DM Server goes up one level to the parent node, and checks again. The DM Server can continue the search for the indirect CVs until the DM Tree root is reached. In case that multiple indirect CVs are found, the DM Server MUST select one among the indirect CVs.
Step S4: If the indirect CV is found in Step 3, the DM Server MUST send the request for the MO data with the URI, the indirect CV and the URI of the node having the indirect CV (ICVURI).
Step S5: If no indirect CV is found in Step 3, the DM Server MUST send the request for the MO data with the URI. In this case, no direct CV and no indirect CV exist for the MO data to be requested.

To process the request from the DM Server, the DM Client MUST follow below steps:
Step C1: The DM Client receives the request for the MO data identified by a URI. The request can contain the direct CV or the indirect CV. In case that the indirect CV is included in the request, the request also includes the ICVURI.
Step C2: If the request contains the direct CV, the DM Client runs the change validation using the direct CV and the URI.
Step C2-1: If the change validation returns true, the DM Client sends the status code “Not Modified”.
Step C2-2: If the change validation returns false, the DM Client sends the requested MO data, and the direct CV for the MO data.
Step C3: If the request contains the indirect CV, the DM Client runs the change validation using the indirect CV and ICVURI.
Step C3-1: If the change validation returns true, the DM Client sends the status code “Not Modified”. Additionally, the DM Client can send the direct CV for the requested MO data in case that the direct CV exists for the MO data.
Step C3-2: If the change validation returns false, the DM Client sends the requested MO data. Additionally, the DM Client can send the direct CV for the requested MO data in case that the direct CV exists for the MO data.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20100101-I]

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Page 5 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20100101-I]

