Doc# OMA-DM-LightweightM2M-2017-0088-CR_LwM2M_1.0.1_CoAP_TCP_Support.doc[image: image3.jpg]
Change Request

Doc# OMA-DM-LightweightM2M-2017-0088-CR_LwM2M_1.0.1_CoAP_TCP_Support.doc
Change Request

Change Request

	Title:
	LwM2M 1.0.1 CoAP over TCP Support
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DM

	Doc to Change:
	OMA-TS-LightweightM2M-V1_0-20170208-A.doc

	Submission Date:
	22 March 2017

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	David Navarro, IOTEROP, david.navarro@ioterop.com

	Replaces:
	n/a

1 Reason for Change

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Requesting OMA DM group to review, comment and agree to the changes presented in this change request.
6 Detailed Change Proposal

Change 1: Add RFCNNNN to the list of normative references
2. References

2.1 Normative References

	[3GPP-TS_23.003]
	3GPP TS 23.003 “Numbering, addressing and identification”

	[3GPP-TS_23.032]
	3GPP TS 23.032 “Universal Geographical Area Description (GAD)”

	[3GPP-TS_23.038]
	3GPP TS 23.038 “Alphabets and language-specific information”

	[3GPP-TS_23.040]
	3GPP TS 23.040 “Technical realization of the Short Message Service (SMS)”

	[3GPP-TS_24.008]
	3GPP TS 24.008 “Mobile radio interface Layer 3 specification; Core network protocols; Stage 3”

	[3GPP-TS_25.331]
	3GPP TS 25.331 “Radio Resource Control (RRC); Protocol specification”

	[3GPP-TS_31.111]
	3GPP TS 31.111 “Universal Subscriber Identity Module (USIM) Application Toolkit (USAT)”

	[3GPP-TS_31.115]
	3GPP TS 31.115 “Remote APDU Structure for (U)SIM Toolkit applications”

	[CoAP]
	Shelby, Z., Hartke, K., Bormann, C., and B. Frank, “The Constrained Application Protocol (CoAP)”
IETF RFC 7252 – June 2014

	[CoAP_Blockwise]
	C. Bormann, Z. Shelby, “Block-wise transfers in CoAP”, IETF RFC 7959.

	[CoAP-EST]
	S. Kumar, P. van der Stok, “EST based on DTLS secured CoAP (EST-coaps)”, draft-vanderstok-core-coap-est-00, October, 2016

	[CoRE_Interface]
	Z. Shelby, M. Vial, “CoRE Interfaces”, draft-ietf-core-interfaces-01, Nov 2013

	[CoAP_TCP]
	C. Bormann, S. Lemay, H. Tschofenig, K. Hartke, B. Silverajan, B. Raymor, “CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets”, IETF RFC NNNN.

	[ETSI TS 102.221]
	“Smart Cards; UICC-Terminal interface; Physical and logical characteristics”, (ETSI TS 102 221 release 11), URL:http://www.etsi.org/

	[ETSI TS 102.223]
	“Smart Cards; Card Applications Toolkit (CAT) (Release 11)”
URL:http://www.etsi.org/

	[ETSI TS 102.225]
	ETSI TS 102 225 (V11.0.0): “Smart Cards; Secured packet structure for UICC based applications (Release 11)” URL:http://www.etsi.org/

	[FLOAT]
	IEEE Computer Society (August 29, 2008). IEEE Standard for Floating-Point Arithmetic. IEEE. doi:10.1109/IEEESTD.2008.4610935. ISBN 978-0-7381-5753-5. IEEE Std 754-2008

	[GLOBALPLATFORM]
	GlobalPlatform v2.2.1 - January 2011 -

	[GP SCP03]
	GlobalPlatform Secure Channel Protocol 03 (SCP 03) Amendment D v1.1 Sept 2009

	[IEEE 754-2008]
	IEEE Computer Society (August 29, 2008). IEEE Standard for Floating-Point Arithmetic. IEEE. doi:10.1109/IEEESTD.2008.4610935. ISBN 978-0-7381-5753-5. IEEE Std 754-2008

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.13, Open Mobile Alliance™, OMA-IOP-Process-V1_13, URL:http://www.openmobilealliance.org/

	[LwM2M-AD]
	“Lightweight Machine to Machine Architecture”, Open Mobile Alliance™, OMA-AD-LightweightM2M-V1_0, URL:http://www.openmobilealliance.org/

	[OBSERVE]
	Hartke, K. “Observing Resources in CoAP”, IETF RFC 7641.

	[PKCS#15]
	“PKCS #15 v1.1: Cryptographic Token Information Syntax Standard”, RSA Laboratories, June 6, 2000. URL:ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-15/pkcs-15v1_1.pdf

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[RFC4122]
	“A Universally Unique Identifier (UUID) URN Namespace”, P. Leach, et al. July 2005, URL:http://www.ietf.org/rfc/rfc4122.txt

	[RFC5246]
	The Transport Layer Security (TLS) Protocol Version 1.2

	[RFC5280]
	D. Cooper, et al., “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile”, RFC 5280, May 2008.

	[RFC5289]
	TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode (GCM)

	[RFC5487]
	Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES Galois Counter Mode

	[RFC5958]
	S. Turner, “Asymmetric Key Packages”, RFC 5958, August 2010.

	[RFC6347]
	Rescorla, E. and N. Modadugu, “Datagram Transport Layer Security Version 1.2”, RFC 6347, January 2012.

	[RFC6655]
	McGrew, D. and D. Bailey, “AES-CCM Cipher Suites for TLS”, RFC6655, July 2012.

	[RFC6690]
	Shelby, Z. “Constrained RESTful Environments (CoRE) Link Format”, RFC6690, Aug 2012.

	[RFC7292]
	K. Moriarty, et al., “PKCS #12: Personal Information Exchange Syntax v1.1”, RFC 7292, July 2014.

	[SENML]
	C. Jennings, Z. Shelby, J. Arkko, “Media Types for Sensor Markup Language (SENML)”, draft-jennings-senml-10 (work in progress), April 2013.

	[TR-069]
	Broadband Forum: “TR-069 CPE WAN Management Protocol” Issue: 1 Amendment 5.
URL:http://www.broadband-forum.org/technical/download/TR-069_Amendment-5.pdf

	[WAP-WDP]
	Wireless Application Protocol Forum, “Wireless Datagram Protocol”, June 2001.

Change 2: Add TCP and TLS to the architecture diagram. Figures to be updated.
4. Introduction
This enabler defines the application layer communication protocol between a LwM2M Server and a LwM2M Client, which is located in a LwM2M Device. The OMA Lightweight M2M enabler includes device management and service enablement for LwM2M Devices. The target LwM2M Devices for this enabler are mainly resource constrained devices. Therefore, this enabler makes use of a light and compact protocol as well as an efficient resource data model.
A Client-Server architecture is introduced for the LwM2M Enabler, where the LwM2M Device acts as a LwM2M Client and the M2M service, platform or application acts as the LwM2M Server. The LwM2M Enabler has two components, LwM2M Server and LwM2M Client. Four interfaces are designed between these two components as shown below:
· Bootstrap
· Client Registration
· Device management and service enablement
· Information Reporting
This architecture is shown in Figure 1. The LwM2M Enabler uses the Constrained Application Protocol (CoAP) with UDP, TCP and/or SMS bindings. Datagram Transport Layer Security (DTLS) provides security for UDP transport layer. Transport Layer Security (TLS) provides security for TCP transport layer. The LwM2M Enabler protocol stack is shown in Figure 2.

[image: image1.emf]LwM2M Server

LwM2M Client

Objects

M2M Device

-UDP or SMS Bearer

-DTLS Security

-Efficient PayloadBootstrap-

StackInterfaces

Device Management &

Service Enablement -

-CoAP Protocol

Figure 1: The overall architecture of the LwM2M Enabler

Client Registration -

Information Reporting -

Figure 1: The overall architecture of the LwM2M Enabler.

[image: image2.emf]CoAP

LwM2M

DTLS

UDP

SMS

on-

device

SMS

on-

Smartcard

Objects

Figure 2: The protocol stack of the LwM2M Enabler.
4.1 Version 1.0
Version 1.0 of LwM2M brings in basic enablers needed, the following are the list of object enablers defined as part of core TS.

0. Security Object

1. Server Object

2. Access Control Object

3. Device Object

4. Connectivity Monitoring Object

5. Firmware Update Object

6. Location Object

7. Connectivity Statistics Object
7. Security

The LwM2M protocol is based on [CoAP] principles and utilizes the UDP, TCP and SMS transport channel bindings of the protocol. The LwM2M protocol utilizes DTLS with the UDP and SMS channel bindings and TLS with the TCP channel binding to implement authentication, confidentiality, and data integrity features of the protocol between communicating LwM2M entities. As an alternative, lower layer security may be used, as described in Section 7.2.
LwM2M Clients require credentials and configuration information for securely communicate with LwM2M Servers. This configuration information can be provisioned to the LwM2M Client during manufacturing or through the use of the LwM2M Bootstrap-Server. In order to secure the communication between the Lwm2M Client and the LwM2M Bootstrap-Server a different set of credentials and configuration information is required.

LwM2M supports three different types of credentials, namely

· Certificates,

· Raw public keys, and

· Pre-shared secrets.

Since these credential types offer different properties the LwM2M offers support for all of them.

The LwM2M protocol specifies that authorization of LwM2M Servers to access Object Instances and Resources within the LwM2M Client is provided through Access Control Object Instances within the LwM2M Client.
7.2 DTLS and TLS-based Security
7.2.3 Requirements

For authentication of communicating LwM2M entities, the LwM2M protocol requires that all communication between LwM2M Clients and LwM2M Servers as well as LwM2M Clients and LwM2M Bootstrap-Servers are authenticated using mutual authentication. This means that a:

· LwM2M Client MUST authenticate a LwM2M Server prior to exchange of any information.
· LwM2M Server MUST authenticate a LwM2M Client prior to exchange of any information.
· LwM2M Client MUST authenticate a LwM2M Bootstrap-Server prior to exchange of any information.
· LwM2M Bootstrap-Server MUST authenticate a LwM2M Client prior to exchange of any information.
For confidentiality and data integrity of information between communicating LwM2M entities, the LwM2M protocol requires that all communication between LwM2M Clients and LwM2M Servers as well as LwM2M Clients and LwM2M Bootstrap-Servers are encrypted and integrity protected. This means that a:

· LwM2M Client MUST encrypt and integrity protect data communicated to a LwM2M Server.
· LwM2M Server MUST encrypt and integrity protect data communicated to a LwM2M Client.
· LwM2M Client MUST encrypt and integrity protect data communicated to a LwM2M Bootstrap-Server.
· LwM2M Bootstrap-Server MUST encrypt and integrity protect data communicated to a LwM2M Client.
Due the sensitive nature of bootstrap information, a particular care has to be taken to ensure protection of that data.
The use of DTLS and TLS fulfils these requirements.
7.2.4 DTLS and TLS Overview

CoAP [CoAP] is secured using the Datagram Transport Layer Security (DTLS) 1.2 protocol [RFC6347], which is based on TLS v1.2 [RFC5246]. The DTLS binding for CoAP is defined in Section 9 of [CoAP]. DTLS is a communication security solution for datagram based protocols (such as UDP). It provides a secure handshake with session key generation, mutual authentication, data integrity and confidentiality.
CoAP over TCP [CoAP_TCP] is secured using Transport Layer Security (TLS) 1.2 protocol [RFC5246]. The TLS binding for CoAP is defined in Section 8 of [CoAP_TCP].
This section provides information related to the use of DTLS and TLS for use with CoAP over DTLS over UDP, CoAP over TLS over TCP as well as for use with CoAP over DTLS over SMS. Section 7.3 provides additional information regarding the use of DTLS in an SMS context.

The (D)TLS client and the (D)TLS server SHOULD keep security state, such as session keys, sequence numbers, and initialization vectors, and other security parameters, established with DTLS or TLS for as long a period as can be safely achieved without risking compromise to the security context. If such state persists across sleep cycles where the RAM is powered off, secure storage SHOULD be used for the security context.
The credentials used for authenticating the (D)TLS client and the (D)TLS server to secure the communication between the LwM2M Client and the LwM2M Server are obtained using one of the bootstrap modes defined in Section 5.2.2. Appendix E.1.1 defines the format of the keying material stored in the LwM2M Security Object Instances.
LwM2M Bootstrap-Servers, LwM2M Servers and LwM2M Clients MUST use different key pairs. LwM2M Clients MUST use keys, which are unique to each LwM2M Client. When a LwM2M Client is configured to utilize multiple LwM2M Servers then the LwM2M Bootstrap-Server may configure different credentials with these LwM2Ms Servers. Such configuration provides better unlinkability properties since each individual LwM2M Server cannot correlate request based on the credentials used by the LwM2M Client. Deployment and application specific considerations dictate what approach to use.
7.2.5 Ciphersuites

DTLS and TLS support the concept of ciphersuites and they are securely negotiated during the (D)TLS handshake. This specification recommends a limited number of ciphersuites. The recommended ciphersuites have been chosen because of suitability for IoT devices, security reasons and to improve interoperability and depend on the type of credential being used since the ciphersuite concept also indicates the authentication and key exchange mechanism. LwM2M Clients and LwM2M Servers MAY support additional ciphersuites that conform to state-of-the-art security requirements.

Note that care has to be taken when using CBC-based ciphersuites in DTLS or TLS for the following two reasons:
(1) Prior to TLS 1.1 IV selection is broken. The solution is to use TLS 1.1 or higher, and there is a work-around for earlier version using record splitting. Since this specification relies on TLS 1.2 and DTLS 1.2 this concern is not applicable.

(2) Implementing authenticated decryption (checking padding and mac) without any side channel is hard (see Lucky 13 attack and its variants). The solution is to use the encrypt-then-mac extension defined in RFC 7366, which is recommended.
7.2.6 Bootstrapping
The Resources in the LwM2M Security Object (i.e., “Security Mode”, “Public Key or Identity”, “Server Public Key or Identity” and “Secret Key”) are used
1) for providing channel security in “Client Registration”, “Device Management & Service Enablement”, and “Information Reporting” Interfaces if the LwM2M Security Object Instance relates to a LwM2M Server, or,

2) for providing channel security in Bootstrap Interface if the LwM2M Security Object instance relates to a LwM2M Bootstrap-Server.
3) for protecting the communication with a firmware repository server when the LwM2M Client receives a URI in the Package URI of the Firmware Update object.
The content and the interpretation of the Resources in the LwM2M Security Object depend on the type of credential being used.

Concerning Bootstrap from Smartcard a secure channel between the Smartcard and the LwM2M Client SHOULD be established, as described in Appendix G and defined in [GLOBALPLATFORM 3], [GP SCP03]. Using Smartcard with pre-shared secrets, raw public keys, and with certificates needs no pre-existing trust relationship between LwM2M Server(s) and LwM2M Client(s). The pre-established trust relationship is between the LwM2M Server(s) and the SmartCard(s).
LwM2M Clients MUST either be provisioned for use with a LwM2M Server (manufacturer pre-configuration bootstrap mode) or else be provisioned for use with an LwM2M Bootstrap-Server. Any LwM2M Client, which supports client or server initiated bootstrap mode, MUST support at least one of the following secure methods:
1) Bootstrapping with a strong (high-entropy) pre-shared secret, as described in Section 7.1.7. The ciphersuites defined in Section 7.1.7 MUST NOT be used with a low-entropy secret or with a password.

2) Bootstrapping with a raw public key or certificate-based method (as described in Section 7.1.8 and Section 7.1.9).

In either case, the LwM2M Client MUST be provisioned with a credential that is unique to a device. For full interoperability, a LwM2M Bootstrap-Server MUST support bootstrapping via pre-shared secrets, raw public keys, and certificates.

NOTE: The above security methods can also be used by the LwM2M Bootstrap-Server to provision KIc and KID for the SMS Secured Packet Structure mode (see Section 7.2.2 for SMS Secured Packet Structure mode).
Security credential dynamically provisioned to the LwM2M Client and the LwM2M Server MAY change at any time, even during the lifetime of an ongoing (D)TLS session. Since the (D)TLS protocol verifies the credentials only at the beginning of the session establishment (unless the re-negotiation feature is used) it is possible that a change in credential (for example, credentials for the use of a PSK-based ciphersuite) occurs after a (D)TLS handshake has already been completed and the (D)TLS session setup is already finalized. Hence, from a (D)TLS protocol point of view such a change is not recognized and the already established record layer security associations are in use. It is a policy decision for a (D)TLS client as well as a (D)TLS server implementation to tear down an already existing session when the credentials change. Such a decision will depend on various factors, such as the application domain in which LwM2M is used. The LwM2M specification does not mandate a specific behaviour in such a case since (D)TLS allows both communication parties to tear down an established (D)TLS session for any number of reasons.

7.2.7 Endpoint Client Name

The LwM2M specification defines the use of the endpoint client name in the Bootstrap-Request and in the Register messages. Since the endpoint client name is not authenticated at the application layer the LwM2M Server MUST compare the received endpoint client name identifier with the identifier used at the (D)TLS handshake. This comparison may either be an equality match or may involve a dedicated lookup table to ensure that LwM2M Clients cannot intentionally or due to misconfiguration impersonate other LwM2M Clients. The LwM2M Server MUST respond with a “4.00 Bad Request” to the LwM2M Client if these fields do not match.
7.2.8 LwM2M and (D)TLS Roles

The client-server roles of (D)TLS, which indicate who initiates the (D)TLS handshake, are independent from the client-server relationship of LwM2M. In client-initiated bootstrapping the LwM2M Client is also the (D)TLS client and the LwM2M Bootstrap Server acts as the (D)TLS server. For server-initiated bootstrapping, however, the roles are reversed: the LwM2M Client acts in the role of a (D)TLS server and the LwM2M Bootstrap Server is the (D)TLS client. Note that using a (D)TLS server on a LwM2M Client requires additional resources, such as RAM, and flash memory.
When the LwM2M Client acts in the role of a (D)TLS server then care has to be taken that the following four values are equal:

(1) Value in the Server Name Indication (SNI) extension used in the (D)TLS exchange,

(2) Endpoint Client Name,

(3) Identifier used with the credential, such as the identifier contained in the (D)TLS server certificate, and

(4) Value in the LwM2M Server URI Resource.

Note that the (D)TLS client (acting as the LwM2M Server) for the server-initiated bootstrapping has to be configured with the IP address of the LwM2M Client, an FQDN, and the certificate, raw public key or PSK for use with the LwM2M Client.
7.2.9 Pre-Shared Keys

A LwM2M Server MUST support the Pre-Shared Key mode of DTLS with the following ciphersuites:

· TLS_PSK_WITH_AES_128_CCM_8, as defined in [RFC6655]

· TLS_PSK_WITH_AES_128_CBC_SHA256, as defined in [RFC5487]

A LwM2M Client MUST support the Pre-Shared Key mode of (D)TLS with at least one of the ciphersuites specified for the LwM2M Server.
This mode requires the following resources of the Security Object defined in Appendix E.1 to be populated:

· The “Security Mode” Resource MUST contain the value 0.

· The "Public Key or Identity" Resource MUST be used to store the PSK identity, defined in [RFC4279].

· The "Secret Key" Resource MUST be used to store the PSK, defined in [RFC4279].

· The “Server Public Key” Resource MUST NOT be used in the Pre-Shared Key mode.
7.2.10 Raw Public Keys
If a LwM2M Server supports the raw public key credentials it MUST support the following ciphersuites:
· TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, as defined in [RFC6655]

· TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, as defined in [RFC5289]

If a LwM2M Client supports the raw public key mode it MUST support at least one of the ciphersuites supported by the LwM2M Server.
This mode requires the following resources of the Security Object defined in Appendix E.1 to be populated:

· The “Security Mode” Resource MUST contain the value 1.

· The "Public Key or Identity" Resource MUST be used to store the raw public key of the (D)TLS client.

· The "Secret Key" Resource MUST be used to store the private key of the (D)TLS client.

· The “Server Public Key” Resource MUST be used to store the raw public key of the (D)TLS server.

This security mode is appropriate for LwM2M deployments where the benefits of asymmetric cryptography are used but without the overhead of the public key infrastructure.
The (D)TLS client MUST check that the raw public key presented by the (D)TLS server exactly matches this stored public key.

The (D)TLS server MUST store its own private and public keys, and MUST have a stored copy of the expected client public key. The (D)TLS server MUST check that the raw public key presented by the (D)TLS client exactly matches this stored public key.

7.2.11 X.509 Certificates

The X.509 Certificate mode requires the use of X.509v3 certificates [RFC5280].

If a LwM2M Server supports X.509 Certificate mode it MUST support the following ciphersuites:

· TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, as defined in [RFC7251].

· TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, as defined in [RFC5289]

If a LwM2M Client supports X.509 Certificate mode it MUST support at least one of the ciphersuites supported by the LwM2M Server.
This mode requires the following resources of the Security Object defined in Appendix E.1 to be populated:

· The “Security Mode” Resource MUST contain the value 2.

· The "Public Key or Identity" Resource MUST be used to store the X.509 certificate of the (D)TLS client.

· The "Secret Key" Resource MUST be used to store the private key of the (D)TLS client.

· The “Server Public Key” Resource MUST be used to store the certificate of the (D)TLS server. The use of it is explained in more detail below.

The "LwM2M Server URI", and the "Bootstrap Server" Resources are populated according to the description in Appendix E.1.
The public key infrastructure supports different deployment modes, as discussed in [RFC6698], and this specification supports the domain issued certificate mode whereby the Server Public Key Resource specifies the exact certificate that should be used for the DTLS server, and the certificate does not need to be signed by a valid CA. This allows for the use of self-signed certificates. Other modes are not supported.
The algorithm for verifying the service identity, as described in RFC 6125 [RFC6125], is essential for ensuring proper security when certificates are used and MUST be implemented and used by the (D)TLS client. Terms like reference identifier and presented identifier are defined in RFC 6125.

Comparing the reference identifier against the presented identifier obtained from the certificate is required to ensure the (D)TLS client is communicating with the intended (D)TLS server. Since only the domain-issued certificate mode is supported by this specification the (D)TLS client compares the certificate from the Server Public Key Resource with the certificate provided in the (D)TLS handshake additionally comparing the reference identifier against the presented identifier is step for future-proofing in the anticipation of supporting other PKIX validation modes. Similarly, a (D)TLS client running on a LwM2M Server would need to obtain the certificate of the (D)TLS server running on the LwM2M Client from some repository.
The algorithm description from RFC 6125 assumes that fully qualified DNS domain names are used. If a server node is provisioned with a fully qualified DNS domain, then the (D)TLS server certificate MUST contain the fully qualified DNS domain name or "FQDN" as dNSName [RFC5280]. For CoAP, the coaps URI scheme is described in Section 6.2 of [RFC7252]. This FQDN is stored in the SubjectAltName or in the leftmost Common Name (CN) component of the subject name, as explained in Section 9.1.3.3 of [RFC7252], and used by the (D)TLS client to match it against the FQDN used during the lookup process, as described in [RFC6125].

Note that the Server Name Indication (SNI) extension [RFC6066] allows a (D)TLS client to tell a (D)TLS server the name of the (D)TLS server it is contacting. This is an important feature when the server is part of a hosting solution where multiple virtual servers are using a single underlying network address. Section 3 of [RFC6066] only allows FQDN hostname of the (D)TLS server in the ServerName field. For the (D)TLS client running on a LwM2M Server the SNI extension allows the LwM2M Server to indicate what certificate it is expecting.
In some deployment scenarios DNS is not used and hence LwM2M Clients need to follow a different procedure.
If the CoAP URI stored in the "LwM2M Server URI" Resource contains an IP literal, such as coaps://[2001:db8::2:1]/, then certificate provided by the server also has to contain such an IP address in the Common Name (CN) component of the server certificate or in a field of URI type in the SubjectAltName set.

The procedure for a client using such certificates is as follows:

· The LwM2M Client uses the IP address from the LwM2M Server URI Resource to connect to the LwM2M Server using a (D)TLS handshake. The IP address becomes the reference identifier.

· The DTLS or TLS stack of the LwM2M Server returns a Certificate message as part of the handshake that contains a certificate. The IP address extracted from the server certificate becomes the presented identifier.

· The client matches the reference identifier against the presented identifier. If the two match, the client continues with the certificate verification according to RFC 5280 and aborts the handshake with a fatal alert otherwise.

There are disadvantages in the way how IP addresses are used in the LwM2M specification with certificates. Whenever the IP address of the LwM2M Server changes a new certificate for that LwM2M Server needs to be created. Due to the only supported domain-issued certificate mode the LwM2M Server certificate also needs to be provisioned to the LwM2M Client since otherwise the (D)TLS handshake will fail since the certificate provisioned to the Server Public Key Resource will not match the newly generated LwM2M Server certificated provided in the (D)TLS handshake. Furthermore, the IP address contained in the LwM2M Server URI Resource will also need to be updated. Finally, IP addresses cannot be used in the SNI extension.
The use of certificates requires the (D)TLS client to understand the concept of time since it needs to check the validity of the server-provided certificate. Different deployments may have different means of obtaining the current time and this specification does not mandate one mechanism. In general, the LwM2M Bootstrap-Server certificate is not expected to expire since the LwM2M Client has no easy possibility to recover from such an expired certificate. However, if the LwM2M Client determines that the LwM2M Server certificate is expired it MAY contact the LwM2M Bootstrap-Server to obtain new security credentials for use with the LwM2M Server.

Note that the LwM2M Device Object allows the LwM2M Bootstrap-Server to configure the current time for the LwM2M Client using the Current Time Resource.
7.2.12 “NoSec” mode

It is highly recommended to always protect the LwM2M protocol with DTLS or TLS. There are, however, scenarios where the LwM2M protocol is deployed in environments where lower layer security mechanisms are provided.

The LwM2M Server MUST compare the endpoint client name identifier used during the Register and the Bootstrap-Request message with the identifier used for network access authentication (typically used to setup link layer security procedures).

The LwM2M protocol may use the NoSec mode with or without a lower-layer security mechanism and matching the endpoint client name identifier with any lower layer identifier may in the latter case not be possible.

7.1.11 Certificate mode with EST
This mode uses the configuration of the certificate mode defined in Section 7.1.9 with the following changes; instead of generating the certificate and the private key for the client by the LwM2M Bootstrap Server and to provision it to the LwM2M Client the Bootstrap Server MUST set the “Security Mode” Resource to value 4 and provisions the certificate of the (D)TLS server to the “Server Public Key” Resource. This triggers the LwM2M Client to locally generate a public / private key pair on the LwM2M Client and to initiate an EST over CoAP protocol exchange [CoAP-EST] to obtain a certificate. The EST over CoAP specification [CoAP-EST] profiles the use of EST for use in constrained environments.

When generating a public / private key pair, the random generator used by the LwM2M Client MUST respect the characteristics of a sufficiently high quality random bit generator, such as defined for example by ISO/IEC 18031:2011, RFC 4086 [RFC4086] or NIST Special Publication 800-90a [SP800-90A].

Compared to the certificate mode additional over-the-air overhead is introduced by this mode since the LwM2M Client needs to convey the public key to the EST server and needs to demonstrate possession of the private key using the PKCS#10 defined mechanism, as referenced in the EST specification. Depending on the deployment environment this additional overhead needs to be compared against the added security benefit of not disclosing the private key to other parties.

The "Secret Key" and the "Public Key or Identity" Resources are not used by this mode. The "LwM2M Server URI", and the "Bootstrap Server" Resources are populated according to the description in Appendix E.1.

Enrolment over Secure Transport (EST) offers multiple features, including

· Simple PKI messages,

· CA certificate retrieval,

· CSR Attributes Request,

· Server-generated key request,

but only the first two are mandatory to implement.

In context of this specification functionality for server-generated key requests is already covered as part of the security mode (1 - Raw Public Key mode and 2 - Certificate mode). CSR Attributes Request is also not required for this specification either since the LwM2M Bootstrap Server is typically in possession of the required attributes for generating a certificate. The CA certificate retrieval, while mandatory to implement for EST, is not used by version 1.0 of this specification since only the domain issued certificate mode is supported, as described in Section 7.1.9. Hence, CA certificates are not utilized.
8. Transport Layer Binding and Encodings

The LwM2M interfaces use the IETF Constrained Application Protocol [CoAP] as an underlying transfer protocol across IP and SMS bearers. This protocol defines the message header, request/response codes, message options and retransmission mechanisms. This section defines the subset of features from the IETF CoAP specification to be used by LwM2M interfaces.
8.1 Required Features

For realization of the LwM2M interfaces, only the basic binary CoAP message header, and a small subset of options are required. This section explicitly defines the features of the CoAP standard that are required for LwM2M.

·
·
· GET, PUT, POST and DELETE methods MUST be supported. LwM2M Operations map to these methods.

· A subset of Response Codes MUST be supported for LwM2M response message mapping.
· The Uri-Path Option MUST be supported to indicate the identifier of the interface, Object Instance and Resource being requested.

· The Location-Path Option MUST be supported to indicate the handle of a registration for future update and delete operations.

· The Uri-Query Option MUST be supported.

· The Content-Format Option MUST be used to indicate the data format of the payload.
· The Accept Option MAY be included in a LwM2M Server data request, to specify the payload Content-Format this Server prefers to receive. The Client returns the preferred Content-Format if available. If this Accept option is not given or if the LwM2M Client doesn’t support that option, the LwM2M Client will use its own preferred data format reported in the Content-Format of the response message. If the preferred Content-Format cannot be returned, then a 4.06 “Not Acceptable” value MUST be sent as a response.
· The Token Option MAY be used to enable multiple requests in parallel with an endpoint, and MUST be supported for the Information Reporting interface.
For UDP and SMS bindings, these additional features are required:

· The 4-byte binary CoAP message header is defined in Section 3 of [CoAP]. This same base message is used for Request and Response interactions.
· Confirmable, Acknowledgement and Reset messages MUST be supported. The Reset message is used as a message layer error message in response to a malformed Confirmable message. Non-Confirmable messages MAY be used by a Client for sending Information Reporting notifications as per [Observe].
· CoAP Blockwise transfer for CoAP MUST be supported by the LwM2M Client when the Firmware Update Object (ID:5) is implemented by the client and MUST be supported by the LwM2M Server.
This functionality is motivated by limitations of CoAP, as defined in RFC 7252 [CoAP] since CoAP was not designed for transmission of large payloads. Because the CoAP header itself does not contain length information the UDP length header is used instead. The maximum UDP datagram size is limited to ~64 KiB and transmitting data beyond the (path) maximum transmission (MTU) size will additionally lead to inefficiency because of fragmentation at lower layers (IP layer, adaptation layer, and link layer). Blockwise Transfer for CoAP [draft-ietf-core-block-20] was specifically designed to lift this limitation in order to transfer large payloads larger than ~64 KiB via CoAP, such as firmware images.
Note: [CoAP_Blockwise] is also beneficial for use with firmware images smaller than 64 KiB since the block-wise transmission allows the server to deliver firmware images in chunks suitable to the MTU and thereby avoiding fragmentation at lower layers. A LwM2M client may choose to support block-wise transfer for objects other than the Firmware Update object. This may, for example, be useful with objects that are larger in size, such as the security object which may contain certificates. The specifics of how this functionality is utilized by a LwM2M Server are out of scope for this release of LwM2M.

8.2 URI Identifier & Operation Mapping

Although CoAP supports a URI in requests, it is not used in the same way as in HTTP. The URI in CoAP is broken down into binary parts, minimizing overhead and complexity. In LwM2M only path segment and query string URI components are needed. The URI path is used to simply identify the interface, Object Instance or Resource that the request is for, and is encoded in Uri-Path options. The LwM2M Registration interface also makes use of query string parameters to pass on meta-data with the request separately from the payload. Each query parameter is encoded in a Uri-Query Option. Likewise, the LwM2M operations for each interface are mapped to CoAP Methods.
For UDP and SMS bindings, all the LwM2M operations except “Notify” MUST be Confirmable CoAP message and “Notify” can be either Confirmable or Non-Confirmable CoAP message.
8.2.1 Firewall/NAT

For a firewall to support LwM2M over UDP Transport Layer, it should be configured to allow outgoing UDP packets to destination port 5683 (other ports can be configured), and allow incoming UDP packets back to the source address/port of the outgoing UDP packet for a period of at least 240 seconds. These UDP packets may contain DTLS or CoAP payloads. When a firewall is configured as such any LwM2M Clients behind it should use Queue Mode.

For a firewall to support LwM2M over UDP Transport Layer, it can be configured to allow both outgoing and incoming UDP packets to destination port 5683 (other ports can be configured). These UDP packets may contain DTLS or CoAP payloads. When a firewall is configured as such any LwM2M Clients behind it are not required to use Queued Mode, but may use it for other reasons (e.g., a battery powered sleeping device).
For a LwM2M Server to be accessible behind a firewall over TCP Transport Layer, the firewall should be configured to allow incoming TCP connections to destination port 5683 (other ports can be configured). The TCP packets may contain TLS or CoAP payloads.
Any LwM2M Clients behind a NAT can use Queued Mode. There are other mechanisms to transverse a NAT, however they are out of scope for the LwM2M Enabler.

8.2.4 Registration Interface

The registration interface is used by a LwM2M Client to register with a LwM2M Server, identified by the LwM2M Server URI.
Registration is performed by sending a CoAP POST to the LwM2M Server URI /rd, with registration parameters passed as query string parameters as per Table 24 and Object and Object Instances included in the payload as specified in Section 5.3.1. The response includes Location-Path Options, which indicate the path to use for updating or deleting the registration. The LwM2M Server MUST return a location under the /rd path segment.
When using UDP Transport Layer, as the network connectivity may be limited or intermittent, it is advised to make several retries of the Registration if no reply is received from the LwM2M Server before considering the registration as failed.

When a new DTLS or TLS Session is started, or in NoSec mode when the LwM2M Client IP address changes, the Client MUST register again to the LwM2M Server.
Registration update is performed by sending a CoAP POST to the Location path returned to the LwM2M Client as a result of a successful registration.
De-registration is performed by sending a CoAP DELETE to the Location path returned to the LwM2M Client as a result of a successful registration.
	Operation
	CoAP Method
	URI
	Success
	Failure

	Register
	POST
	/rd?ep={Endpoint Client Name}<={Lifetime}&sms={MSISDN}
&lwm2m={version}&b={binding}
	2.01 Created
	4.00 Bad Request, 4.03 Forbidden, 4.12 Precondition Failed

	Update
	POST
	/{location}?lt={Lifetime}&sms={MSISDN}
&b={binding}
	2.04 Changed
	4.00 Bad Request, 4.04 Not Found

	De-register
	DELETE
	/{location}
	2.02 Deleted
	4.00 Bad Request, 4.04 Not Found

Table 24: Operation to Method and URI Mapping
Note: Throughout the present document the format of the MSISDN must be as specified in [3GPP-TS_23.003]. According to this definition “+” is not preceding the country code.
8.3 Queue Mode Operation

When using UDP Transport Layer, the LwM2M Server MUST support Queue Mode and the LwM2M Client SHOULD support Queue Mode.
When the LwM2M Client has registered with Current Transport Binding and Mode parameter including “Q” (see chapter 5.4), the LwM2M Server does not immediately send downlink requests on the transport used in Queue Mode, but instead waits until the LwM2M Client is online. As such, the Queue Mode offers functionality for a LwM2M Client to inform the LwM2M Server that it may be disconnected for an extended period of time and also when it becomes reachable again. The LwM2M Server uses this information to adjust timers and relay messages from and to the LwM2M Client accordingly.
The LwM2M Client lets the LwM2M Server know it is awake by sending a registration update message as a Confirmable message. Absent any application specific profiles it is RECOMMENDED that the LwM2M Client waits at least MAX_TRANSMIT_WAIT seconds [CoAP] from the last CoAP message it sent to the LwM2M Server before intentionally going offline.
In order to find out whether a message was successfully delivered from the LwM2M server to the LwM2M client the LwM2M server has to rely on a response. This response tells the server that the message has been received and processed (regardless of what the result of the processing was). A response can be conveyed to the server in two ways:

· ACK piggybacking the response, or

· Separate CON/non-CON containing the response.

If message delivery fails, for example, because the message got lost due to network connectivity issues or because the LMW2M Client was sleeping then CoAP re-transmission behaviour at the LwM2M Server will try to retransmit the message. The CoAP stack at the LwM2M Server will resend the message up to a certain number of attempts, as described in Section 4.2 of [CoAP]. If these retransmission attempts fail, the CoAP stack at the LwM2M Server will give up and inform the LwM2M layer. The LwM2M Server has to inform the application about this failed delivery but this API is outside the scope of the LwM2M specification.

Due to the congestion control approach used by CoAP the LwM2M Server has to wait for a response to a request before sending out the next request from the queue since [CoAP] limits the number of simultaneous outstanding interactions to 1.

Despite the title of the functionality, i.e. Queue Mode, this specification does not mandate an implementation to use queues nor does it specify where such a queue would exist (or any details of such queuing mechanism).
A typical Queue Mode sequence follows the following steps:

1. The LwM2M Client registers to the LwM2M Server and requests the LwM2M Server to run in Queue mode by using the correct Binding value in the registration.
2. The LwM2M Client is recommended to use the CoAP MAX_TRANSMIT_WAIT parameter to set a timer for how long it shall stay awake since last sent message to the LwM2M Server. After MAX_TRANSMIT_WAIT seconds without any messages from the LwM2M Server, the LwM2M Client enters a sleep mode.
3. At some point in time the LwM2M Client wakes up again and transmits a registration update message. Note: During the time the LwM2M Client has been sleeping the IP address assigned to it may have been released and / or existing NAT bindings may have been released. If this is the case, then the client needs to re-run the DTLS handshake with the LwM2M Server since an IP address and/or port number change will destroy the existing security context. For performance and efficiency reasons it is RECOMMENDED to utilize the DTLS session resumption.
When the LwM2M Server receives a message from the Client, it informs determines whether any messages need to be sent to the LwM2M Client, as instructed by the application server.
8.6 Transport Bindings

The LwM2M Server and the LwM2M Client MUST support either UDP binding specified in Section 8.6.1 UDP Binding or TCP binding specified in Section 8.6.3 TCP Binding. The LwM2M Server SHOULD support SMS binding and the LwM2M Client MAY support SMS binding specified in Section 8.6.2 SMS Binding.
8.6.1 UDP Binding

The CoAP binding for UDP is defined in [CoAP]. The protocol has a IANA registered scheme of coap:// and a default port of 5683. The UDP binding is used in NoSec (no security) mode. Reliability over the UDP transport is provided by the built-in retransmission mechanism of CoAP.

8.6.2 SMS Binding

CoAP is used over SMS in this transport binding by placing a CoAP message in the SMS payload using 8-bit encoding. SMS concatenation MAY be used for messages larger than 140 characters. CoAP retransmission is disabled for this binding. An LwM2M Client indicates the use of this binding by including a parameter (sms) in its registration to the LwM2M Server including the node’s MSISDN number. The LwM2M Client MAY interact with the server using both UDP and SMS bindings.

8.6.3 TCP Binding

The CoAP binding for TCP is defined in [CoAP_TCP]. The protocol has a IANA registered scheme of coap+tcp:// and a default port of 5683. The TCP binding is used in NoSec (no security) mode.
	E.6 LwM2M Object: Firmware Update
Description

	This LwM2M Object enables management of firmware which is to be updated. This Object includes installing firmware package, updating firmware, and performing actions after updating firmware. The firmware update MAY require to reboot the device; it will depend on a number of factors, such as the operating system architecture and the extent of the updated software.

The envisioned functionality with LwM2M version 1.0 is to allow a LwM2M Client to connect to any LwM2M version 1.0 compliant Server to obtain a firmware imagine using the object and resource structure defined in this section experiencing communication security protection using DTLS. There are, however, other design decisions that need to be taken into account to allow a manufacturer of a device to securely install firmware on a device. Examples for such design decisions are how to manage the firmware update repository at the server side (which may include user interface considerations), the techniques to provide additional application layer security protection of the firmware image, how many versions of firmware imagines to store on the device, and how to execute the firmware update process considering the hardware specific details of a given IoT hardware product. These aspects are considered to be outside the scope of the LwM2M version 1.0 specification.
A LwM2M Server may also instruct a LwM2M Client to fetch a firmware image from a dedicated server (instead of pushing firmware imagines to the LwM2M Client). The Package URI resource is contained in the Firmware object and can be used for this purpose.
A LwM2M Client using UDP Transport Layer MUST support block-wise transfer [CoAP_Blockwise] if it implements the Firmware Update object.
A LwM2M Server using UDP Transport Layer MUST support block-wise transfer. Other protocols, such as HTTP/HTTPs, MAY also be used for downloading firmware updates (via the Package URI resource). For constrained devices it is, however, RECOMMENDED to use CoAP for firmware downloads to avoid the need for additional protocol implementations.
	

Change 3: Scope
1. Scope

This document specifies version 1.0 of the Lightweight Machine-to-Machine (LwM2M) protocol. This Lightweight M2M 1.0 enabler introduces the following features:

· Simple resource model with the core set of objects and resources defined in this specification. The full list of registered objects can be found at [OMNA].

· Operations for creation, update, deletion, and retrieval of resources.

· Asynchronous notifications of resource changes.

· Support for several serialization formats, namely TLV, JSON, Plain Text and binary data formats and the core set of LightweightM2M Objects.
· UDP, TCP and SMS transport support.

· Communication security based on the DTLS protocol supporting different types of credentials.

· Queue Mode offers functionality for a LwM2M Client to inform the LwM2M Server that it may be disconnected for an extended period and when it becomes reachable again.

· Support for use of multiple LwM2M Servers.

· Provisioning of security credentials and access control lists by a dedicated LwM2M bootstrap-server.
5.3.1.1 Behaviour with Current Transport Binding and Mode

Behaviour of the LwM2M Server and the LwM2M Client is differentiated by Current Transport Binding and Mode. Current Transport Binding and Mode is decided by “Binding” Resource set by the LwM2M Server and whether SMS and/or Queue Mode are supported by the LwM2M Client. Queue Mode is useful when the LwM2M Device is not reachable by the LwM2M Server at all the times and it could help the LwM2M Client sleep longer. Table 8 describes the behaviour of the LwM2M Server and the LwM2M Client for each Current Transport Binding and Mode.
	Current Transport Binding and Mode
	Behaviour

	U (UDP/TCP)
	The LwM2M Server expects that the LwM2M Client is reachable via the UDP or TCP binding at any time.
The LwM2M Server MUST send requests to a LwM2M Client using the UDP or TCP binding. The LwM2M Client MUST send the response to such a request over the UDP or TCP binding.
This is the normal default mode of operation.

	UQ (UDP with Queue Mode)
	The Server MUST queue all requests to the LwM2M Client, sending requests via UDP when the LwM2M Client is on-line as described in Section 8.4 Queue Mode Operation.
The LwM2M Server MUST send requests to a LwM2M Client using the UDP binding. The LwM2M Client MUST send the response to such a request over the UDP binding.

	S (SMS)
	The LwM2M Server expects that the LwM2M Client is reachable via the SMS binding at any time.
The LwM2M Server MUST send requests to a LwM2M Client using the SMS binding. The LwM2M Client MUST send the response to such a request over the SMS binding.

	SQ (SMS with Queue Mode)
	The Server MUST queue all requests to the LwM2M Client, sending requests via SMS when the LwM2M Client is on-line as described in Section 8.4 Queue Mode Operation.
Requests MUST be sent to the LwM2M Client using the SMS binding. The LwM2M Client MUST send the response to such a request over the SMS binding.

	US (UDP and SMS)
	The LwM2M Server expects that the LwM2M Client is reachable via the UDP binding at any time.
The LwM2M Server expects that the LwM2M Client is reachable via the SMS binding at any time.
If the LwM2M Server sends requests to a LwM2M Client using the UDP binding, The LwM2M Client MUST send the response to such a request over the UDP binding.
If the LwM2M Server sends requests to a LwM2M Client using the SMS binding, The LwM2M Client MUST send the immediate response to such a request over the SMS binding.

	UQS (UDP with Queue Mode and SMS)
	The Server MUST queue all requests to the LwM2M Client, sending requests via UDP when the LwM2M Client is on-line as described in Section 8.4 Queue Mode Operation.
The LwM2M Server expects that the LwM2M Client is reachable via the SMS binding at any time.
If the LwM2M Server sends requests to a LwM2M Client using the UDP binding, The LwM2M Client MUST send the response to such a request over the UDP binding.
If the LwM2M Server sends requests to a LwM2M Client using the SMS binding, The LwM2M Client MUST send the immediate response to such a request over the SMS binding.
The LwM2M Server MAY request the LwM2M Client to perform “Update” operation via UDP by sending “Execute” operation on “Registration Update Trigger” Resource via SMS.

Table 8: Behaviour with Current Transport Binding and Mode
UQSQ and USQ are not supported.
E.1 LwM2M Object: LwM2M Security
	Description
	

	This LwM2M Object provides the keying material of a LwM2M Client appropriate to access a specified LwM2M Server. One Object Instance SHOULD address a LwM2M Bootstrap-Server.
These LwM2M Object Resources MUST only be changed by a LwM2M Bootstrap-Server or Bootstrap from Smartcard and MUST NOT be accessible by any other LwM2M Server.
	

	Object definition
	

	Name

Object ID

Instances

Mandatory

Object URN

LwM2M Security

0

Multiple

Mandatory

urn:oma:lwm2m:oma:0

	

	Resource definitions
	

	ID

Name

Operations

Instances

Mandatory

Type

Range or Enumeration

Units

Description

0

LwM2M Server URI

Single

Mandatory

String

0-255 bytes

Uniquely identifies the LwM2M Server or LwM2M Bootstrap-Server. The format of the CoAP URI is defined in Section 6 of RFC 7252.

1

Bootstrap-Server

Single

Mandatory

Boolean

Determines if the current instance concerns a LwM2M Bootstrap-Server (true) or a standard LwM2M Server (false)

2

Security Mode

Single

Mandatory

Integer

0-4
Determines which UDP or TCP payload security mode is used
0: Pre-Shared Key mode
1: Raw Public Key mode
2: Certificate mode
3: NoSec mode
4: Certificate mode with EST
3

Public Key or Identity

Single

Mandatory

Opaque

Stores the LwM2M Client’s Certificate (Certificate mode), public key (RPK mode) or PSK Identity (PSK mode). The format is defined in Section E.1.1.

4

Server Public Key

Single

Mandatory

Opaque

Stores the LwM2M Server’s or LwM2M Bootstrap-Server’s Certificate (Certificate mode), public key (RPK mode). The format is defined in Section E.1.1.

5

Secret Key

Single

Mandatory

Opaque

Stores the secret key or private key of the security mode. The format of the keying material is defined by the security mode in Section E.1.1. This Resource MUST only be changed by a bootstrap-server and MUST NOT be readable by any server.

6

SMS Security Mode
Single

Optional

Integer
0-255
Determines which SMS security mode is used (see section 7.2)
0: Reserved for future use
1: DTLS mode (Device terminated) PSK mode assumed
2: Secure Packet Structure mode (Smartcard terminated)
3: NoSec mode
4: Reserved mode (DTLS mode with multiplexing Security Association support)
5-203 : Reserved for future use
204-255: Proprietary modes
7

SMS Binding Key Parameters
Single

Optional

Opaque
6 bytes
Stores the KIc, KID, SPI and TAR. The format is defined in Section E.1.2.
8

SMS Binding Secret Key(s)
Single

Optional

Opaque
16-32-48 bytes
Stores the values of the key(s) for the SMS binding.

This resource MUST only be changed by a bootstrap-server and MUST NOT be readable by any server.
9

LwM2M Server SMS Number

Single

Optional

String
MSISDN used by the LwM2M Client to send messages to the LwM2M Server via the SMS binding.

The LwM2M Client SHALL silently ignore any SMS originated from unknown MSISDN

10

Short Server ID

Single

Optional

Integer

1-65534
This identifier uniquely identifies each LwM2M Server configured for the LwM2M Client.
This Resource MUST be set when the Bootstrap-Server Resource has false value.
Specific ID:0 and ID:65535 values MUST NOT be used for identifying the LwM2M Server (Section 6.3).

11

Client Hold Off Time

Single

Optional

Integer

s

Relevant information for a Bootstrap-Server only.
The number of seconds to wait before initiating a Client Initiated Bootstrap once the LwM2M Client has determined it should initiate this bootstrap mode.

In case client initiated bootstrap is supported by the LwM2M Client, this resource MUST be supported.

12

Bootstrap-Server Account Timeout

Single

Optional

Integer

s

The LwM2M Client MUST purge the LwM2M Bootstrap-Server Account after the timeout value given by this resource. The lowest timeout value is 1.

If the value is set to 0, or if this resource is not instantiated, the Bootstrap-Server Account lifetime is infinite.

	

	E.1.1 UDP and TCP Channel Security: Security Key Resource Format
This section defines the format of the Secret Key and Public Key and Identity Resources of the LwM2M Server and LwM2M Bootstrap-Server Objects when using UDP or TCP Channel security. These Resources are used to configure the security mode and keying material that a Client uses with a particular Server. The Objects are configured on the Client using one of the Bootstrap mechanisms described in Section 5.1. The use of this keying material for each security mode is defined in Section 7.1.

E.1.1.1 Pre-Shared Key (PSK) Mode
The PSK is a binary shared secret key between the Client and Server of the appropriate length for the Cipher Suite used [RFC4279]. This key is composed of a sequence of binary bytes in the Secret Key Resource. The default PSK Cipher Suites defined in this specification use a 128-bit AES key. Since the security of the default PSK Cipher Suites rely on the length and the entropy of this shared secret it is RECOMMENDED to provision a 16 byte (128 bit) key or longer in the Secret Key Resource. Recommendations for generating random keys are provided in RFC 4086 [RFC4086].
The corresponding PSK Identity for this PSK is stored in the Public Key or Identity Resource. The PSK Identity is simply stored as a UTF-8 String as per [RFC4279]. Clients and Servers MUST support arbitrary PSK Identities of up to 128 bytes and PSK keys of up to 64 bytes in length as required by [RFC4279].

E.1.1.2 Raw-Public Key (RPK) Mode
The raw-public key mode requires a public key and a private key of the appropriate type and length for the cipher suite used. These keys are carried as a sequence of binary bytes with the public key stored in the Public Key or Identity Resource, and the private key stored in the Secret Key Resource. The public key MUST be encoded using the SubjectPublicKeyInfo structure, as described in [RFC7250].

The private key is encoded as defined in [RFC5958].
E.1.1.3 Certificate Mode
The Certificate mode requires an X.509v3 Certificate along with a matching private key. The private key is stored in the Secret Key Resource, encoded using [RFC5958], as the private key in the RPK mode. The certificate in a DER encoded binary format, as defined in [RFC5280], is stored in the Public Key or Identity Resource.
	

5.2.3.3 Client Initiated Bootstrap

As defined in Section 5.2.4 Bootstrap Sequence, scenarios exist when the LwM2M Server is not configured within the LwM2M Client or attempts to perform the “Register” operation with LwM2M Servers have failed.
When these conditions occur, the Client Initiated Bootstrap mode provides a mechanism for the LwM2M Client to retrieve the Bootstrap Information from a LwM2M Bootstrap-Server.

The Client Initiated Bootstrap mode requires a LwM2M Bootstrap-Server Account preloaded in the LwM2M Client.
The minimum information that needs to be preloaded, is the security credentials required for a secure DTLS or TLS connection to the LwM2M Bootstrap-Server.
The figure below depicts the Client Initiated Bootstrap flow.
5.2.3.4 Server Initiated Bootstrap

In this mode, the LwM2M Bootstrap-Server configures the Bootstrap Information in the LwM2M Client without the LwM2M Client sending a Bootstrap-Request to the LwM2M Bootstrap-Server.

As the LwM2M Client does not initiate the “Bootstrap-Request” operation to the LwM2M Bootstrap-Server, the LwM2M Bootstrap-Server needs to know if a LwM2M Device is ready for bootstrapping before the LwM2M Client can be configured by the LwM2M Bootstrap-Server. The mechanism that a LwM2M Bootstrap-Server gains this knowledge is implementation specific. A common scenario is that elements in the Network Provider’s network informs the LwM2M Bootstrap-Server of the LwM2M Device when the LwM2M Device connects to the Network Provider’s network.

The Server Initiated Bootstrap mode requires a LwM2M Bootstrap-Server Account preloaded in the LwM2M Client. The minimum information that needs to be preloaded, is the security credentials required for a secure DTLS or TLS connection to the LwM2M Bootstrap-Server.

Once the LwM2M Bootstrap-Server has been notified that the LwM2M Device is ready to receive the Bootstrap Information, the LwM2M Bootstrap-Server configures the LwM2M Client with the Bootstrap Information by strictly replicating the procedures of the step#1 step#2 and step#3 specified in the LwM2M Client Initiated Bootstrap mode.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 21)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 21)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

LwM2M Server
LwM2M Client
Objects
M2M Device
- UDP or SMS Bearer
- DTLS Security
- Efficient Payload
Bootstrap -
Stack
Interfaces
Device Management & Service Enablement -
- CoAP Protocol
Figure 1: The overall architecture of the LwM2M Enabler
Client Registration -
Information Reporting -

CoAP
LwM2M
DTLS
UDP
SMS on-device
SMS on-Smartcard

Objects

