OMA-TS-DM_Protocol-V2_0-2013012502-D
Page 4 V(52)

	[image: image15.png]MOID: urn:oma:mo:oma_ex:1.0

MIID: left

MOID: urn:oma:mo:oma_ex:1.0

MIID: right

D
“OxFF”

E
30

“true”

D
“0x00”

E
“qqr

“false”

	

	OMA Device Management Protocol

	Draft Version 2.0 – 25 Jan 2013

	Open Mobile Alliance

	OMA-TS-DM_Protocol-V2_0-20130125-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

61.
Scope

2.
References
7
2.1
Normative References
7
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
8
4.
Introduction (Informative)
9
4.1
Version 1.2
9
4.2
Version 1.3
10
4.3
Version 2.0
10
5.
DM 2.0 Protocol Overview
11
5.1
Transaction Model
11
5.2
Security Considerations
11
5.3
DM Protocol Interface
11
5.4
Management Data Delivery using HTTP
12
5.5
Web-based User Interaction
12
5.6
Package Flow
12
5.7
Generic Alert
13
5.8
DM Commands
14
5.8.1
HGET
14
5.8.2
HPUT
15
5.8.3
HPOST
16
5.8.4
DELETE
16
5.8.5
EXEC
16
5.8.6
GET
16
5.8.7
SHOW
17
5.8.8
CONT
18
5.8.9
END
18
6.
Device Management Object
19
6.1
Addressing Scheme
19
6.1.1
Syntax
19
6.1.2
Resolving URI
19
6.1.3
Addressing Examples
20
6.2
Device Description Framework
21
6.2.1
MO definition
21
6.2.2
DDF description and graphical representation of MO
21
6.2.3
Management Object Serialization
23
7.
DM 2.0 MIME types
25
7.1
Management Objects and Meta data
25
7.2
Package#2 Format
26
7.3
Package#3 Format
26
8.
Protocol Packages
27
8.1
Package#0: DM Notification
27
8.1.1
Version Information (VER)
27
8.1.2
DM 2.0 Notification Options
27
8.2
Package#1: DM Session Initiation by DM Client
28
8.3
Package#2: DM Commands from DM Server to DM Client
29
8.4
Package#3: Response Package from DM Client to DM Server
29
9.
Access Control
31
9.1
Access Control List (ACL)
31
10.
DM 2.0 Standard Management Objects
32
10.1
DevInfo Management Object
32
10.2
DM Account Management Object
34
11.
DM Resource Cache
36
11.1
Change Validation and Change Validator
36
11.2
Change validator Update
36
11.3
Request and Response for a Cacheable MO Data
37
11.4
Request the part of the cacheable MO data
39
12.
Use of DDF file designed for DM 1.x
41
13.
The Management Object
42
13.1
Device Description Framework
42
13.1.1
Framework Properties of Node
42
13.1.2
Framework Elements
42
14.
Interworking with DM 1.x MOs
43
Appendix A.
Change History (Informative)
44
A.1
Approved Version History
44
A.2
Draft/Candidate Version 2.0 History
44
Appendix B.
Static Conformance Requirements (Normative)
46
B.1
SCR for XYZ Client
46
B.2
SCR for XYZ Server
46
Appendix C.
<Additional Information>
47
C.1
App Headers
47
C.1.1
More Headers
47

Figures

12Figure 1: DM Package Flow

15Figure 2: Example for the HGET command

16Figure 3: Example for the HPUT command

17Figure 4: Example for the SHOW command

20Figure 5: Addressing Scheme Examples

22Figure 6: Example of a MO pictured using the graphical notation

23Figure 7: Example of an instance of this MO

32Figure 8: The DevInfo Management Object

34Figure 9: The DM Account Management Object

37Figure 10: Example for Change validator Updates

38Figure 11: Request and Response for the Cacheable MO

Tables

21Table 1 - MO node specification properties

21Table 2 - Example of MO node specification table

31Table 3 - Access right value

42Table 4 - Framework Properties

1. Scope

This protocol is called the OMA Device Management Protocol [OMA DM] version 2.0, and it defines the protocol for various management procedures. The scope for this protocol is to define the interfaces that are used between the DM Server and the DM Client. Interfaces residing within the device or within the server are outside of the scope of this specification.

2. References

2.1 Normative References

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC4234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. October 2005, URL:http://www.ietf.org/rfc/rfc4234.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford. July 2006,
http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[RFC2396]
	“Uniform Resource Identifiers (URI): Generic Syntax”, T. Berners-Lee, et al., August 1998, URL:http://www.ietf.org/rfc/rfc2396.txt

	
	

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	
	

	
	

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	JSON
	The JSON refers to the definition of [RFC4627].

	
	

	<< Add/Remove definition rows to this table as needed - DELETE This Row >>

3.3
Abbreviations

	OMA
	Open Mobile Alliance

	
	

	
	

	<< Add/Remove abbreviation rows to this table as needed - DELETE This Row>>

4. Introduction
(Informative)
Device Management refers to the management of Device configuration and other managed objects of Devices from the point of view of the Management Authorities. Device Management includes, but is not restricted to setting initial configuration information in Devices, subsequent updates of persistent information in Devices, retrieval of management information from Devices, execute primitives on Devices, and processing events and alarms generated by Devices.

Device Management allows network operators, service providers or corporate information management departments to carry out the procedures of configuring devices on behalf of the end user (customer).
4.1 Version 1.2

Device management is the generic term used for technology that allows third parties to carry out the difficult procedures of configuring devices on behalf of the end user (customer). Third parties would typically be operators, service providers or corporate information management departments.

Through device management, an external party can remotely set parameters, conduct troubleshooting servicing of terminals, install or upgrade software. In broad terms, device management consists of three parts:

· Protocol and mechanism: The protocol used between a management server and a device

· Data model: The data made available for remote manipulation, for example browser and mail settings

· Policy: The policy decides who can manipulate a particular parameter, or update a particular object in the device

The specifications in the Device Management enabler Version 1.2 address the first part of device management above, the protocol and mechanism. More particularly, this enabler release addresses the management of devices by specifying a protocol and management mechanism that may be exposed by an OMA DM client and targeted by an OMA DM server.

The architecture of the Device Management enabler anticipates the needs of the market actors to differentiate their products through vendor-specific extensions while providing a core parameter set that can be relied upon in all terminals exposing this standardized interface.

The design of the architecture follows the OMA architecture principle [ARCH-PRINC] of Network Technology Independence by separating the bearer-neutral requirements from bearer-specific bindings. The described architecture also anticipates additional bearer and proxy types, as any are identified, without requiring a respecification of previously released documents. This preserves vendor and customer investment while supporting the scaling required by future innovations.

There are three parts to the object schema that provide break-points between more general and more specific parameters:

· A top level management object which is bearer-neutral;

· A set of bearer-specific parameters;

· Sub-tree(s) for exposing vendor-specific parameters.

By composing the management objects in this way, it becomes possible for a device management authority to:

· Target generic requirements that span all implementations;

· Focus on bearer-specific idiosyncrasies of a given networking environment;

· Activate terminal-specific behaviour by adjusting vendor-specific parameters.

In a wireless environment, the crucial element for device management protocol is the need to efficiently and effectively address the characteristics of devices including low bandwidth and high latency and to provide for support of these management operations remotely, over-the-air.
4.2 Version 1.3

OMA DM Version 1.3 reused the architecture from OMA DM Version 1.2. It does introduce new notification, transport protocols and a new DM Server to DM Server interface for delegation.
4.3 Version 2.0

OMA DM Version 2.0 reuses Management Objects which are designed for DM Version 1.3 or earlier DM Protocols.OMA DM Version 2.0 introduces new Client-Server DM protocol.

OMA DM Version 2.0 also introduces new user interaction method on Device Management using Web Browser Component.
5. DM 2.0 Protocol Overview
OMA DM 2.0 is the next generation of the OMA DM 1.x Protocol, and provides the interface between the DM Server and the DM Client to manage the device. OMA DM 2.0 leverages a RESTful architecture for the better scalability and management performance, and is also designed to work efficiently on less capable devices, compared with OMA DM 1.x. The following sub-sections present a high-level overview of the OMA DM 2.0 Protocol.
5.1 Transaction Model

OMA DM 2.0 protocol runs within the context of a DM session, using a request/response transaction model. DM sessions are always initiated by the DM Client. However, a DM Server can trigger the DM Client to initiate a DM session by sending the DM Notification to the DM Client. This DM Notification is regarded as the part of the DM session since it carries the session identifier to be used in the subsequent DM session. Once a DM session is established, the DM Server sends commands to the DM Client and receives responses from the DM Client. The DM Client also informs the DM Sever about events that have occurred on the device, via Generic Alerts. Only the DM Server sends the commands to the DM Client, and the DM Client cannot send any DM commands. The DM Server terminates the DM session by sending the END command to the DM Client.
The OMA DM 2.0 supports the notion of packages. A DM package is the unit of message transferred between the DM Client and the DM Server. The originator of this DM package should wait for the response from the recipient before sending another DM package. Since processing of DM packages can consume unpredictable amount of time, the OMA DM Protocol does not specify any timeouts between DM packages.
The DM package is closely related to the HTTP message, and can only be transferred on top of the HTTP compatible protocols. In this way, OMA DM 2.0 provides more efficient mechanism for transferring the DM packages.
The DM Server can send multiple DM commands within a single DM package, and the DM commands in the DM package MUST be ordered. When receiving the DM package from the DM Server, the DM Client MUST sequentially process the DM command one-by-one according to the order specified in the DM package.

5.2 Security Considerations
With OMA DM, the device MUST be managed in a secure manner. The management operations between the DM Server and the DM Client takes place only after authenticating the opponent as a trusted entity. OMA DM doesn’t provide the authentication scheme at the application layer; instead the underlying layer authentication (e.g. HTTP authentication) MUST be used. In the same manner, OMA DM doesn’t provide the confidentiality and integrity mechanism at the application layer; instead the corresponding underlying layer mechanisms MUST be used.

For the authorization, the OMA DM provides its own access control mechanism to ensure that only authorized DM Servers can invoke DM commands to the DM Client.

The authentication, confidentiality and integrity might require the credentials provisioned at the device via the DM Bootstrap process. Bootstrapping is a sensitive process that may involve communication between two parties without any previous relationship or knowledge about each other. In this context, security is very important. The security for the DM Bootstrap operation is TBD.

The security for the DM Notification is TBD.
5.3 DM Protocol Interface
The DM Enabler includes the following four interfaces between a DM Client and a DM Server

· Notification from server to client to initiate a OMA DM Session

· Command channel for authentication and command exchange

· Content delivery of management data

· User Interaction using web server component and web browser component

5.4 Management Data Delivery using HTTP
The DM Server can send DM commands to the DM Client for retrieving or sending management data from or to the Data Repository. The management data delivered between the DM Client and the Data Repository is carried over HTTP protocol. A set of DM commands (i.e., HGET, HPOST and HPUT) is defined in this specification, and the DM Client sends HTTP methods to the Data Repository according to the DM commands received from the DM Server.
In this specification, MIME types are defined for standard management object, but other MIME types for the management object are not precluded. The protocol used here is HTTP/HTTPS without modifications or additions.

5.5 Web-based User Interaction

OMA DM 2.0 supports the web-based user interaction, which enables the DM Server to use the web pages to interact with the user. For this, the Web Browser and the Web Server component are introduced, and a DM command SHOW is specified. The interface between the Web Browser and the Web Server Component is out-of-scope of this specification, and the UI session for performing the user interaction is separated from the DM session. The Web Browser Component can be integrated in the DM Client or can run as a standalone application.
5.6 Package Flow

The package flow between the DM Server and the DM Client are shown below. The contents for each DM package are described in the section 8.

[image: image2.emf]If the DM session continues

0. (Package#0) DM Notification (server initiated case)

1. (Package#1) DM session Initiation

2. (Package#2) DM commands

4. (Package#3) Results and Alerts

3. Processing DM commands

(END cmd terminates

DM session)

DM Client DM Server

Figure 1: DM Package Flow
Step 0 (Package#0) : The DM Server requests a DM session by sending a DM notification to the DM Client. This DM notification is conventionally called as the Package#0. This is an optional package flow since the DM notification is not needed in the client initiated case.

Step 1 (Package#1) : The DM Client MAY initiate the DM session by sending the Package#1. The DM package that initiates the DM session is conventionally called as the Package#1. This Package#1 MAY contain the device information (e.g., model identifier, the firmware version, the supported management objects, etc.) that can be used by the DM Server for management operations.
Step 2 (Package#2) : After receiving the Package#1 or Package#3, the DM Server sends the Package#2 to the DM Client for the management commands. The DM package containing the DM command is conventionally called as the Package#2.

Step 3 (Command Processing) : The DM Client processes the DM commands received in the Package#2, and the DM Client MUST sequentially process the DM command according to the order specified in the Package#2. To process the DM command, the DM Client MAY interact with external components other than the DM Server (e.g., the Web Browser Component in case of the SHOW command, the Data Repository in case of the HGET/HPOST/HPUT command).

Step 4 (Package#3) : If the Package#2 does not include the END command, the DM session MUST continue and the DM Client MUST response to the DM Server by sending the Package#3. The DM package containing the results for the DM command is conventionally called as the Package#3. After the Package#3 is sent to the DM Server, the package flow goes back to the Step 2, and the DM Server MUST send the Package#2 again.

5.7 Generic Alert
The protocol defines a Generic Alert message for Alerts generated by the DM Client that MAY have a relation to a Management Object. In the case of a relation to a Management Object then the SourceURI MUST identify the address to that Management Object.

Anytime after the Client or Server Initiated Management Alert, the DM Client MAY send a Generic Alert message to the DM Server. The Generic Alert message SHALL only be sent from the DM Client to the DM Server. After the DM Server has received the Generic Alert, the DM Server MUST respond with the status for how the DM Server handles all Items.

The AlertType in the Generic Alert message defines the type of this Generic Alert. The AlertType MUST be registered with OMNA.

The Data in the Generic Alert message is not specified in the protocol, the protocol will specify how the DM Client can inform the DM Server what Type and MIMEType it is. The DM Server MUST support the Generic Alert but not all Types of the alert data. The DM Server MUST respond with status XXX “Unsupported media Type or MIMEType” if the Type and MIMEType are unsupported by the DM Server.

The optional parameter Mark MUST contain the importance level. If the parameter is omitted then the default importance level is assumed. The following levels are allowed in Generic Alert: “fatal”, “critical”, “minor”, “warning”, “informational”, “harmless” and “indeterminate”.
The DM Server MUST respond with status XXX “OK” or XXX “Accepted for processing” if the DM Server has received the Alert without any errors and is capable of processing the Data in the Alert. In other cases the DM Server MUST use one of the following error status codes:XXX.
The structure of Generic Alert message MUST be JSON encoded. The following content is allowed for each value in the array:

	Name
	Content

	AlertType
	An Alert Type of this Generic Alert.

	Mark
	A Mark contains the importance level.

	Item
	A JSON array contains one or multiple items. Each item contains following fields.

	MIMEType
	A MIMEType for the Alert Data

	SourceURI
	An URI points to a location where this alert happened.

	Data
	A JSON object contains extendable data. The data is not specified in this protocol.

This is an example of a Generic Alert:

"Alert":

{

"AlertType": "urn:oma:at:scomo:1.0:OperationComplete",

"Mark": "warning",

"Item": [

{

"MIMEType": "text/plain",

"SourceURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Download/Package1/Operations/DownloadInstall"
"Data":

{

...

}

 }

]

}

Editorial note: Define generic conversion of XML data to JSON Format in other chapter or section.
5.8 DM Commands

In this section, the DM commands are described in details. The ClientURI for each DM command MUST be either Instance URI or MOID URI as specified in the section 6.1. The ServerURI for each DM command might take a different format.

OMA DM 2.0 supports the following DM commands. The DM Server MUST support all DM commands, and for the DM Client refer to the table.
	Command
	Description
	DM Client support

	HGET
	The DM Server uses this command to requests the DM Client to retrieve data from the Data Repository using HTTP GET, and add or replace the received data into the device.
	MUST

	HPUT
	The DM Server uses this command to request the device to send data to the Data Repository using HTTP PUT.
	MUST

	HPOST
	The DM Server uses this command to request the device to send data to the Data Repository using HTTP POST.
	MUST

	DELETE
	The DM Server uses this command to delete data in the device.
	MUST

	EXEC
	The DM Server uses this command to execute an executable node in the device.
	MUST

	GET
	The DM Server uses this command to retrieve data from the device. The DM Client sends the data within the current DM session.
	SHOULD

	SHOW
	The DM Server uses this command to initiate a UI Session between the Web Browser Component and the Web Server Component.
	SHOULD

	CONT
	This command is used by servers to specify where the device should continue the DM Session.
	MUST

	END
	This command is used by the server to terminate the DM session.
	MUST

5.8.1 HGET
This command has below parameters:

	Parameter
	Format
	Occurrence

	ServerURI
	URI following the HTTP scheme.
	One

	ClientURI
	Instance URI or MOID URI. The query component can have all information except the "level" and "cv".
	ZeorOrOne

The DM Client will send a request for the ServerURI using HTTP GET to retrieve data (an MO or a subpart of an MO). The ServerURI refers to the data in the Data Repository. If the ClientURI is specified, then the DM Client will try to store the retrieved data at the ClientURI and replace all existing data if any. If the ClientURI is not specified, then the DM Client can choose where to store the data and the location will be returned in the status reporting.
The format for the MO data, delivered from the Data Repository to the DM Client, can be negotiated based on the standard content negotiation mechanism using the HTTP Accept header.

The message flows and the detailed explanations for this DM command are shown below. Please note that below message flow is simplified not showing the interaction between the DM Client and the DM Server.

[image: image3.emf]DM Client

Data

Repository

2. HTTP response containing MO data

1. HTTP GET to ServerURI

3. store the received MO data

Figure 2: Example for the HGET command
Before the Step 1, the DM Server sends HGET command to the DM Client using the Package#2. This HGET command can take parameters such as ServerURI or ClientURI.

Step 1: The DM Client sends the HTTP request (HTTP GET) to the ServerURI. In the HTTP request message, HTTP Accept header can indicate the MIME media types that the DM Client supports.

Step 2: The Data Repository returns the HTTP response containing the MO data requested. The Data Repository serves the DM Client with the proper MO data format based on the HTTP Accept header.

Step 3: The DM Client stores the received MO data at the ClientURI if the ClientURI is specified. If the ClientURI is not specified, the DM Client can choose where to store the MO data.
5.8.2 HPUT
This command has below parameters:

	Parameter
	Format
	Occurrence

	ServerURI
	URI following the HTTP scheme.
	One

	ClientURI
	Instance URI or MOID URI. The query component can have all information.
	ZeorOrMore

The DM Client will create one JSON
 object containing all the data from the respective ClientURIs and send it to the ServerURI as HTTP PUT. The ServerURI refers to a location in the Data Repository. If no ClientURI is specified, all supported MOIDs and instances that the DM Server has access right to will be returned.
The format for the MO data, delivered from the DM Client to the Data Repository, can be negotiated based on the AcceptMO information contained in the Package#2.

The message flows and the detailed explanations for this DM command are shown below. Please note that below message flow is simplified not showing the interaction between the DM Client and the DM Server.

[image: image4.emf]DM Client

Data

Repository

2. HTTP response

1. HTTP POST to ServerURI with MO data

Figure 3: Example for the HPUT command
Before the Step 1, the DM Server sends the HPUT command to the DM Client using the Package#2. This HPUT command can take parameters such as ServerURI or ClientURI.

Step 1: The DM Client sends the HTTP request (HTTP PUT) to the ServerURI. This HTTP request contains the MO data requested by the HPUT command. The DM Client serves the Data Repository with the proper MO data format based on the AcceptMO information contained in the Package#2.

Step 2: The Data Repository returns the HTTP response.
5.8.3 HPOST
This command is exactly the same with HPUT except that the DM Client sends the data using HTTP POST.
5.8.4 DELETE
This command has below parameters:
	Parameter
	Format
	Occurrence

	ClientURI
	Instance URI or MOID URI. The query component can have all information except the "level" and "cv".
	One

The DM Client will delete the node at the location ClientURI in the device and all childe nodes to that one.
5.8.5 EXEC
This command has below parameters:

	Parameter
	Format
	Occurrence

	ServerURI
	URI following the HTTP scheme.
	ZeroOrOne

	ClientURI
	Instance URI or MOID URI. The query component can have all information except the "level" and "cv".
	One

The DM Client will perform the EXEC operation on the node at the location ClientURI. If the ServerURI is specified then the Generic Alert MUST be posted to this URI.
5.8.6 GET
This command has below parameters:

	Parameter
	Format
	Occurrence

	ClientURI
	Instance URI or MOID URI. The query component can have all information.
	ZeroOrMore

The DM Client will create one JSON
 object containing all the data from the respective ClientURIs and send it to the DM Server within the current DM session. The JSON object will be contained in the status report. If no ClientURI is specified, all supported MOIDs and instances that the DM Server has access right to will be returned.
5.8.7 SHOW
This command has below parameters:

	Parameter
	Format
	Occurrence

	ServerURI
	URI following the HTTP scheme.
	One

SHOW command can be used for the DM Server to communicate with the user via the web-based user interaction. This user interaction is accomplished via a UI session between the Web Browser Component and the Web Server Component, which is separated from the DM session. The DM Server and the DM Client do not have knowledge about the context of the UI session, and the results of the UI session is transmitted using the internal interface between the Web Server Component and the DM Server. The DM Server can decide the next management operations according to the results of the user interaction. The internal interface between the Web Server Component and the DM Server is out of scope and left to implementations.
The ServerURI MAY contain the necessary information to identify each UI session, and this information can be used when the DM Server retrieves the results for the user interaction from the Web Server Component.
When receiving the SHOW command, the DM Client SHALL initiate the Web Browser Component to load the ServerURI and show the web pages to the user. After the Web Browser Component is successfully initiated, the DM Client MUST process the next DM command not waiting for the UI session finished. The DM Client cannot know when the UI session will be finished since the user interaction might consist of several web pages. Also, in case that the DM Client fails to initiate the Web Browser Component, the DM Client MUST process the next DM command.
The message flows for this DM command are shown below with detailed explanations.

[image: image5.emf]DM Client DM Server

Web Browser

Component

Web Server

Component

1. Initiate to load the ServerURI

2. HTTP request to the ServerURI

UI session continues

3. Store the results for the

user interaction

4. Transmit the results

for the user interaction

Figure 4: Example for the SHOW command
Before the Step 1, the DM Server sends the SHOW command to the DM Client using the Package#2. The SHOW command takes the ServerURI parameter.
Step 1: To process the SHOW command, the DM Client initiates the Web Browser Component to load the ServerURI and show the web pages to the user. The ServerURI might contain the information to identify this UI session. For example, the query component "?uiid=1234" (user interaction ID) can exist in the ServerURI. The DM Client continues to the next DM command after the Web Browser Component is initiated.

Step 2: The Web Browser Component sends the HTTP request to the ServerURI, and begins the user interaction that might consists of several web pages. This user interaction can takes time, or user might not respond.

Step 3: After the user interaction is finished, the Web Server Component stores the results for the user interaction. In case that the user interaction is failed, the error code can be also stored. For example, the Web Server Component can store the "uiid" as an identifier for the user interaction.

Step 4: The results for the user interaction are transmitted between the Web Server Component and the DM Server via an out-of-scope interface. For example, the DM Server might request the results for the "uiid=1234", or might be notified by the Web Server Component.
5.8.8 CONT
This command has below parameters:

	Parameter
	Format
	Occurrence

	ServerURI
	URI
	One

This is the new server URL that the DM Client will use for the DM Session.
5.8.9 END
This command has no parameters.
The DM Server MUST send this command to terminate the current DM session. On receiving this command, the DM Client MUST process all commands included in the DM package, but MUST NOT return any status and results back to the DM Server.
6. Device Management Object
6.1 Addressing Scheme
OMA DM 2.0 supports two types of addressing that can be used to identify each node in an MO instance. Each type of addressing defines a URI format that is compatible with RFC3986. OMA DM 2.0 defines Instance URI and MOID URI for addressing purposes.

Instance URI uses MOID and MIID to uniquely identify a node in an MO instance. Instance URI is conflict-free addressing scheme which means the Instance URI is always resolved into a unique location since the MOID and MIID pair uniquely identifies an MO instance within the device. Before using the Instance URI, the DM Server needs to know the MIID assigned to the MO instance that has the node that the DM Server wants to address. This MIID can be retrieved from the DM Client just in time (right before using Instance URI) or the DM Server can reuse the saved MIID.

MOID URI relies on the MOID to uniquely identify a node in an MO instance. Since the device can have multiple MO instances with the same MOID, a conflict might arise when the DM Client resolves the MOID URI into a unique location. The advantage of MOID URI is that the DM Server doesn’t need to know any device specific information, and can use the same MOID URI for all types of devices.
Note: Mandatory or optional is to be decided.
6.1.1 Syntax
Instance URI and MOID URI shares the same syntax, and MUST follow below format represented in ABNF:

URI

= MOID “/” [MIID] path-from-miroot [“?” query]
path-from-miroot
= “/” / 1*(“/” node-name)
The MIID is optional in the URI. If the URI specifies MIID, the URI is Instance URI. If the URI doesn’t have the MIID, the URI is MOID URI. MOID URI and Instance URI is easily distinguished since MOID URI has “//” after MOID.
The path-from-miroot component is common in both Instance URI and MOID URI. In general, the MOID and the optional MIID points to an MO instance and the path-from-miroot points to a node in the MO instance by describing the relative path from the MO instance root node.

The query component contains additional information for the URI. The query component is indicated by the first question mark and terminated by the end of the URI. The query component carries the information in the form of “key=value” pairs, and the information carried in the query component are as follows:

· level: The format is “level=<n>” where the “<n>” represents a positive integer. If this sub parameter is specified, the client will only include n sublevels of child nodes; otherwise, all child nodes will be included.
· cv: The format is “cv=<cv_value>” where the “<cv_value>” indicates the cache validator for the node represented by the URI. See the section 9 for the details.

· nv: The format is “nv=<path-from-miroot>:<value>” where the “< path-from-miroot >” indicates the relative path to the leaf node following the syntax of the path-from-miroot component, and the “<value>” indicates the value assigned for the leaf node. This pair is only used in the MOID URI, and can occur multiple times with different data.

The query component is organized as the sequence of “key=value” pairs, and the pairs are separated by an ampersand “&”.
6.1.2 Resolving URI

Regardless of types of the URI, the DM Client needs to resolve the URI into a unique location. This resolving procedure may consist of two steps; the first step is to find the MO instance identified by the URI, the second step is to find the node identified by the path-from-miroot component.

· Step 1: Find the MO instance

For Instance URI, the DM Client retrieves MOID and MIID from the URI, and finds the MO instance for the MOID and the MIID.

For MOID URI, the DM Client retrieves the MOID from the URI, and finds the MO instance for the MOID within all MO instances in the device. In case that nv pairs are specified in the query, the DM Client MUST find the MO instance satisfying all nv pairs.

If the DM Client finds the unique MO instance, the DM Client proceeds to the Step 2. If no or multiple MO instances are found, an error code is returned to the DM Server.

· Step 2: Find the node

Within the MO instance found in the Step 1, the DM Client resolves the path-from-miroot component to identify a node. The DM Client MUST follow below rules:

	path-from-miroot
	Descriptions

	“/”
	The MO instance root node is identified.

	1*(“/” node-name)
	The relative path from the MO instance root node. The node name of the MO instance root node MUST NOT be specified in this path.

6.1.3 Addressing Examples

In this section, illustrative examples for addressing schemes are shown.

[image: image6]
· The Instance URI “urn:oma:mo:oma_ex:1.0/left/A/C” identifies the node C in the left MO instance

· The Instance URI “urn:oma:mo:oma_ex:1.0/left/” identifies the MO instance root node in the left MO instance

· The Instance URI “urn:oma:mo:oma_ex:1.0/right/B” identifies the node B in the right MO instance

· The MOID URI “urn:oma:mo:oma_ex:1.0//A/D” cannot be resolved since two MO instances have the same MOID.

· The MOID URI “urn:oma:mo:oma_ex:1.0//A/D?nv=/A/C/G:grape” identifies the node G in the right MO instance

· The MOID URI “urn:oma:mo:oma_ex:1.0//?nv=/B/E:32” identifies the MO instance root node in the left MO instance

6.2 Device Description Framework

The Device Description Framework is defined as Device Description Framework DTD. Descriptions of Management Objects, or complete Management Trees, are valid XML documents. Device manufacturers using the Device Description Framework MUST make the device descriptions available to DM Servers. The mechanism for this is currently not being standardized.

6.2.1 MO definition

Each Management Object Node in this specification MUST definethe following properties:

	Property
	Description

	Status
	if the value is “Required” then the DM Client MUST support the node (if the parent node is supported); if the value is “Optional”, then the node is not unconditional mandatory to support in the implementation.

	Occurrence
	One
	The number of node MUST be exact one.

	
	ZeroOrOne
	The number of nodes is zero or one. The DMS can add the node when the current occurrence was zero.

	
	ZeroOrMore
	The number of nodes is zero or more. The DMS can add the node up to the number of device allows.

	
	OneOrMore
	The number of nodes is one or more. The DMS can add the node up to the number of device allows.

	
	ZeroOrN
	The number of nodes is zero or multiple number. The DMS can add the node up to the number specified as the part of MO specification.

	
	OneOrN
	The number of node is one or multiple number. The DMS can add the node up to the number specified as the part of MO specification.

	Format
	Data format which is stored on node. Allowed values are ‘node’, ‘null’, ‘b64’, ‘bin’, ‘bool’, ‘chr’, ‘int’, ‘xml’, ‘date’, ‘time’, and ‘float’.

	Min. Access Type
	Minimally required permission to access. If the keyword ‘No ‘ is used the operation MUST NOT be allowed anytime.

Table 1 - MO node specification properties
Following table is an example of the node specification table:

	<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	OneOrMore
	node
	Get
	

	
	This interior node acts as a placeholder for one or more instances of this object. Management Object Identifier for this management object MUST be: “urn:oma:mo:oma-dm-dmacc:2.0”.

Table 2 - Example of MO node specification table
6.2.2 DDF description and graphical representation of MO

incorporated from DM1.3 TND TS.

OMA DM MO are described using the OMA DM DDF Files. The use of this description framework produces detailed information about the device in question. The DDF File is a machine readable file describing a MO or how a DM Client has implemented the DM Tree.

In order to make it easier to quickly get an overview of how a MO is organized and its intended use, a simplified graphical notation in the shape of a block diagram is used in the technical specification documents. Even though the notation is graphical, it still uses some printable characters, e.g… to denote the number of occurrences of a node. These are mainly borrowed from the syntax of DTDs for XML. The characters and their meaning are defined in the following table.

	Character
	Meaning

	+
	Occurrence of OneOrMore

	*
	Occurrence of ZeroOrMore

	?
	Occurrence of ZeroOrOne

	+N
	Occurrence of OneOrN

	*N
	Occurrence of ZeroOrN

If none of these characters is used the default occurrence is exactly once.

Another feature of the DDF that needs to have a corresponding graphical notation is the un-named block. Un-named are nodes which act as placeholders in the description and are instantiated with information when the nodes are used at run-time. Un-named blocks in the description are represented by less than (“<”) and a greater than (“>”) character containing a lower case character, e.g. (“<x>”).

Each block in the graphical notation corresponds to a described node, and the text is the name of the node. If a block contains an <x>, it means that the name is not known in the description and that it will be assigned at run-time. The names of all ancestral nodes are used to construct the URI for each node in the MO. It is not possible to see the actual parameters, or data, stored in the nodes by looking at the graphical notation of a MO.

Some MOs specify explicit names of nodes but the name is still assigned at run-time. These nodes MAY not be described as <x> in the DDF Fileand it is possible to use the syntax [NodeName] where “NodeName” is a logical name for the node. In this case the graphical representation and the DDF File will contain the logical name of the node to improve the readability.

The nodes which the DM Client is required to support are drawn in the graphical notation with solid line, while nodes whose support is not mandatory for the DM Client are drawn with a dotted line.

Leaf nodes are drawn as rectangle while interior nodes are drawn as rectangle with rounded corners.

The following is an example of what a MO can look like when it is expressed using the graphical notation:

[image: image7.jpg]Tateriork) (<07 Tei i

[Requized tiea=]

Leats

)) (TUaiguevenasiNamsT ™)

)—EJ&B{C 1

Figure 6: Example of a MO pictured using the graphical notation
Naturally, this graphical overview does not show all details of the full description, but it provides a good map of the description so that it is easier to find the individual node. Although the figure only provides an overall view of the description, there are still some things worth noticing.

All blocks with names in place occur exactly once, except Leaf2, InteriorA/<x>, InteriorB/<x>, all Ext nodes and their children.

Leaf3, InteriorB, all Ext and their children nodes are optional to be supported by the DM Client.

All nodes whose name starts with “Leaf” and the node “[AAuthLevel]” are leaf nodes. They MAY contain data but cannot contain child nodes; all other nodes are interior nodes, they cannot contain data but can contain child nodes.

The un-named leaf nodes are marked with * or +. This means that although the description only contains one node description at this position in the tree, there can be any number of instantiated nodes at run-time, including none in the first case, at least one in the second. The only limit is that the node names MUST be unique and the DM Client MUST have sufficient memory to store the nodes.

The next figure shows an example of what the device information MO could look like at run-time.

[image: image8.jpg]Tnteriord

Chilanol

Tei]

Childooz

Ten]

Ext

}—(HyCampany }—{FyExeention |

Ttk

}—{ Hightevel

Ext

Standardizationforum L

Stamarararen 1]

StandardParam 2

Standardizationforw B

}—[CoE_param |

Figure 7: Example of an instance of this MO
The difference between this figure and the previous one is that now the un-named blocks have been instantiated and some optional nodes are not shown.

Note that none of the stored data in the leaf nodes is shown in the figure: only the node names are visible.
6.2.3 Management Object Serialization
Since DM 2.0 protocol is designed to use JSON based format for exchanging MO information, it is important to convert MO definition to JSON Object as defined in [RFC4627].

MO data can be transferred as JSON Object following conversion rules:

	Node Type
	Conversion Rule
	Example

	Interior Node
	The interior node MUST be represented as JSON string Object with the value of another JSON Object which contains child nodes in DDF. The string MUST be specified as the “NodeName” of the node described in DDF. Even if the child node are not transferred, the empty JSON object “{}” MUST be specified as its value.
	{
 "InteriorA": {
 "LeafB": "ValueB",
 "InteriorC": {}
 }
}

	Leaf Node
	The leaf node MUST be represented as JSON string Object with the value of another JSON Object which contains “Prop” Object and “Value” Object as its member.

“Value” Object MUST be specified as the value of the node described in DDF.

Editor’s Note: group should discuss on the solution for including meta information existing in DM 1.x.
	{
 "LeafD": "ValueD",
 "LeafE": ""
}

When the Management Object is newly instantiated, the DM Client or the DM Server need to transfer MO structure with DDF information. The JSON Object for MO definition MUST be wrapped by the JSON Object for MO serialization. This JSON Object is named “MOMetaInfo” which contains following mandatory parameters as its member.

	Member
	Description

	DDF
	The URI string for device specific DDF definition.

	Path
	The path to place the serialized MO data.

	MOData
	The serialized MO data as JSON Object for Transfer Node Values.

This is the example of MOMetaInfo:
{

 "MOMetaInfo": {

 "DDF": "http://foo.bar.com/ddf/model1234/app1_setting.ddf",

 "Path": "/",

 "MOData": {

 "App1Config": {

 "ServerConfig": {

 "ServerAddr": "server1.bar.com",

 "ServerPort": "12345"

 }

 }

 }

 }

}

Editor’s Note: leaf node SHOULD be considered to be JSON Object instead of String value.

7. DM 2.0 MIME types

DM Protocol 2.0 defines data formats which are identified by MIME application media types.

The DM Enabler specifies the following content formats:

· Notification message to be delivered to the client in the DM Notification message
· Management Object Data

· Meta-Data

· Alerts

This data format allows the following categories to be included:

· Static implementation information on how a MO is implemented and runtime meta-data of the management objects.

· Serialized Management Object that contains run-time data of a management object instance

· Client Events and Alerts similar to Generic Alert as defined in DM 1.2

This structure allows all these categories above to be included but all of them are not valid in all scenarios.

7.1 Management Objects and Meta data

This chapter defines the message format for management data. This format MUST be supported by DM Client and DM Servers. In addition to that it is possible for a DM Client to support additional MIME-Types and the DM Servers MUST use the standard HTTP MIME type mechanism to figure out which format to deliver to different DM Clients.

NOTE: Versioning information needs to be added

	HTTP Header
	Value

	Content-Type
	application/dmmo+json

	Accept
	application/dmmo+json

Any additional Accept header is valid

The structure of Management Objects MUST be JSON encoded. This section defines the structure but all parts may not be valid in all messages. The structure contains one JSON object that includes one or more of the following members:

Member: Supported Management Objects: “MOS”

The value of MOS MUST be an array of values containing the supported Management Objects by the device. The following content is allowed for each value in the array:

	Name
	Content

	MOID
	The MOID of this Management Object

	DDF
	A HTTP link to the DDF file for this Management Object

	MIID
	An JSON array containing all MIIDs for the instance of this Management Object

Member: Management Object List: “MOL”

The value of MOL MUST be an array of values containing Management Objects data. The following content is allowed for each value in the array:

	Name
	Content

	URI
	The URI for the content of the Management Object

	MO
	This object contains the value of the MO content. All child objects in this object is defined in the Management Object specification. The tree structure defined in the MO MUST be represented here exactly in the same structure. The following restrictions apply: The data MUST be encoded in the same way as OMA DM 1.2 specification when sending an OMA DM message as XML encoded message. For example binary string will be base 64 encoded. All formats that is not Boolean or numeric MUST be encoded as JSON strings.

This is an example of a message:

POST /DM20/IMEI_716504yyyyyy.dm20 HTTP/1.1

Connection: Keep-Alive

Content-Length: 441

Content-Type: application/dmmo+json

Accept: application/dmmo+json

Expect: 100-continue

Host: localhost

User-Agent: DM 2.0 Agent

{

 "MOS": [

 {

 "MOID": "oma:mo:oma-dm-devinfo:1.0",

 "DDF": "http://www.vendor.com/DDF/devinfo10.ddf",

 "MIID": [

]

 },

 {

 "MOID": "oma:mo:oma-dm-devdetail:1.0",

 "DDF": "http://www.vendor.com/DDF/devdetail10.ddf",

 "MIID": []

 },

 {

 "MOID": "oma:mo:oma-mms:1.3",

 "DDF": "http://www.vendor.com/DDF/mms13.ddf",

 "MIID": [

 "0", "1"]

 }

],

 "MOL": [

 {

 "URI": "oma:mo:oma-dm-devinfo:1.0/",

 "MO": {

 "DevID": "716504yyyyyy",

 "Man": "Sony Ericsson",

 "Mod": "DM_Client",

 "DmV": "2.0"

 }

 }

]

}

7.2 Package#2 Format
 Note: JSON format for the Package#2 will be presented here. The MIME media type for the Package#2 is application/vnd.oma.dm.request+json.
7.3 Package#3 Format
 Note: JSON format for the Package#3 will be presented here. The MIME media type for the Package#3 is application/vnd.oma.dm.response+json
8. Protocol Packages
The DM Server and the DM Client exchanges the DM packages as specified in the section 5.4. In this section, the DM packages are defined in details.

8.1 Package#0: DM Notification
Many devices cannot continuously listen for connections from management servers. Other devices simply do not wish to “open a port” (i.e. accept connections) for security reasons. However, most devices can receive unsolicited messages, sometimes called “notification message”. A DM Server can use this notification message to cause the DM Client to initiate a connection back to the DM Server.

The format and content of the DM 2.0 Notification defined in this enabler updates the DM 1.3 Notification [DM13] keeping the backward compatibility. The updates are described in the following sections.

8.1.1 Version Information (VER)
This field MUST be set to 0x02.

8.1.2 DM 2.0 Notification Options

This specification defines the following options for DM Notification message:

	Option Number (Binary)
	Name
	Format
	No. of bytes
	DM Client Support
	DM Server Support
	Occurrence

	0111
	Requested-MO-CV
	Binary
	3-256
	Optional
	Mandatory
	ZeroOrMore

8.1.2.1 Requested MO CV Option

The <Requested-MO-CV> option specifies the MO index and the corresponding change validator. The first two bytes MUST specify the MO index which indicates the requested MO to be sent in Package #1 in the resulting DM session. The other bytes specify the change validator for the requested MO. The DM Server can request the DevInfo, the DevDetail or other MOs by using this option to conditionally receive in the Package #1.

On receiving this option and if the DM Client supports this option, then the DM Client MUST run the change validation process to check whether the cache for the requested MO in the DM Server is fresh or stale. If stale, the DM Client MUST send the requested MO in the result DM session, and if fresh, the DM Client MUST return the status code ‘XXX Not Modified’ to inform the DM Server that the cache is fresh.
8.1.2.2 Preferred Connection Type
The <Preferred-Connection-Type> option specifies the preferred connection that the DM Client is requested to use for connecting to the DM Server. If multiple preferred connections are specified, the connection which appears first is to have higher priority over the rest of available bearers. The DM Client SHOULD use the preferred connections with higher priority first if they are available. If none of indicated preferred connections is available, the DM Client SHOULD wait until one of them becomes available.

The DM Client and DM Server MUST support this option.
The values of the <Preferred-Connection-Type> option MUST be one of the following:
	Value
	Semantics
	Description

	0x00
	not specified
	Indicates the preferred connection is not specified.

	0x01
	Mobile
	Indicates the preferred connection is mobile.

	0x02
	Wireless
	Indicates the preferred connection is wireless.

	0x03
	Wireline
	Indicates the preferred connection is wireline.

8.2 Package#1: DM Session Initiation by DM Client

DM session is only initiated by the DM Client, and the DM Client can send the Package#1 to initiate the DM session. The purposes of the Package#1are as follows:

· To send the supported management objects if requested by the DM Server. Note: How to request the supported management objects is TBD (e.g., a new option can be defined).
· To send the MO data requested by the DM Server. If the <Requested-MO> or <Requested-MO-CV> option is included in the Package#0, the DM Client MUST send the requested MO data according to the options. If none is requested in the Package#0, the DM Client MUST NOT include any MO data.

· To inform the DM Server of any Client Initiated Alert, for example Generic Alert or Client Event. Note: define Client Events that are supported
The requirements for the HTTP headers are specified in below table:

	HTTP Headers
	Descriptions

	Content-Type [HTTP]
	MIME media type for this package.

	Accept [HTTP]
	The acceptable MIME media types for the response package.

	OMADM-DevID
	A unique identifier for the device. It MUST contain the value of the DevInfo/DevID node.

An illustrative example using MIME media types defined in this specification is as follows:

POST /dmclient/dm20 HTTP/1.1

Content-Type: application/vnd.oma.dm.initiation+json
Accept: application/vnd.oma.dm.request+json
OMADM-DevID: IMEI:493005100592800
Host: www.devicemgmt.org
{

"MOS": [

{

"MOID": "oma:mo:oma-dm-devinfo:1.0",

"DDF": "http://www.vendor.com/DDF/devinfo10.ddf",

"MIID": []

},

{

"MOID": "oma:mo:oma-dm-devdetail:1.0",

"DDF": "http://www.vendor.com/DDF/devdetail10.ddf",

"MIID": []

}

],

"MOD": [

{

"URI": "oma:mo:oma-dm-devinfo:1.0/",

"MO": {

"DevID": "IMEI:493005100592800",

"Man": "Vendor",

"Mod": "DM_Client",

"DmV": "2.0"

}

}

],

"Alert": [

{

"AlertType": "unique alert type for the Generic Alert",

"Mark": "warning",

"Item": [

{

"MIMEType": "text/plain",

"SourceURI": "URI for the node generating this Alert"

"Data": {

...

}

 }

]

}

]

}
8.3 Package#2: DM Commands from DM Server to DM Client

The DM Server sends the Package#2 to the DM Client as a response to the Package#1 or the Package#3. The purpose of the Package#2 is to send DM commands. Multiple DM command can be listed, and the DM commands MUST be ordered in a sequence since the DM Client MUST sequentially process the DM command according to this order. The same DM command can be listed multiple times also. The requirements for the HTTP headers are specified in below table:

	Header
	Value

	Content-Type [HTTP]
	MIME media type for this package.

An illustrative example using MIME media types defined in this specification is as follows:

HTTP/1.1 200 OK
Content-Type: application/vnd.oma.dm.request+json
{

"Cmd": [

["HPOST","ServerURI", "ClientURI1", "ClientURI2"],

["GET","ClientURI"]

]

}
8.4 Package#3: Response Package from DM Client to DM Server

The DM Client sends the Package#3 to the DM Server as a response to the Package#2. In case that the Package#2 includes the END command, this Package#3 MUST NOT be sent. The purposes of the Package#3 are as follows:

· To send results (e.g., status codes and MO data) for DM commands in the Package#2.

· To send new optional Client Initiated Alert, for example Generic Alert or Client Event that was raised during the session.
The requirements for the HTTP headers are specified in below table:

	HTTP Headers
	Descriptions

	Content-Type [HTTP]
	Refer to the Content-Type header in the Package#1.

	Accept [HTTP]
	Refer to the Accept header in the Package#1.

	OMADM-DevID
	Refer to the OMADM-DevID header in the Package#1.

An illustrative example using MIME types defined in this specification is as follows:

POST /dmclient/dm20 HTTP/1.1

Content-Type: application/vnd.oma.dm.response+json
Accept: application/vnd.oma.dm.request+json
OMADM-DevID: IMEI:493005100592800
Host: www.devicemgmt.org
{

"Status": [

{

"Code": 200

},

{

"Code": 200

},

{

"Code": 200,

"MOD": {

"URI": "ClientURI",

"MO": {

"NodeName1": "Value",

"NodeName2": "Value"

}

}

}

],

"Alert": [

{

"AlertType": "unique alert type for the Generic Alert",

"Mark": "warning",

"Item": [

{

"MIMEType": "text/plain",

"SourceURI": "URI for the node generating this Alert"

"Data": {

...

}

 }

]

}

]

}
9. Access Control
The access control is based on the following principles:

· The bootstrap message contains a list of MOIDs that the DM Server may manage. Accepting this bootstrap message does not mean that the DM Server can immediately manage the MO instances having the MOIDs. To manage a specific MO instance, the DM Server MUST get access rights for the MO instance.
· The creator (e.g. the DM Server, a local application, etc) automatically gets the exclusive full access rights for the new MO instance by default.
· The ACL is assigned per each MO instance, and the assigned ACL is applied to every node in the MO instance.
· The DM Server, a local application, etc can delegate the management authorities for MO instances to other DM Servers, a local application. The access right ”DELEGATION” is used to authorize the delegation operation.
Note: investigate the new term to capture both the DM Server and the local application
9.1 Access Control List (ACL)

ACL is used to express which DM Server has which access rights for an MO instance. ACL is organized as a list of DM Server Identifiers in which each identifier is associated with an access right value. ACL is represented as a string, and MUST follow below ABNF format:
ACL

= acl-entry *(“&” acl-entry)

acl-entry

= ar-value “=” server

ar-value

= %d1 – %d15

; integer value from 1 to 15

server

= “*” / server-id
; server-id is one of ServerIDs in the DMAcc MO
The access right value (the ar-value in the ABNF format) is the selective sum of the integer values in the following table. For example, the access right value 7 (=1+2+4) is assigned to the DM Server, if the DM Server can execute GET/HPUT/HPOST/HGET/DELETE/EXEC commands.

	Logical Operation
	Access right
	integer value

	Read
	GET/HPUT/HPOST
	1

	Write
	HGET/DELETE
	2

	Execute
	EXEC
	4

	Delegate
	DELEGATION
	8

Table 3 - Access right value
The character ‘*’ represents the wild card value for the server identifier. The server identifier and the wild card ‘*’ MUST occur only once in the ACL.

ACL examples are as follows:
· If the ACL “5=DMS1&10=DMS2” is assigned for an MO instance, the DMS1(i.e., the DM Server with the server identifier DMS1) can execute GET/HPUT/HPOST/EXEC for the MO instance, and the DMS2 can execute HGET/DELETE/DELEGATION for the MO instance.
· If the ACL “1=*&8=DMS1” is assigned for an MO instance, all DM Servers can execute GET/HPUT/HPOST for the MO instance, and the DMS1 can execute GET/HPUT/HPOST (allowed by the wild card) and the delegation operation for the MO instance.
The ACL for each MO instance is stored at TBD.
10. DM 2.0 Standard Management Objects

10.1 DevInfo Management Object
The following figure shows an overview of the management object.
[image: image9.jpg]

Figure 8: The DevInfo Management Object

	<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	node
	Get
	

	
	This interior node is the root node for the DevInfo MO. The MOID for the DevInfo MO MUST be: “urn:oma:mo:oma-dm-devinfo:1.2”.

	<x>/Bearer

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	ZeroOrOne
	node
	Get
	

	
	An optional, interior node in which items related to the bearer (CDMA, etc.) are stored. Use of this sub tree can be mandated by other standards.

	<x>/DevID

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	This leaf node specifies the global unique identifier for the device. The value of this node MUST be either an absolute or a relative URI or a well-known URN. Possible formats for this node are listed in the below table, but other formats are not precluded.

Type
Descriptions

IMEI URN
Identify International Mobile Equipment Identifiers [3GPP-TS_23.003]. The IMEI URN specifies a valid, 15 digit IMEI. The format of the URN is IMEI:###############
ESN URN
Identify an Electronic Serial Number. The ESN specifies a valid, 8 digit ESN. The format of the URN is ESN:########
MEID URN
Identify a Mobile Equipment Identifier. The MEID URN specifies a valid, 14 digit MEID. The format of the URN is MEID:##############
UUID URN
Identify an Universally Unique IDentifier (UUID). The UUID specifies a valid, hex digit character string as defined in [RFC4122]. The format of the URN is UUID:########-####-####-############

	<x>/Man

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	The manufacturer identifier (manufacturer specified string).

	<x>/Mod

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	A model identifier (manufacturer specified string).

	<x>/DmV

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	OMA device management client version identifier (manufacturer specified string).

	<x>/Lang

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	The current language setting of the device. The syntax of the language tags and their use are defined in [RFC1766]. Language codes are defined by ISO in the standard ISO639-2.

	<x>/DevType

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	Device type, for example PDA, pager, or phone (manufacturer specified string).

	<x>/OEM

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	Original Equipment Manufacturer of the device (manufacturer specified string).

	<x>/FwV

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	Firmware version of the device (manufacturer specified string).

	<x>/SwV

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	Software version of the device (manufacturer specified string).

	<x>/HwV

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	Hardware version of the device (manufacturer specified string).

	<x>/Ext

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	One
	node
	Get
	

	
	This interior node is for vendor-specific extensions to store the device related information.

10.2 DM Account Management Object

The following figure shows an overview of the management object.

[image: image10.jpg]]

Required Wode

Fermissionst Cptional Node

Figure 9: The DM Account Management Object
	<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	OneOrMore
	node
	Get
	

	
	This interior node acts as a placeholder for one or more instances of this object. Management Object Identifier for this management object MUST be: “urn:oma:mo:oma-dm-dmacc:2.0”.

	ServerID

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	This node specifies a server identifier for the management server used in the management session. This identifier MUST be uniquie within the DM Client.

	Name

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	ZeroOrMore
	chr
	Get
	

	
	This node specifies user displayable name for the management server

	Permissions

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	OneOrMore
	node
	Get
	

	
	This node is the parent node for the management object that this DM Server request access rights to. This node and all childe nodes MUST NOT be exposed in the DM Client. This part is used for the bootstrap only.

	Permissions/<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	OneOrMore
	node
	Get
	

	
	This node goups the accessrigts for a specific MOID.

	Permissions/<x>/MOID

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	This node specifies the MOID for this group.

11. DM Resource Cache
When the DM Server retrieves an MO data (an entire MO or a part of an MO) from the DM Client, the DM resource cache can be utilized for reducing network traffic and the response latency. The DM resource cache is a mechanism to locally store the copy (i.e. cache) of the MO data in the DM Server, and the subsequent requests for the same MOs may refer to the cache if a certain conditions are met; the cache hit.

The DM Client MAY support this mechanism, and the DM Server MUST support this mechanism.

11.1 Change Validation and Change Validator

Change validation is a certain process to check whether the cache is still good or becomes stale. A change validator is an entity which gives the freshness information during the change validation. The typical examples of change validator are a timestamp or an opaque identifier like a HTTP ETag. To enable the DM resource cache, the device needs to manage the change validator for the MO data. The DM Server can selectively assign change validators to specific MO data. Only the MO data with a change validator can be cached between the DM Server and the DM Client, and called as a cacheable MO data.

Note: how the server controls whether MO data is cacheable or not is TBD

If an MO data is not cacheable, the device doesn’t manage the change validator for it, and the device always transmits the requested MO data. In the cache hit case, the DM Server can refer to the cached resource instead of retrieving the whole MO data from the DM Client.

11.2 Change validator Update

An MO data is cacheable if a change validator is assigned to the root of the MO data. In the Figure 5, the whole MO, type MO1, located at “./a” is cacheable since the change validator CVa is assigned to the root of the MO1 (“./a”), and the leaf node located at “./b/d/f” is also cacheable since the change validator CVf is assigned to it.

The coverage of a change validator indicates the range of data that cause the update of the change validator, and it is different according to the node type (interior or leaf node). The change validator for an interior node covers the whole sub-tree having the interior node as a root, and also covers the interior node itself. In this case, any changes in the sub-tree including the root interior node trigger the update of the change validator. The change validator for a leaf node only covers the leaf node. In this case, any changes to the leaf node trigger the update of the change validator.

Examples for updating the change validators are as follows.

· For the leaf node “./b/d/g/h”, the value change triggers the update of CVg and CVb.

· For the interior node “./a”, the node name change triggers the update of CVa.

· Adding a new node “./a/i" triggers the update of CVa.

· Deleting the sub-tree “./b/d” triggers the update of CVb.

[image: image11.png]CVy
CV, CV,
a a b b
Type:MO1 Type:MO2 I
c d e
orange grape
CVs f CVq

apple

Cache validator
assigned to the node x

Figure 10: Example for Change validator Updates
11.3 Request and Response for a Cacheable MO Data

The Figure 6 shows an illustrative example for requesting a cacheable MO data.

[image: image12.emf]DM Server DM Client

1. DM Server requests the MO data identified by URI

2. DM Client sends the MO data and cache validator CV1

3. DM Server stores MO data

and cache validator CV1

4. DM Server requests the MO data with URI, CV1

6. DM Client sends Status Code (Not Modified)

7. The Device updates the MO data identified

by URI and the cache validator to CV2

8. DM Server requests the MO data with URI, CV1

10. DM Client sends the updated MO data and CV2

≈ ≈

≈ ≈

11. DM Server stores MO data

and cache validator CV2

...

...

...

≈ ≈

5. The Device performs

the cache validation process

9. The Device performs

the cache validation process

Figure 11: Request and Response for the Cacheable MO
Step 1: The DM Server requests an MO data identified by a URI. At the first time, the DM Server doesn’t have a local cache for the requested MO data, and may not know whether the requested MO data is cacheable or not. The request doesn’t include any change validator.

Step 2: The DM Client sends the requested MO data, and the change validator CV1.

Step 3: The DM Server locally stores the received MO data and the associated change validator CV1. On receiving the change validator CV1, the DM Server learns that the requested MO data is cacheable.

Step 4: The DM Server requests the MO data identified by the URI in the subsequent request. The request includes the associated change validator CV1.

Step 5: On receiving the request, the DM Client runs the change validation process to check whether the cache at the DM Server is fresh or not. In this example, the change validation process returns true (the cache is fresh).

Step 6: The DM Client sends the Status Code (Not Modified) instead of sending the whole MO data. On receiving the Status Code (Not Modified), the DM Server considers the local cache fresh.

Step 7: The device updates the MO data identified by the URI, and also update the associated change validator. In this example, the updated change validator is CV2.

Step 8: The DM Server requests the MO data identified by the URI, and the request also includes the change validator CV1 stored at the DM Server.

Step 9: The DM Client performs the change validation process. Since the change validator is updated to CV2, the change validation process returns false (the local cache at the DM Server becomes stale).

Step 10: The DM Client sends the updated MO with the updated change validator CV2.

Step 11: The DM Server stores the updated MO data and the change validator CV2.
11.4 Request the part of the cacheable MO data
For the locally cached MO data, the DM Server can request the MO data with the change validator, and the DM Client can return the status code “Not Modified” if the change validation returns true; the cache hit. Every cacheable MO data can be requested with the change validator once it is locally cached. An example with the Figure 5 is the DM Server can request the MO data of the interior node “./b/d/g” with the change validator CVg if the MO data is cached.

The MO data of the leaf node “./b/d/g/h” is not cacheable since the change validator is not assigned to this node, and the DM Server cannot request it with the change validator. However, the change validator CVg assigned to the parent node “./b/d/g” can be utilized to request the MO data of “./b/d/g/h” that is not cacheable. This section describes how the change validator of the ancestor node can be used to request the uncacheable MO data under the ancestor node.

For the further explanations, two terms are defined to distinguish the type of change validators.

· Direct Change Validator (Direct CV)
For a given MO data, the direct CV is the CV assigned to the root node of the MO data. There exists at most one direct CV for a node. For example, the MO data represented by the “./b/d” doesn’t have the direct CV, while the MO data represented by the “./b/d/g” has the direct CV. The direct CV gives the freshness information for the MO data itself.

· Indirect Change Validator (Indirect CV)
For a given MO data, the indirect CV is the CV assigned to the ancestor node of the root node of the MO data. The indirect CV may not exist in case that no ancestor node has the CV, or it is also possible to have multiple indirect CVs for an MO data. For example, the MO data represented by the “./b/d/g/h” has two indirect CVs (CVb and CVg).

To request an MO data, the DM Server can use the indirect CV if the direct CV doesn’t exist for the MO data. This is because the MO data associated with the indirect CV includes the requested MO data. Hence, if the MO data for the indirect CV is not modified, it also means the requested MO data is not modified. In this way, the DM Client can validate the freshness of the requested MO data indirectly with the indirect CV.

To use the indirect CV for requesting an MO data, the DM Server MUST follow below steps:

Step S1: When the DM Server sends a request for the MO data identified by a URI, the DM Server checks whether the direct CV for the MO data exists. If the direct CV exists for the MO data, the DM Server MUST send the request for the MO data with the URI and the direct CV.

Step S2: If the direct CV doesn’t exist, the DM Server can select one of the indirect CVs to be used for requesting the MO data. For this, the DM Server starts with the parent node of the root node of the MO data, and checks whether the node has the CV. If the node doesn’t have the CV, then the DM Server goes up one level to the parent node, and checks again. The DM Server can continue the search for the indirect CVs until the DM Tree root is reached. In case that multiple indirect CVs are found, the DM Server MUST select one among the indirect CVs.

Step S3: If the indirect CV is found in Step S2, the DM Server MUST send the request for the MO data with the URI, the indirect CV and the URI of the node having the indirect CV (ICVURI).

Step S4: If no indirect CV is found in Step S2, the DM Server MUST send the request for the MO data with the URI. In this case, no direct CV and no indirect CV exist for the MO data to be requested.

To process the request from the DM Server, the DM Client MUST follow below steps:

Step C1: The DM Client receives the request for the MO data identified by a URI. The request can contain the direct CV or the indirect CV. In case that the indirect CV is included in the request, the request also includes the ICVURI.

Step C2: If the request contains the direct CV, the DM Client runs the change validation using the direct CV and the URI.

Step C2-1: If the change validation returns true, the DM Client sends the status code “Not Modified”.

Step C2-2: If the change validation returns false, the DM Client sends the requested MO data, and the direct CV for the MO data.

Step C3: If the request contains the indirect CV, the DM Client runs the change validation using the indirect CV and ICVURI.

Step C3-1: If the change validation returns true, the DM Client sends the status code “Not Modified”. Additionally, the DM Client can send the direct CV for the requested MO data in case that the direct CV exists for the MO data.

Step C3-2: If the change validation returns false, the DM Client sends the requested MO data. Additionally, the DM Client can send the direct CV for the requested MO data in case that the direct CV exists for the MO data.

12. Use of DDF file designed for DM 1.x

<< Describe special handling of DDF which is designed for DM 1.x if exist any. DELETE THIS COMMENT >>

13. The Management Object
Nodes are the entities that can be manipulated by management actions carried over the OMA DM protocol. The OMA DM protocol is agnostic about the contents, or values, of the Nodes and treats the Leaf Node values as opaque data.

An Interior Node can have an unlimited number of child Nodes linked to it in such a way that the complete collection of all Nodes in a management database forms a tree structure. Each Node in a tree MUST have a unique URI.

DM Client SHOULD indicate the Node name case sensitivity in the DDF using the CaseSense.

13.1 Device Description Framework

13.1.1 Framework Properties of Node

The properties that describe Nodes in the device description framework are specified with framework property elements. These are not the same as the run-time properties of an instantiated Node in a device. These properties express other information about Nodes that DM Servers might need. The framework properties MUST NOT be changed at run-time as such a change might introduce discrepancies between the run-time Node and the corresponding description. The following table defines the framework Node properties.

	Property
	Support
	Explanation

	AccessType
	MUST
	Specifies which commands are allowed on the Node.

	DefaultValue
	MAY
	The Node value used in a device unless specifically set to a different value.

	Description
	MUST
	The human readable description of the Node.

	DFFormat
	MAY
	The data format of the described Node.

	Occurrence
	MUST
	Specifies the number of instances that MAY occur of the Node.

	Scope
	MAY
	Specifies whether this is a Permanent or Dynamic Node.

	DFTitle
	MAY
	The human readable name of the Node

	DFType
	MUST
	For LeafNodes, the MIME type of the Node value.

For Interior Nodes, the Management Object Identifier or empty.

	CaseSense
	MAY
	Specifies whether the Node name and names of descendant Nodes in the tree below should be treated as case sensitive or case insensitive.

Table 4 - Framework Properties
13.1.2 Framework Elements

This section explains the elements used in the description framework DTD.
14.
14.1

14.2

·
·
14.3

14.3.1

14.4
14.4.1

14.4.2

15. Interworking with DM 1.x MOs
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior 2.0 version

A.2 Draft/Candidate Version 2.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-DM_Protocol-V2_0
	09 Aug 2011
	All
	First template version

	
	3 Oct 2011
	1

5

5
	Applying CR:

· OMA-DM-DMNG-2011-0040R01-CR_TS_Intro

· OMA-DM-DMNG-2011-0041R03-CR_TS_Overview

· OMA-DM-DMNG-2011-0042R01-CR_TS_Overview2

	
	25 Oct 2011
	6

7
	Applying CR:

· OMA-DM-DMNG-2011-0054R02-CR_TS_DMProtocol

· OMA-DM-DMNG-2011-0055R01-CR_TS_JSONStructure

	
	5 Dec 2011
	8

6.2
	Applying CR:

· OMA-DM-DMNG-2011-0069R01-CR_TS_DMMessageFormat

· OMA-DM-DMNG-2011-0070R01-CR_TS_END

· OMA-DM-DMNG-2011-0080R02-CR_TS_DMAcc

	
	12 Mar
	10
	Applying 2012 Template & CR:

· OMA-DM-DMNG-2012-0005R02-CR_Proto_MO

· OMA-DM-DMNG-2012-0004R01-CR_ProtoTS_Reorg

	
	04 May 2012
	5.2, 6.3

9 (new)
	Renumbering of tables and figures.

Applying CRs:

· OMA-DM-DMNG-2011-0074R05-CR_DM_Resource_Cache

· OMA-DM-DMNG-2012-0006R01-CR_Use_Of_DDF_File

· OMA-DM-DMNG-2012-0012R01-CR_Command_Clarifications

	
	29 Jun 2012
	2.1

5.2.3

6.3

7.1
	Applying CRs:

· OMA-DM-DMNG-2012-0025R02-CR_Transfer_MO_JSON
· OMA-DM-DMNG-2012-0029R01-CR_Commands_and_JSON_format
· OMA-DM-DMNG-2012-0033R01-CR_Notification
· OMA-DM-DMNG-2012-0034R01-CR_Cmd_Name
· OMA-DM-DMNG-2012-0035-CR_Parameter_for_Cache

	
	20 Jul 2012
	6

9
	Applying CRs:

· OMA-DM-DMNG-2012-0036R02-CR_Security_Considerations
· OMA-DM-DMNG-2012-0037R01-CR_Transaction_Model
· OMA-DM-DMNG-2012-0039R01-CR_Sub_Parameter_and_Encoding
· OMA-DM-DMNG-2012-0043R01-CR_Request_with_Indirect_CV
· OMA-DM-DMNG-2012-0044R01-CR_END_Command_Clarification

	
	13 Aug 2012
	8
	Incorporated CR:

 OMA-DM-DMNG-2012-0046R01-CR_Access_Control_Principles
Editorial changes

	
	19 Sept 2012
	5.1

5.2.3, 9.1

8, 8.1

5.2.2
	Incorporated CR’s:

 OMA-DM-DMNG-2012-0054R01-CR_Addressing_Scheme
 OMA-DM-DMNG-2012-0055-CR_TS_Correction
 OMA-DM-DMNG-2012-0056R01-CR_ACL_Definition
 OMA-DM-DMNG-2012-0058-CR_Characters_of_occurrency

	
	01 Nov 2012
	4, 5.3, 5.4, 5.5, 5.5.2, 5.5.3, 5.7, 7.1.2, 7.3, 7.4, 8, 8.1, 10.2, 10.3, 10.4, 12.1.1, 13, 14
	Incorporated CRs:

 OMA-DM-DMNG-2012-0052R04-CR_User_Interaction
 OMA-DM-DMNG-2012-0059-CR_Bangkok_Comments_Resolving
 OMA-DM-DMNG-2012-0061R02-CR_Protocol_Overview_Update
 OMA-DM-DMNG-2012-0062R01-CR_ACL_Format_and_Example
Editorial changes

	
	20 Nov 2012
	5.1, 5.6, 5.7, 5.8, 6.2.3, 7.2, 7.3, 7.4, 12.1, 12.1.1
	Incorporated CRs:

 OMA-DM-DMNG-2012-0066R01-CR_MOS_Path_Fix
 OMA-DM-DMNG-2012-0067R02-CR_Command_Updates
 OMA-DM-DMNG-2012-0068R02-CR_Package_Flow
 OMA-DM-DMNG-2012-0069R01-CR_Transaction_Model_Updates
 OMA-DM-DMNG-2012-0070R01-CR_Generic_Alert
 OMA-DM-DMNG-2012-0071R01-CR_Status_Header
 OMA-DM-DMNG-2012-0072R02-CR_Framework_Properties_of_Node
 OMA-DM-DMNG-2012-0073R03-CR_Fix_Management_Object_Serialization
 OMA-DM-DMNG-2012-0074R01-CR_TS_MessageID
Editorial changes

	
	02 Jan 2013
	7,8,10
	Incorporated CRs:

 OMA-DM-DMNG-2012-0064R07-CR_Protocol_Packages
 OMA-DM-DMNG-2012-0078R01-CR_DevInfo
Editorial changes

	
	25 Jan 2013
	5.8.7,
8.1.2.2,
14
	Incorporated CRs:

OMA-DM-DMNG-2013-0001-CR_Web_based_UI_Session
OMA-DM-DMNG-2012-0079R01-CR_Preferred_Connection_Type
Editorial changes

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for XYZ Client

	Item
	Function
	Reference
	Requirement

	XYZ-C-001-M
	Something mandatory
	Section x.y
	(XYZ-C-004-O OR XYZ-C-003-M) AND
 XYZ-C-002-O

	XYZ-C-002-O
	Something optional
	Section x.y
	

	XYZ-C-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MCF

	XYZ-C-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OCF

B.2 SCR for XYZ Server

	Item
	Function
	Reference
	Requirement

	XYZ-S-001-M
	Something mandatory
	Section x.y
	XYZ-S-004-O OR XYZ-S-002-O OR XYZ-S-003-M

	XYZ-S-002-O
	Something optional
	Section x.y
	

	XYZ-S-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MSF

	XYZ-S-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OSF

Appendix C. <Additional Information>

If needed, add annex to provide additional information to support the document. In general, this information should be informative, as normative material should be contained in the primary body of the document.

Note that the styles for the headers in the appendix (App1, App2, App3) are different than the main body. The use below is intended to validate the styles to be used. Remove if not needed.

DELETE THIS COMMENT

C.1 App Headers

<More text>

C.1.1 More Headers

<More text>

C.1.1.1 Even More Headers

<More text>

Figure � SEQ Figure * ARABIC �54�: Addressing Scheme Examples

�Name needs to be defined, for example TNDS20 or something

�Name needs to be defined, for example TNDS20 or something

�If this is an optionality, this value can be removed.

(2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20130101-I]
(2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20130101-I]

[image: image1.jpg]«“+OMa

Open Mobile Alliance

_1414290149.vsd
�

�

DM Client

Data
Repository

2. HTTP response

1. HTTP POST to ServerURI with MO data

_1414290239.vsd
�

�

�

DM Client

1. HTTP GET to ServerURI

Data
Repository

2. HTTP response containing MO data

3. store the received MO data

_1418656273.vsd
�

�

�

DM Client

DM Server

Web Browser
Component

Web Server
Component

1. Initiate to load the ServerURI

2. HTTP request to the ServerURI

UI session continues

3. Store the results for the user interaction

4. Transmit the results
for the user interaction

_1410155597.vsd
1. Transfer SHOW command
in NoUserInput UI session type

4. Send Status for SHOW command

_1414288938.vsd
�

�

DM Client

DM Server

If the DM session continues

3. Processing DM commands (END cmd terminates
DM session)

0. (Package#0) DM Notification (server initiated case)

1. (Package#1) DM session Initiation

2. (Package#2) DM commands

4. (Package#3) Results and Alerts

_1410155652.vsd
Web Server

Web Browser

1. Transfer SHOW command
in UserInput UI session type

4. Send Status for SHOW command

_1390903285.vsd
�

DM Server

DM Client

1. DM Server requests the MO data identified by URI

2. DM Client sends the MO data and cache validator CV1

3. DM Server stores MO data
and cache validator CV1

...

4. DM Server requests the MO data with URI, CV1

6. DM Client sends Status Code (Not Modified)

...

7. The Device updates the MO data identified by URI and the cache validator to CV2

8. DM Server requests the MO data with URI, CV1

10. DM Client sends the updated MO data and CV2

...

≈

≈

≈

≈

11. DM Server stores MO data and cache validator CV2

≈

≈

5. The Device performs
the cache validation process

9. The Device performs
the cache validation process

