Doc# OMA-DM-MgmtPolicyMO-2013-0018-CR_TS_Management_Objects
Change Request

Doc# OMA-DM-MgmtPolicyMO-2013-0018-CR_TS_Management_Objects
Change Request

Change Request

	Title:
	TS Management Objects
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DM MgmtPolicyMO

	Doc to Change:
	OMA-TS-MgmtPolicyMO-V1_0-20130502-D

	Submission Date:
	11th June 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Henrique Postal, Samsung Electronics, a.postal@samsung.com
Eric Tseng, HTC, yinyeh_tseng@htc.com
Den Yu, HTC, den_yu@htc.com
Bipin Patel, Interop Technologies, Bipin.Patel@interoptechnologies.com

	Replaces:
	

1 Reason for Change

Management Objects section to be added to TS baseline.
This CR addresses comments and suggestions received during R&A period on revision R02 presented in Dublin:

· Bp3: Suggested to rename DMCommand node name to DMCommandType, with values Exec and Replace, since it does not specify actually a DMCommnad.

· Bp4: Suggested State node renamed to IsEnabled and retyped to bool. OperationsType changed to Enable and Disable, rather than Activate and Deactivate, for better clarity. State node moved from <x>/State to <x>/Policy/<x>/IsEnabled, in order to be able to enable each policy independently.

· Bp5: Clarified how regular operators works with action results: AND, OR, NOT. Explained how short-circuit action operators SAND, SOR may help control the execution of Policy Actions (simplified version of SACMO´s workflows).

· Offline comment: missing SeqNumber in the example

· Offline comment: Removed Short-circuit operators SAND, SOR from Conditions. They only apply on Action execution control.

· Offline comment: added trigger control on transitions to prevent repeated policy executions and flooding DM Server with excessive notifications. Proposed the reuse of reuse of Trigger concept from DiagMonTrapMoFrame.
2 Impact on Backward Compatibility

None

3 Impact on Other Specifications

None

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We kindly request the DM group to review the CR and agree the proposed TS modifications.
6 Detailed Change Proposal

Change 1: Add the following text
6. Management Policy Management Objects
(Normative)

The Management Objects associated with each Management Policy are assembled under the placeholder node x, dynamically or statically created, as displayed in figure 1.
Protocol Compatibility: This object is compatible with OMA Device Management protocol specifications, version 1.3 [DMPRO].

[image: image1.jpg]
Figure 1: Mgmt Policy MO
	<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	ZeroOrMore
	node
	Get
	

	
	This placeholder node is the root node for the Mgmt Policy MO. The parent node of this node defines the location of this MO in the Management Tree of the device. The type of this node MUST be the Management Policy Management Object ID “urn:oma:mo:oma-mgmtpolicymo:1.0”

.

	

	
	
	
	
	
	

	
	
	
	
	
	

	
	

	

	
	
	
	
	
	

	
	
	
	
	
	

	
	

	

	
	
	
	
	
	

	
	
	
	
	
	

	
	

	

	
	
	
	
	
	

	
	
	
	
	
	

	
	

	

	
	
	
	
	
	

	
	
	
	
	
	

	
	

	

	
	
	
	
	
	

	
	
	
	
	
	

	
	

	

	
	
	
	
	
	

	
	
	
	
	
	

	
	

	<x>/SimpleCondDef

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	node
	Get
	

	
	This interior node is the parent node for all simple condition definitions in the Mgmt Policy MO.

	<x>/SimpleCondDef/<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	OneOrMore
	node
	Get
	

	
	This interior node is the parent node for one simple condition definition in the Mgmt Policy MO.

	<x>/SimpleCondDef/<x>/CondID

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	int
	Get
	

	
	The value of this leaf node is the identifier of the simple condition.

	<x>/SimpleCondDef/<x>/URI

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	The value of this leaf node is the URI of the node in the Management Tree of the device, which will be used for evaluating the simple condition.

	<x>/SimpleCondDef/<x>/Value

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	bin
	Get
	

	
	The value of this leaf node is compared against the value of the sibling <x>/SimpleCondDef/<x>/URI node for evaluating the simple condition. If the data type associated with the node pointed to by the value of the sibling <x>/SimpleCondDef/<x>/URI node is not binary, the device MUST convert the value of this node to the proper data type (e.g. chr, int, bool etc.) prior to making the comparison.

	<x>/ SimpleCondDef/<x>/Predicate

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	ZeroOrOne
	int
	Get
	

	
	The value of this leaf node is the predicate that is used for evaluating the simple condition. The allowed values for this node are as per the following table:

0

Equals (==)

1

Not equals (!=)

2

Less than (<)

3

Less than or equal to (<=)

4

Greater than (>)

5

Greater than or equal to (>=)

If this node is absent, it is assumed that the predicate is Equals (i.e. value 0).

	<x>/SimpleActionDef

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	node
	Get
	

	
	This interior node is the parent node for all simple action definitions in the Mgmt Policy MO.

	<x>/SimpleActionDef/<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	OneOrMore
	node
	Get
	

	
	This interior node is the parent node for one simple action definition in the Mgmt Policy MO..

	<x>/SimpleActionDef/<x>/ActionID

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	int
	Get
	

	
	The value of this leaf node is the identifier of the simple action.

	<x>/SimpleActionDef/<x>/URI

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	The value of this leaf node is the URI of the node in the Management Tree of the device upon which the simple action is to be executed.

	<x>/SimpleActionDef/<x>/DMCommandType

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	ZeroOrOne
	int
	Get
	

	
	The value of this leaf node is the type of the OMA-DM command that needs to be executed on the node in the Management Tree whose URI is the value of the sibling <x>/SimpleActionDef/<x>/URI node. The allowed values for this node are as per the following table:

0

Exec

1

Replace

If this node is absent, it is assumed that the DM command type is Exec (i.e. value 0).

If the value of this node is 1 (i.e. Replace), its sibling <x>/SimpleActionDef/<x>/Param node MUST be present.

	<x>/SimpleActionDef/<x>/Param

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	ZeroOrOne
	bin
	Get
	

	
	The value of this leaf node value is the parameter for the DM Command in the case where the DM command type is Replace i.e. the value of the sibling <x>/SimpleActionDef/<x>/DMCommandType node is 1. If the value of the sibling <x>/SimpleActionDef/<x>/DMCommandType node is 0 (i.e. Exec), this node MUST NOT be present.

If the data type associated with the node pointed to by the value of the sibling <x>/SimpleActionDef/<x>/URI node is not binary, the device MUST convert the value of this node to the proper data type (e.g. chr, int, bool etc.) prior to replacing the existing value of the node.

	<x>/Policy

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	node
	Get
	

	
	This interior node is the parent node for all the Policies that constitute the device management policy.

	<x>/Policy/<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	OneOrMore
	node
	Get
	

	
	This interior node is the parent node for one of the Policies that constitute the device management policy.

	<x>/Policy/<x>/PolicyID

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	This leaf node specifies the Policy ID of the Policy.

	<x>/Policy/<x>/Version

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	This leaf node specifies the Version of a Policy.

	<x>/Policy/<x>/Name

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	ZeroOrOne
	chr
	Get
	

	
	This leaf node specifies the human readable name of the Policy.

	<x>/Policy/<x>/Operations

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	node
	Get
	

	
	This interior node is a parent node for operation that can be executed on a Policy.

	<x>/Policy/<x>/Operations/Enable

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	null
	Exec
	

	
	This node is used with Exec command to enable the Policy. Once resumed, the IsEnabled node value transits to the Enabled.

	<x>/Policy/<x>/Operations/Disable

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	null
	Exec
	

	
	This node is used with Exec command to disable the Policy. Once resumed, the IsEnabled node value transits to the Disabled.

	<x>/Policy/<x>/IsEnabled

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	bool
	Get
	

	
	This leaf node specifies if a Policy is enabled (´true’) or disabled (‘false’). The Policy is disabled, no actions related to the Policy are performed.

	<x>/Policy/<x>/Trigger

	
	Status
	Tree Occurrence
	Format
	Min. Access Types
	

	
	Optional
	ZeroOrOne
	int
	Get
	

	
	This leaf node indicates when to trigger the actions executions, based on the Policy conditions results and on TimeInterval constraint defined in the sibling node. Both Trigger and TimeInterval nodes are used together to prevent Enabler from excessive and repetitive executions of Policy actions. If this node is missing, it has the same effect as Value = 0.
Values

Meaning

0

Trigger action on condition result equals to ‘true’
1

Trigger action on condition result transition from ‘false’ to ‘true’.
2

Trigger action on condition result transition from ‘true’ to ‘false’.
3

Trigger action on condition result transitions from ‘false’ to ‘true’ or from ‘true’ to ‘false’.

	<x>/Policy/<x>/TimeInterval

	
	Status
	Tree Occurrence
	Format
	Min. Access Types
	

	
	Optional
	ZeroOrOne
	int
	Get
	

	
	This leaf node is used to define a time interval by second. In conjunction with the sibling node Trigger, a Policy action is allowed to be executed only after the specified time interval counted from the previous action execution. If the node does not exist or does not contain the positive value, no time interval restricts for the MgmtPolicyMO Client to execute the Policy.

	<x>/Policy/<x>/Condition

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	node
	Get
	

	
	This interior node is the parent node for all the conditions that are included in the device management policy.

	<x>/Policy/<x>/Condition/<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	OneOrMore
	node
	Get
	

	
	This interior node is the parent node for one of the compound conditions that constitute the device management policy.

	<x>/Policy/<x>/Condition/<x>/SeqNumber

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	int
	Get
	

	
	The value of this leaf is used for sequencing the sibling nodes, CondIDRef and/or LogicalOP, which will be stacked in the correct order to represent the compound condition expression, as in the Example in Appendix C.

	<x>/Policy/<x>/Condition/<x>/CondIDRef

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	ZeroOrOne
	int
	Get
	

	
	The value of this leaf node points to the identifier of a simple condition, which is defined in the SimpleCondDef subtree of this MO.

	<x>/Policy/<x>/Condition/<x>/ LogicalOp

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	ZeroOrOne
	int
	Get
	

	
	The value of this leaf node indicates the logical operator to use for constructing the compound condition from simple constituent conditions. The allowed values for this node are as per the following table:

0

NOT

1

OR

2

AND

	<x>/Policy/<x>/Action

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	node
	Get
	

	
	This interior node is the parent node for all the actions that are included in the device management policy.

	<x>/Policy/<x>/Action/<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	OneOrMore
	node
	Get
	

	
	This interior node is the parent node for one of the compound actions that constitute the device management policy.

	<x>/Policy/<x>/Action/<x>/SeqNumber

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	int
	Get
	

	
	The value of this leaf is used for sequencing the sibling nodes, ActionIDRef and/or LogicalOP, which will be stacked in the correct order to represent the compound action expression, as in the Example in Appendix C.

	<x>/Policy/<x>/Action/<x>/ActionIDRef

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	ZeroOrOne
	int
	Get
	

	
	The value of this leaf node points to the identifier of a simple action, which is defined in the SimpleActionDef subtree of this MO.

	<x>/Policy/<x>/Action/<x>/LogicalOp

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	ZeroOrOne
	int
	Get
	

	
	The value of this leaf node indicates the logical operator to use for constructing the compound action from simple constituent actions. The allowed values for this node are as per the following table:

0

NOT

1

OR

2

AND

3
SOR
4

SAND

Logical Operators will operate on simple actions results: true if a simple action has been succeeded (success status code - e.g. OK) and false otherwise.
Please refer to Appendix C2 - Action Operands, for information about how the operands above apply to simple Action results, and how the short-circuit operators SAND and SOR may be used to control the execution of Actions.

	<x>/Ext

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	ZeroOrOne
	int
	Get
	

	
	This interior node is for vendor-specific extensions to the Mgmt Policy MO.

Change 2: Add the following text
Appendix C. Additional Information

C.1 Management Policy Example
The following is an illustrative example of a hypothetical Device Management Policy.

If the time is between 9:00 a.m. and 10:30 a.m. or between 3:00 p.m. and 5:00 p.m., disable the camera and put the phone in vibrate mode.

In this hypothetical example, we have the following conditions and actions:

· time >= 900 hours {simple condition}

· time <= 1030 hours {simple condition}

· time >= 1500 hours {simple condition}

· time <= 1700 hours {simple condition}

· (time >= 930 hours AND time <= 1030 hours) OR (time >= 1500 hours AND time <= 1700 hours) {compound condition}

· disable camera {simple action}

· put phone in vibrate mode {simple action}

· disable the camera AND put phone in vibrate mode {compound action}

We will assume that to disable the camera the device has to execute the Exec command on the following node in the Management Tree:

/DCMO/Camera/Operations/Disable

Furthermore, let us assume that to put the phone in vibrate mode, the device Replaces the value of the following node to 0:

/dev/rtState/ringer

Additionally, let us assume that the device exposes its time value via the following node in the Management Tree:

/dev/sysparm/time

Figure 2 represents an instance of MgmtPolicyMO.

[image: image3.jpg]
Figure 2: An instance of the Mgmt Policy MO
The leaf nodes under below the Policy/Condition node were sequenced
in the following order:

CondID [val=1], CondID [val=2], LogicalOp [val=AND], CondID [val=3], CondID [val=4], LogicalOp [val=AND], LogicalOp [val=OR].

This happens to be the expression tree of the compound condition in Reverse Polish Notation as shown in Figure 3.

[image: image5.png]
Figure 3: Expression Tree for Compound Condition
The leaf nodes under below the Policy/Action node were sequenced in the following order:

ActionID [val=1], ActionID [val=2], LogicalOp [val=AND].

This happens to be the expression tree of the compound action in Reverse Polish Notation as shown in Figure 4.

[image: image6.png]
Figure 4: Expression Tree for Compound Action
In this example both actions will be executed and compound action would result in success (i.e. OK) only if both simple actions resulted in success (i.e. OK) status codes.

If SAND short-circuit evaluation operator had been used instead of AND (please refer to C.2 – Action Operators), ActionID 2 would be executed only if ActionID 1 resulted in success (i.e. OK) status code. In order words, if ActionID1 had failed (i.e. NOK) ActionID 2 would not executed (short-circuit). As in regular AND, compound action result would be success (i.e. OK) only if both simple actions are executed and return success status codes.
The similar logical evaluation mechanism applies to OR and SOR.

In this example if operator OR were used instead of AND, both actions would be executed and compound action result would result in failed (i.e. NOK) only if both simple actions resulted in failed (i.e. NOK) status codes.

C.1.1

C.1.1.1

C.2 Action Operators
When applying Action Operands, Simple action results can be interpreted as following:

If a simple action results in success (OK), it can be logically interpreted as Boolean true result.

Otherwise, if it results in fail (NOK), it can be logically interpreted as Boolean false result.
The next sessions describes how regular operands and special short-circuit operands may be applied to simple Actions.
C.2.1 Regular Operators
Please consider the following expressions representing compound Actions based on two simple actions Action_1, Action_2 connected by regular operands:

Action_1 AND Action_2:

· Expression result is success (OK) status code only if both simple actions result in success (OK) status codes.
Action_1 OR Action_2:

· Expression result is failed (NOK) status code only if both simple actions result in failed (NOK) status codes.

NOT Action_1:

· Expression result is success (OK) status code if simple Action_1 results in failed (NOK) status code.

· Expression result is failed (NOK) status code if simple Action_1 results in success (OK).status code
For regular operators, actions are also executed as in a list: in this example Action_1 is always executed regardless Action_2 result, and vice-versa.
C.2.2 Short-Circuit Operators
Short-circuit evaluation or minimal evaluation denotes the semantics of some Boolean operators in some programming languages in which the second argument is only executed or evaluated if the first argument does not suffice to determine the value of the expression: when the first argument of the AND function evaluates to false, the overall value must be false; and when the first argument of the OR function evaluates to true, the overall value must be true.
The short-circuit expression x SAND y (using SAND to denote the short-circuit variety) is equivalent to the conditional expression if x then y else false; the expression x SOR y is equivalent to if x then true else y.
Short-circuit operators are, in effect, control structures rather than simple arithmetic operators, as they are not strict.

Please consider the following expressions representing compound Actions based on two simple actions Action_1 and Action_2 connected by short-circuit operands. The expression results are defined similarly to the regular operators, but the Short-Circuit operators can control how simple Actions are going to be executed, as follows:
Action_1 SAND Action_2:

· Expression result is success (OK) status code only if both simple actions result in success (OK) status code – same as in regular AND.
· Simple Action_2 is only executed if simple Action_1 results in success (OK) status code. In other words, if simple Action_1 results in fail (NOK) status code, simple Action_2 is not executed (short-circuit)

Action_1 SOR Action_2:

· Expression result is failed (NOK) status code only if both simple actions result in fail (NOK) status code – same as in regular OR.

· Simple Action_2 is only executed if simple Action_1 results in fail (NOK) status code. In other words, if simple Action_1 results in success (OK) status code, simple Action_2 is not executed (short-circuit)

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 15)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 5 (of 15)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

