OMA-DM-LightweightM2M-2016-0117R01-CR_queue_mode_clarification

Change Request

	Title:
	Queue Mode Clarifications 
	 FORMCHECKBOX 
 Public       FORMCHECKBOX 
 OMA Confidential

	To:
	DM LightweightM2M WG

	Doc to Change:
	OMA-TS-LightweightM2M-V1_0-20160830-D

	Submission Date:
	12 September 2016

	Classification:
	 FORMCHECKBOX 
 0: New Functionality
 FORMCHECKBOX 
 1: Major Change
 FORMCHECKBOX 
 2: Bug Fix
 FORMCHECKBOX 
 3: Editorial

	Source:
	Hannes Tschofenig, hannes.tschofenig@arm.com 
(with the help of many others, as it can be seen from the Github issue list)

	Replaces:
	n/a


1 Reason for Change

This contribution aims to address several issues documented in Github, namely
· #104 - Duplicate message delivery in Queued messages

· #98 - Queue mode and timeout for offline

· #80 - Queue mode and REGISTER

· #69 - Persistence of downlink requests in queue mode

· #33 - Define "request is unsuccessful" for 8.3 Queue Mode Operation

2 Impact on Other Specifications

None
3 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification.  This obligation does not imply an obligation on Members to conduct IPR searches.  This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn.  Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration.  These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

4 Recommendation

This contribution suggests various clarifications to the queue mode section.  
5 Detailed Change Proposal

3.2 Definitions

	LWM2M Bootstrap Server Account
	LWM2M Security Object Instance with Bootstrap Server Resource true

	LWM2M Server Account
	LWM2M Security Object Instance with Bootstrap Server Resource false and associated LWM2M Server Object Instance

	Non-persistent Key
	Key that has low entropy e.g. because it is derived from a PIN or password or device serial number, or, derived from a global secret stored on multiple devices.

	Persistent Key
	Key that can with high probability be kept secret for the lifetime of the device. This requires that at minimum each key is unique per device, that each key has high entropy, and that each key retains high entropy even given knowledge of keys extracted from other devices.

	
	

	Kindly consult [OMADICT] for more definitions used in this document.


8.3 Queue Mode Operation

The LWM2M Server MUST support Queue Mode and the LWM2M Client SHOULD support Queue Mode.
When the LWM2M Client has registered with Current Transport Binding and Mode parameter including “Q” (see chapter 5.4), the LWM2M Server does not immediately send downlink requests on the transport used in Queue Mode, but instead waits until the LWM2M Client is online. As such, the Queue Mode offers functionality for a LWM2M Client to inform the LWM2M Server that it may be disconnected for an extended period of time and also when it becomes reachable again. The LWM2M Server uses this information to adjust timers and relay messages from and to the LWM2M Client accordingly. 
The LWM2M Client lets the LWM2M Server know it is awake by sending a registration update message as a Confirmable message. Absent any application specific profiles it is RECOMMENDED that the LWM2M Client waits at least MAX_TRANSMIT_WAIT seconds [COAP] from the last CoAP message it sent to the LWM2M Server before intentionally going offline. 
In order to find out whether a message was successfully delivered from the LWM2M server to the LWM2M client the LWM2M server has to rely on a response. This response tells the server that the message has been received and processed (regardless of what the result of the processing was). A response can be conveyed to the server in two ways:

· ACK piggybacking the response, or

· Separate CON/non-CON containing the response.

If message delivery fails, for example, because the message got lost due to network connectivity issues or because the LMW2M Client was sleeping then CoAP re-transmission behavior at the LWM2M Server will try to retransmit the message. The CoAP stack at the LWM2M Server will resend the message up to a certain number of attempts, as described in Section 4.2 of [CoAP]. If these retransmission attempts fail, the CoAP stack at the LWM2M Server will give up and inform the LWM2M layer. The LWM2M Server has to inform the application about this failed delivery but this API is outside the scope of the LWM2M specification. 

Due to the congestion control approach used by CoAP the LWM2M Server has to wait for a response to a request before sending out the next request from the queue since [CoAP] limits the number of simultaneous outstanding interactions to 1.

Despite the title of the functionality, i.e. Queue Mode, this specification does not mandate an implementation to use queues nor does it specify where such a queue would exist (or any details of such queuing mechanism).   
A typical Queue Mode sequence follows the following steps:

1. The LWM2M Client registers to the LWM2M Server and requests the LWM2M Server to run in Queue mode by using the correct Binding value in the registration.
2. The LWM2M Client is recommended to use the CoAP MAX_TRANSMIT_WAIT parameter to set a timer for how long it shall stay awake since last sent message to the LWM2M Server. After MAX_TRANSMIT_WAIT seconds  without any messages from the LWM2M Server, the LWM2M Client enters a sleep mode.
3. At some point in time the LWM2M Client wakes up again and transmits a registration update message. Note: During the time the LWM2M Client has been sleeping the IP address assigned to it may have been released and / or existing NAT bindings may have been released. If this is the case, then the client needs to re-run the DTLS handshake with the LWM2M Server since an IP address address and/or port number change will destroy the existing security context. For performance and efficiency reasons it is RECOMMENDED to utilize the DTLS session resumption. 
4. When the LWM2M Server receives a message from the Client it informs determines whether any messages need to be sent to the LWM2M Client, as instructed by the application server.

Below is an example flow for Queue Mode in relation to Device Management & Service Enablement Interface.


[image: image1.emf]GET /3/0/0

POST /rd/5a3f


Figure 23: Example of Device Management & Service Enablement interface exchanges for Queue Mode.
Below is an example flow for Queue Mode in relation to Information Reporting Interface


[image: image2.emf]GET /3/0/0

POST /rd/5a3f

2.04 Changed


Figure 24: Example of an Information Reporting exchange for Queue Mode.
[image: image3][image: image4.jpg]"sOMaQa

Open Mobile Alliance



_1524307715.vsd
GET /3/0/0


POST /rd/5a3f



_1524308632.vsd
GET /3/0/0


POST /rd/5a3f


2.04 Changed



