OMA-DM-LightweightM2M-2013-0111-CR_Resolving_Comments_on_Section_6[image: image4.jpg]"sOMaQa

Open Mobile Alliance

Change Request

OMA-DM-LightweightM2M-2013-0111-CR_Resolving_Comments_on_Section_6
Change Request

Change Request

	Title:
	Section 6 Update
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DM LightweightM2M

	Doc to Change:
	OMA-TS-LightweightM2M-V1_0-20130717-D

	Submission Date:
	24 July 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Seongyoon Kim, LGE, seongyoon.kim@lge.com
Seungkyu Park, LGE, seungk.park@lge.com
Tim Carey, Alcatel-Lucent, timothy.carey@alcatel-lucent.com

	Replaces:
	n/a

1 Reason for Change

This CR proposes to resolve the below comments.
	A094
	2013.07.02
	T
	6.1
	Source: timothy.carey@alcatel-lucent.com

Form: DOC#0023

Comment: An Object MUST be instantiated either by the LWM2M Server or the LWM2M Client, which is called Object Instance before using the functionality of an Object. After an Object Instance is created, the LWM2M Server can access that Object Instance and Resources which belong to that Object Instance.
How are resource instances instantiated?

Proposed Change: Clarify how Resource Instances are instantiated
	Status: OPEN

	A095
	2013.07.02
	T
	6.1
	Source: timothy.carey@alcatel-lucent.com

Form: DOC#0023

Comment: Figure 14 shows an example of the logical operations the Resources support and how Object Instances and Resources are associated with ACLs. In the example, Object Instance 0 for Object 0 has 2 Resources. Resource 1 supports the ”Read”, “Write” and ”Execute” logical operations, while Resource 2 supports only the “Read” logical operation.

This paragraph is completely wrong. It doesn't show how the ACL is applied to the Object instance and doesn't show the resource instance. I would just remove the entire paragraph and leave the mechanism.

Proposed Change: Develop a new picture that shows the true relationships
	Status: OPEN

	A096
	2013.07.02
	E
	6.1 and other sections
	Source: Vodafone

Form:

Comment: Multiple Resource seems like an undefined term to the reader.

 Proposed Change: Change “multiple” to lower case which makes clear that’ it’s just indicating several resources
	Status: OPEN

	A097
	2013.07.02
	E
	6.1
	Source: Vodafone

Form:

Comment: Figure 14 needs improvement as it doesn’t provide much info to the reader, ACL example would also help to understand the concept.

 Proposed Change: CR will be provided
	Status: OPEN

	A098
	2013.07.03
	E
	6.1
	Source: LGE

Form: DOC#0025

Comment: Logical operation on Object is sent by Server not Client
Proposed Change: “The LWM2M Client and/or LWM2M Server perform logical operations on Objects, Resources, Object Instance and Resources Instances as described in Section 5 Interfaces.”
	Status: OPEN

	A102
	2013.07.03
	E
	6.2
	Source: LGE

Form: DOC#0025

Comment: there is no way for Client to decide Resource Instance ID
Proposed Change: change the description of Resource Instance ID: “Uniquely identifies the Resource Instance in the Resource. This identifier is assigned by LWM2M Client or LWM2M Server.“
	Status: OPEN

Self-Closed

2 Impact on Other Specifications

None
3 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

4 Recommendation

DM WG to review and agree this CR
5 Detailed Change Proposal
Change 1: Change 6
6. Identifiers and Resources

This section defines the identifiers and resource model for the LWM2M Enabler.

6.1 Resource Model

The LWM2M Enabler defines a simple resource model where each piece of information made available by the LWM2M Client is a Resource. Resources are logically organized into Objects. Figure 9 illustrates this structure, and the relationship between Resources, Objects, and the LWM2M Client. The LWM2M Client may have any number of Resources, each of which belongs to an Object. Resources and Objects have the capability to have multiple instances of the Resource or Object.

[image: image1.png]LWM2M Client

Object 0
Resource 1
Resource 2

Resource 3

Resource 4 II

Object 1
Resource 1
Resource 2

Resource 3

Resource 4

Figure 13: Relationship between LWM2M Client, Object, and Resources

Resources are defined per Object, and each Resource is given a unique identifier within that Object. Each Object and Resource is defined to have one or more logical operations that it supports. A Resource MAY consist of multiple instances called a Resource Instance as defined in the Object specification. The LWM2M Server can send “Write” logical operation with JSON or TLV format to Resource to instantiate a Resource Instance. The LWM2M Client also has the capability to instantiate a Resource Instance.

An Object defines a grouping of Resources, for example the Firmware Object contains all the Resources used for firmware update purposes. Each Object is assigned a unique OMA Management Object identifier and corresponding index which identifies an Object defined for the LWM2M Enabler. The LWM2M Enabler defines standard Objects and Resources. Further Objects may be added by OMA or other organizations to enable additional M2M Services.

An Object MUST be instantiated either by the LWM2M Server or the LWM2M Client, which is called Object Instance before using the functionality of an Object. After an Object Instance is created, the LWM2M Server can access that Object Instance and Resources which belong to that Object Instance.

The
LWM2M Server performs logical operations on an Object, Object Instance and Resources as described in Section 5 Interfaces. These logical operations are conveyed as described in Section 8 Transport Layer Binding and Encoding and how to convey the Operation data is defined in 7.3.

The LWM2M Enabler defines an access control mechanism per Object Instance. Object Instances SHOULD have an associated Access Control Object Instance. An Access Control Object Instances contains Access Control Lists (ACLs) that define which logical operations on a given Object Instance are allowed for which LWM2M Server(s).
Figure 14 shows an example of the logical operations the Resources support and how Object Instances and Resources are associated with Access Control Object Instance. In the example, Object Instance 0 for Object 0 has 2 Resources. Resource 1 supports the ”Read”, “Write” and ”Execute” logical operations, while Resource 2 supports only the “Read” logical operation. The associated Access Control Object Instance has ACL of Object Instance 0 for Object 0. Server1 is authorized to perform “Read” and “Write” logical operations to the Object Instance 0 for Object 0 and Resources of the Object Instance. However, due to the supported operations of each Resource, Server1 can perform the “Read” logical operation on Resource 1 and 2, and also can perform the “Write” and “Execute” logical operations on Resource 1, but Server1 cannot perform the “Write” logical operation on Resource 2 and cannot perform the “Execute” logical operation on both Resources. The detail access control mechanism is defined in Section 7.2 Access Control.

[image: image3.png]LWM2M Client

Object 0, Instance 0 Access Control

Object Instance
Resource 1 R, W, E

ACL:

Server1=R, W

Figure 14: Example of Supported operations and Associated Access Control Object Instance
6.2 Identifiers

The LWM2M Enabler defines specific identifiers for entities used within the LWM2M Protocol. These identifiers are defined in Table 12.

Table 14: LWM2M Identifiers
	Identifier
	Semantics
	Description

	Endpoint Client Name
	URN
	Identifies the LWM2M Client on one LWM2M Server (including LWM2M Bootstrap Server).

Provided to the LWM2M Server during Registration, also provided to LWM2M Bootstrap Server when executing the Bootstrap procedure.

Recommended URN formats are documented in Section 6.2.1 Endpoint Client Name.

	LWM2M Bootstrap Server URI
	URI
	Uniquely identifies the LWM2M Bootstrap Server. Provided to the LWM2M Client during the Bootstrap procedure

	LWM2M Server URI
	URI
	Uniquely identifies the LWM2M Server. Provided to the Client during Bootstrap procedure.

	Short Server ID
	16-bit unsigned integer
	Uniquely identifies each LWM2M Server configured for the LWM2M Client. The identifier is assigned during the Bootstrap procedure.

Default Short Server ID is 0 and default Short Server ID MUST NOT be used for identifying the LWM2M Server.

	Human Readable Object URN
	URN for the OMA Management Object
	Assigned by the Object specification.

	Object ID
	16-bit unsigned integer
	Uniquely identifies the Object in the LWM2M Client. This identifier is assigned by OMA.

	Object Instance ID
	16-bit unsigned integer
	Uniquely identifies the Object Instance of the Object within the LWM2M Client. This identifier is assigned by LWM2M Client or LWM2M Server.

	Resource ID
	16-bit unsigned integer
	Uniquely identifies the Resource within the Object. Short integer ID, with a range assigned by the Object specification and unique to that Object, and a Reusable Resource ID range assigned by OMA and re-usable between Objects.

	Resource Instance ID
	16-bit unsigned integer
	Uniquely identifies the Resource Instance in the Resource. This identifier is assigned by LWM2M Client or LWM2M Server.

6.2.1 Endpoint Client Name

Following formats are RECOMMENDED for this identifier to guarantee uniqueness:

	Format

	UUID URN: Identify a device using a Universally Unique IDentifier (UUID). The UUID specifies a valid, hex digit character string as defined in [RFC4122]. The format of the URN is
urn:uuid:########-####-####-############

OPS URN: Identify a device using the format <OUI> "-" <ProductClass> "-" <SerialNumber> as defined in Section 3.4.4 of [TR-069]. The format of the URN is urn:dev:ops:<OUI> "-" <ProductClass> "-" <SerialNumber>.

OS URN: Identify a device using the format <OUI> "-"<SerialNumber> as defined in Section 3.4.4 of [TR-069]. The format of the URN is urn:dev:os:<OUI> "-"<SerialNumber>.

IMEI URN: Identify a device using an International Mobile Equipment Identifiers [3GPP-TS_23.003]. The IMEI URN specifies a valid, 15 digit IMEI. The format of the URN is urn:imei:###############

ESN URN: Identify a device using an Electronic Serial Number. The ESN specifies a valid, 8 digit ESN. The format of the URN is urn:esn:########

MEID URN: Identify a device using a Mobile Equipment Identifier. The MEID URN specifies a valid, 14 digit MEID. The format of the URN is urn:meid:##############

Other URN formats MAY be used. In particular, URN formats defined in [DMREPPRO] chapter 5.5 can be used.
6.2.2 Reusable Resources

When Objects are designed for a similar purpose, for example Objects for use in network management, or Objects for use in embedded device automation, similar resources are useful in more than one Object. For example in embedded device automation, Objects for different purposes may contain common resource types such as digital input, digital output, analogue input, analogue output, dimmer value, unit, min measurement, max measurement, value range etc.

If a resource can feasibly be re-used with the same meaning in multiple Object definitions, it can be defined as a Reusable Resource ID and registered with OMNA. Other Objects may then make use of this Reusable Resource ID in another Object definition. The definition of the Resource MUST be the same with the exception of the Multiple Resource, Mandatory and Description fields.

6.3 Data Formats for Transferring Resource Information
Four data formats are defined by the LWM2M Enabler in this section. The LWM2M Server MUST support all data formats. The plain text and opaque formats MUST be supported by the LWM2M Client. The LWM2M Client MUST support the TLV data format for Object Instance or multiple-instance Resource requests.

The Object specification defines the data format that a Resource supports, either plain text or opaque for singular Resources or TLV for multiple instance Resources.

In addition to the data formats defined in the Object specification, a LWM2M Client MAY choose to support the JSON format for Object Instance or multiple instance Resource requests.

6.3.1 Plain Text

The plain text format is used for ”Read” and “Write” logical operations on singular Resources where the value of the Resource is simply represented as an UTF-8 encoded string. This string can contain a character sequence, integer number, decimal number or any other sequence of valid UTF-8 characters as per Appendix A.

For example a request to the example client’s Device Object, Manufacturer Resource would return the following plain text payload:

Req: GET /3//0

Res: 2.04 Content

Open Mobile Alliance
This data format has a Media Type of application/vnd.oma.lwm2m+text
6.3.2 Opaque

The opaque format is used for ”Read” and “Write” logical operations on singular Resources where the value of the Resource is an opaque sequence of binary octets. This data format is used for binary Resources such as firmware images or application specific binary formats.

This data format has a Media Type of application/vnd.oma.lwm2m+opaque

6.3.3 TLV

For requests to Object Instance or Resource which supports multiple instances (Resource Instance), the binary TLV (Type-Length-Value) format is used to represent an array of values or a singular value using a company binary representation, which is easy to process on simple embedded devices. The format has a minimum overhead per value of just 2 bytes and a maximum overhead of 5 bytes depending on the type of Identifier and length of the value. The maximum size of an Object Instance or Resource in this format is 16.7 MB. The format is self-describing, thus a parser can skip TLVs for which the resource is not known.

This data format has a Media Type of application/vnd.oma.lwm2m+tlv

The format is an array of the following byte sequence, where each array entry represents an Object Instance, Resource, or Resource Instance:

Table 15: TLV format and description

	Field
	Format and Length
	Description

	Type
	8-bits masked field:
0bxxxxxxxx (MSB is the bit following 0b)

Bit numbering is 0 for the LSB to 7 for the MSB
	Bits 7-6: Indicates the type of Identifier

00= Object Instance in which case the Value contains one or more Resource TLVs

01= Resource Instance with Value for use within a multiple Resource
TLV

10= multiple Resource, in which case the Value contains one or more Resource Instance TLVs

11= Resource with Value

	
	
	Bit 5: Indicates the Length of the Identifier

0=The Identifier field of this TLV is 8 bits long

1=The Identifier field of this TLV is 16 bits long

	
	
	Bit 4-3: Indicates the type of Length.

00=No length field, the value immediately follows the Identifier field in is of the length indicated by Bits 6-8 of this field

01 = The Length field is 8-bits and Bits 6-8 MUST be ignored

10 = The Length field is 16-bits and Bits 6-8 MUST be ignored

11 = The Length field is 24-bits and Bits 6-8 MUST be ignored

	
	
	Bits 2-0: A 3-bit unsigned integer indicating the Length of the Value.

	Identifier
	8-bit or 16-bit unsigned integer as indicated by the Type field.
	The Object Instance, Resource, or Resource Instance ID as indicted by the Type field.

	Length
	0-24-bit unsigned integer as indicated by the Type field.
	The Length of the following field in bytes

	Value
	Sequence of bytes of Length
	Value of the tag. The format of the value depends on the Resource’s data type (See Appendix A).

Each TLV entry starts with a Type byte that indicates if the TLV contains an Object Instance, a Resource, multiple Resources, or a Resource Instance. Object Instance and Resource with Resource Instance TLVs contains other TLVs in their value. The hierarchy is as follows and may be up to 3 levels deep. The Object Instance TLV is only required if multiple Object Instances are returned in a request.

· Object Instance TLV, which contains

· Resource TLVs or

· multiple Resource TLVs, which contains

· Resource Instance TLVs

6.3.3.1 Single Object Instance Request Example

In this example, a request for the Device Object of the LWM2M example client is made (GET /3//). The client responds with a TLV payload including all of the readable resources. This TLV payload would have the following format. Since the Device Object has no Instances, no Object Instance TLV entry is needed. The total payload size with the TLV encoding is 86 bytes.

	TLV
	Type Byte
	ID Byte(s)
	Length Byte(s)
	Value
	Total Bytes

	Manufacturer Resource
	0b11 0 01 000
	0x00
	0x14 (20 bytes)
	Open Mobile Alliance [String]
	23

	Model Number
	0b11 0 01 000
	0x01
	0x16 (22 bytes)
	“Lightweight M2M Client” [String]
	25

	Serial Number
	0b11 0 01 000
	0x02
	0x09 (9 bytes)
	“345000123” [String]
	12

	Firmware Version
	0b11 0 00 011
	0x03
	(3 bytes)
	“1.0” [String]
	5

	Available Power Sources
	0b10 0 00 110
	0x06
	(6 byte)
	The next two rows
	2

	Available Power Sources[0]
	0b01 0 00 001
	0x00
	(1 byte)
	0X01 [8-bit Integer]
	3

	Available Power Sources[1]
	0b01 0 00 001
	0x01
	(1 byte)
	0X05 [8-bit Integer]
	3

	Power Source Voltage
	0b10 0 01 000
	0x07
	0x08 (8 bytes)
	The next two rows
	3

	Power Source Voltage[0]
	0b01 0 00 010
	0x00
	(2 bytes)
	0X0ED8 [16-bit Integer]
	4

	Power Source Voltage[1]
	0b01 0 00 010
	0x01
	(2 bytes)
	0X1388 [16-bit Integer]
	4

	Power Source Current
	0b10 0 00 111
	0x08
	(7 bytes)
	The next two rows
	2

	Power Source Current[0]
	0b01 0 00 001
	0x00
	(1 byte)
	0X7D [8-bit Integer]
	3

	Power Source Current[1]
	0b01 0 00 010
	0x01
	(2 bytes)
	0X0384 [16-bit Integer]
	4

	Battery Level
	0b11 0 00 001
	0x09
	(1 byte)
	0x64 [8-bit Integer]
	3

	Memory Free
	0b11 0 00 001
	0x0A
	(1 byte)
	0x0F [8-bit Integer]
	3

	Error Code
	0b10 0 00 011
	0x0B
	(3 byte)
	The next row
	2

	Error Code[0]
	0b01 0 00 001
	0x00
	(1 byte)
	0x00 [8-bit Integer]
	3

	Current Time
	0b11 0 00 100
	0x0D
	(4 byte)
	0x5182428F [32-bit Integer]
	6

	Time Zone
	0b11 0 00 110
	0x0E
	(6 byte)
	“+02:00” [String]
	8

	Supported Binding and Modes
	0b11 0 00 001
	0x0F
	(1byte)
	“U” [String]
	3

	Total
	121

6.3.3.2 Multiple Object Instance Request Example

In this example, a request for both the ACL Objects of the LWM2M example client is made (GET /2). The client responds with a TLV payload including both Object Instances (0 and 1) and their resources. This TLV payload would have the following format. The total payload size with the TLV encoding is 32 bytes.

	TLV
	Type Byte
	ID Byte(s)
	Length Byte(s)
	Value
	Total Bytes

	ACL Object Instance 0
	0b00 0 01 000
	0x00
	(17 bytes)
	The next 5 rows
	2

	Object ID
	0b11 0 00 001
	0x00
	(1 byte)
	0x03 [8-bit Integer]
	3

	ACL
	0b10 0 00 110
	0x02
	(6 bytes)
	The next 2 rows
	2

	 ACL [1]
	0b01 0 00 001
	0x01
	(1 byte)
	0b11 10 0000
	3

	 ACL [2]
	0b01 0 00 001
	0x02
	(1 byte)
	0b10 00 0000
	3

	Access Control Owner
	0b11 0 00 001
	0x03
	(1 byte)
	0x01 [8-bit Integer]
	3

	ACL Object Instance 1
	0b00 0 01 000
	0x01
	(17 bytes)
	The next 5 rows
	2

	Object ID
	0b11 0 00 001
	0x00
	(1 byte)
	0x04 [8-bit Integer]
	3

	ACL
	0b10 0 00 001
	0x02
	(6 bytes)
	The next 2 rows
	2

	 ACL [1]
	0b01 0 00 001
	0x01
	(1 byte)
	0b10 00 0000
	3

	 ACL [2]
	0b01 0 00 001
	0x02
	(1 byte)
	0b10 00 0000
	3

	Access Control Owner
	0b11 0 00 001
	0x03
	(1 byte)
	0x01 [8-bit Integer]
	3

	Total
	32

6.3.4 JSON

For requests to Object Instance or Resource which supports multiple instances (Resource Instance), a JSON format may be used where a set of values and metadata is represented. Each entry of the JSON format is a Resource, where the name is the URI path relative to the request URI.

The JSON is useful for returning multi-level Resources from the resource tree, for example requesting all Instances of an Object, Resources, and Resource Instances within a LWM2M Client within the same response. The JSON format also includes optional time fields, which allows for multiple versions of representations to be sent in the same payload. The time fields are only used when sending notifications.

This data format has a Media Type of application/vnd.oma.lwm2m+json

The format when an Object or Object Instance is requested follows the following syntax:

{"e":[

 {"n": "URI Path", "t": "Time", "v": Float Value, "bv": Boolean Value, "sv":"String Value"},

 {"n": "URI Path", "t": "Time", "v": Float Value, "bv": Boolean Value, "sv":"String Value"}],

 "bt":"Base Time"

}

Table 16: JSON format and description

	Field
	JSON Variable
	Mandatory?
	Description

	Object Root
	e
	Yes
	The root of the value array.

	URI Path
	n
	Yes
	The path of the resource relative to the request URI (/Object/Object Instance/Resource/Resource Instance)

	Time
	t
	No
	The time of the representation relative to the Base Current Time in seconds (a negative integer) for a notification. Required only for historical representations.

	Base Time
	bt
	No
	The base current time which the Time values are relative to as a Time data type (See Appendix B)

	Float Value
	v
	One value field is mandatory
	Value as a JSON float if the resource data type is integer or decimal.

	Boolean Value
	bv
	
	Value as a JSON Boolean if the resource data type is boolean.

	String Value
	sv
	
	Value as a JSON string for all other resource data types. Opaque data types must be Base64 encoded in the String Value field.

For example a request to Device Object of the LWM2M example client (Get /3//) would return the following JSON payload. This example has a size a 397 bytes.

{“e”:[

 {"n":"0","sv":"Open Mobile Alliance"},

 {"n":"1","sv":"Lightweight M2M Client"},

 {"n":"2","sv":"345000123"},
{"n":"3","sv":"1.0"},
{"n":"6/0","v":"1"},

 {"n":"6/1","v":"5"},

 {"n":"7/0","v":"3800"},

 {"n":"7/1","v":"5000"},

 {"n":"8/0","v":"125"},

 {"n":"8/1","v":"900"},
 {"n":"9","v":"100"},

 {"n":"10","v":"15"},

 {"n":"11/0","v":"0"},

 {"n":"13","v":"1367491215"},

 {"n":"14","sv":"+02:00"},
{"n":"15","sv":"U"}]
}
For example a notification about a Resource containing multiple historical representations of a Temperature Resource in the example could result in the following JSON payload:

{“e”:[

 {"n":"1/2","v":"22.4","t":"-5"},

 {"n":"1/2","v":"22.9","t":"-30"},

 {"n":"1/2","v":"24.1","t":"-50"}],

 "bt":"25462634"

}
�A094

�A098

�A095, A097

�A096

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 1)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 5 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

