1. The Rights Object Acquisition Protocol (ROAP) Suite

1.1 Overview

The Rights Object Acquisition Protocol (ROAP) is the common name for a suite of DRM security protocols between a RI and a DRM Agent in a Device. The protocol suite contains a 4-pass protocol for registration of a Device to an RI and two protocols by which the Device requests and acquires Rights Objects (RO). The 2-pass RO Request/Response protocol encompass request and delivery of an RO whereas the 1-pass ROAP is only a delivery of an RO from an RI to a Device (e.g. messaging/push). The ROAP suite also includes 2-pass protocols for devices joining and leaving a domain; the Join Domain Request/Response protocol and the Leave Domain Request/Response protocol.
1.1.1 The 4-pass Registration Protocol

The Registration protocol is a complete security information exchange and handshake between the RI and the Device and is generally only executed at first contact, and when major changes have been made such as an update of the ROAP or DRM version, or when DRM time in Device is lost. This protocol includes negotiation of protocol parameters and protocol version, exchange of certificate preferences, optional exchange of certificates, mutual authentication of Device and RI, integrity protection of protocol messages and optional time synchronization.

Successful completion of the Registration protocol results in the establishment of a Security Association (SA) between the Device and Rights Issuer, including agreed protocol parameters, protocol version, and certificate preferences (trusted authorities).

[image: image1.emf]
As illustrated in the figure above, optionally, the RI does a nonce-based OCSP request for its own certificate (using a nonce supplied by the Device) during the registration protocol. Whether or not to do the nonce-based OCSP request depends on if Device DRM time is out of sync with respect to synchronization as desired by the RI. The RI SHOULD always provide the most recent OCSP Response to the Device (regardless of whether it contains a device-supplied nonce or not, but MAY use a regularly updated time-based OCSP Response. If a Device's DRM time is out of sync then the RI MUST perform a nonce-based (using the Device's nonce) OCSP request and provide the Device with the returned OCSP response.

1.1.2 The 2-pass Rights Object Acquisition Protocol

The 2-pass ROAP protocol is executed if there is an existing Security Association between the RI and the Device (the result of a prior run of the Registration protocol). This protocol variant includes request and delivery of RO, mutual authentication of Device and RI, establishment of necessary cryptographic information in the trusted device in order to process the RO and perform integrity check of RO and PDUs.

[image: image2.emf]Device Rights Issuer

1

2

Figure XX: The 2-pass Rights Object Acquisition Protocol

RO Request

RO Response

1.1.3 The 1-pass Rights Object Acquisition Protocol

The 1-pass ROAP protocol is designed to meet the messaging/push use case. Again, there has to be an existing Security Association between the Device and the RI to be able to run this protocol. In contrast to previous protocol variants, it is initiated by the RI and requires no interaction from the Device. One use case is distribution of Rights Objects at regular intervals, e.g. supporting a content subscription. The 1-pass protocol is essentially the last message of the 2-pass variant.

[image: image3.emf]Device Rights Issuer

1

Figure XX: The 1-pass Rights Object Acquisition Protocol

RO Response

1.1.4 The 2-pass Join Domain Protocol
The Join Domain protocol is a device initiated request/response protocol whereby a device requests to join an RI-defined domain and receives the Domain Key needed to share ROs in this domain (if request accepted) or an error message (if request not accepted). The protocol assumes an existing SA with this RI.
<Figure TBD>

1.1.5 The 2-pass Leave Domain Protocol
The Leave Domain protocol is a device initiated request/response protocol whereby a device that has removed information about an RI-defined domain requests to leave it and receives an acknowledgement that it has left the domain or an error message.
<Figure TBD>
1.2 ROAP XML Schema basics

1.2.1 Introduction

Core parts of the XML schema for ROAP, found in Appendix ?, are explained in this section. Specific protocol message elements are defined in Section 6.3.

The XML format for ROAP messages have been designed to be extensible. However, it is possible that the use of extensions will harm interoperability and therefore any use of extensions should be carefully considered.

Types defined in this section are not ROAP messages; rather they provide building blocks that are used by ROAP messages.

1.2.2 A note on comparison of ROAP values

Some ROAP exchanges rely on the parties being able to compare received values with stored values. Unless otherwise noted, all elements in this document that have the XML Schema "string" type, or a type derived from it, MUST be compared using an exact binary comparison. In particular, ROAP implementations MUST NOT depend on case-insensitive string comparisons, normalization or trimming of white space, or conversion of locale-specific formats such as numbers.

The ROAP specification does not define a collation or sorting order for attributes or element values. ROAP implementations MUST NOT depend on specific sorting orders for values.

1.2.3 The Request type

All ROAP requests are defined as extensions to the abstract Request type.

<complexType name="Request" abstract="true"/>

1.2.4 The Response type

All ROAP responses are defined as extensions to the abstract Response type. The elements of the Response type therefore apply to all ROAP responses. Responses contain a status attribute that indicates whether the preceding request was successful or not, and a sessionID attribute identifying the session.

<complexType name="Response" abstract="true">

 <attribute name="sessionId" type="hexBinary" use="required"/>

 <attribute name="status" type="roap:Status" use="required"/>

</complexType >

1.2.5 The Status type

The Status simple type enumerates all possible error messages.
<simpleType name="Status">

<restriction base="string">

<enumeration value="Success"/>

<enumeration value="UnknownError"/>

<enumeration value=”Abort”/>

<enumeration value="NotSupported"/>

<enumeration value="AccessDenied"/>

<enumeration value="NotFound"/>

<enumeration value="MalformedRequest"/>

<enumeration value="UnknownRequest"/>

<enumeration value="UknownCriticalExtension"/>

<enumeration value="UnsupportedVersion"/>

<enumeration value="UnsupportedAlgorithm"/>

<enumeration value="NoCertificateChain"/>
<enumeration value="SignatureError"/>

<enumeration value="DeviceTimeError"/>

<enumeration value="InvalidSA"/>

<enumeration value="InvalidDomain"/>

<enumeration value="DomainFull"/>

</restriction>

</simpleType>
UnknownError indicates an internal RI error
Abort indicates that the RI rejected the Device request for unspecified reasons.
NotSupported indicates the Device made a request for a feature currently not supported by the RI.
AccessDenied indicates that the Device is not authorized to contact this RI.
NotFound indicates that the requested object was not found.
MalformedRequest indicates that the RI failed to parse the Device's request.
UnknownRequest indicates that the RI did not recognize the request type.
UnknownCriticalExtension indicates that a critical extension used by the Device was not supported or recognized by the RI.

UnsupportedVersion indicates that the Device used a version not supported by the RI.
UnsupportedAlgorithm indicates that the Device suggested algorithms that are not supported by the RI (should not occur as long as all Devices and all RIs implement the mandatory algorithms).
NoCertificateChain indicates that the server could not verify the signature on a Device request due to not having access to the Device's certificate chain.
SignatureError indicates that the server could not verify the client's signature.
DeviceTimeError indicates that a Device request was invalid due to the Device time being inappropriately synchronized. This triggers a full 4-pass Registration protocol
InvalidSA indicates that the Device tried to contact an RI with which it did not have an SA.
InvalidDomain indicates that the request was invalid due to an unrecognized domain identifier.
DomainFull indicates that no more devices are allowed to join the domain.
1.2.6 Signed ROAP payload

The Signed ROAP Payload is a general schema for carrying ROAP-related payload in several ROAP protocols. The two main types of payload are the Rights Object payload (roap-core:ROPayload) and the Domain Info payload (roap-core:DomainInfo).
More precisely, a <roapPayload> element consists of a sequence of a type version number identifier, one or more <roPayload> elements or
one or more <domainPayload> elements.

An <roPayload> element consists of a <protectedRO> element (which is a sequence of a REL element, an encrypted key,
 and optional replay protection info) and an optional <mac> element providing key confirmation for the encrypted key.
A <domainPayload> element consists of a domain Identifier, an acceptance time window (notAfter) and an encrypted domain key.
A signature is made over the <roapPayload> and together, the <roapPayload> element and the <signature> element forms a roap-core:SignedROAPPayload value which can be shared between devices or sent as a standalone message.
The schema is integrated with XMLEncryption [Ref] and XMLDsig [Ref], as is seen in the following XML schema for Signed ROAP Payload.

<?xml version="1.0" encoding="UTF-8"?>

<!-- $Id:$ -->

<schema

 targetNamespace="urn:oma-dldrm-roap-core-20031124"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:roap-core="urn:oma-dldrm-roap-core-20031124"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 elementFormDefault="unqualified"

 attributeFormDefault="unqualified">

 <import namespace="http://www.w3.org/2000/09/xmldsig#"

 schemaLocation="../W3C/xmldsig-core-schema.xsd"/>

<!-- schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd"/> -->

 <import namespace="http://www.w3.org/2001/04/xmlenc#"

 schemaLocation="../W3C/xenc-schema.xsd"/>

<!-- schemaLocation="http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd"/> -->

<complexType name="Version">

 <sequence>

 <element name="major" type="nonNegativeInteger"/>

 <element name="minor" type="nonNegativeInteger"/>

 </sequence>

</complexType>

<simpleType name="GUID">

 <restriction base="string">

 <length value="20"/>

 </restriction>

</simpleType>

<simpleType name="DomainIdentifier">

 <restriction base="ID">

 <pattern value=".{1,18}\d{2}"/>

 </restriction>

</simpleType>

<complexType name="ProtectedRO">

 <sequence>

 <element name="rightsObject" type="hexBinary"/>

 <element name="guid" type="roap-core:GUID" minOccurs="0"/>

 <element name="notAfter" type="dateTime" minOccurs="0"/>

 <element name="encryptedKey" type="xenc:EncryptedKeyType"/>

 </sequence>

</complexType>

<complexType name="DomainInfo">

 <sequence maxOccurs="unbounded">

 <element name="domainIdentifier" type="roap-core:DomainIdentifier"/>

 <element name="notAfter" type="dateTime" minOccurs="0"/>

 <element name="encryptedKey" type="xenc:EncryptedKeyType"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

</complexType>

<element name="signedROAPPayload" type="roap-core:SignedROAPPayload"/>

<complexType name="SignedROAPPayload">

 <sequence>

 <element name="roapPayload" type="roap-core:ROAPPayload"/>

 <element name="signature" type="ds:SignatureType"/>

 </sequence>

</complexType>

<complexType name="ROAPPayload">

 <sequence>

 <element name="version" type="roap-core:Version"/>

 <choice>

 <element name="roPayload">

 <complexType>

 <sequence maxOccurs="unbounded">

 <element name="protectedRO" type="roap-core:ProtectedRO"

/>

 <element name="mac" type="ds:SignatureType" minOccurs="0"/>

 </sequence>

 </complexType>

 </element>

 <element name="domainPayload" type="roap-core:DomainInfo"

 minOccurs="0" maxOccurs="unbounded"/>

 <any namespace="##other"/>

 </choice>

 </sequence>

 <attribute name="Id" type="ID"/>

</complexType>

<!-- New ds:KeyInfo types -->

<element name="X509CertificateHash" type="base64Binary"/>

<element name="SPKIHash" type="base64Binary"/>

</schema>
1.3 ROAP Messages

In this section, ROAP protocol suite messages, including their parameters, encodings and semantics are defined.

1.3.1 Notation

In the message parameter tables below, "M" stands for a mandatory parameter and "O" stands for optional.

1.3.2 Device Hello

1.3.2.1 Purpose

The ROAP-DeviceHello message is sent from the Device to the Rights Issuer to initiate the 4-pass protocol. This message expresses Device information/preferences (and possibly the reason for protocol initiation).

1.3.2.2 Message parameters

	Parameter
	ROAP-DeviceHello

	Version
	M

	Device ID
	M

	Supported Algorithms
	M

	Extensions
	O

Version is a <major, minor> representation of the highest protocol version number supported by the Device. For this version of the protocol, Version shall be set to <1,0>. Minor version upgrades must always be backwards-compatible.
Device ID identifies the Device, in one or several ways, to the RI. Identifiers include: A hash of the Device's public key, the subject name of the Device as it appears in a Device certificate combined with that certificate's serial number, the IMEI, and the IMSI
. Other identifiers are allowed but interoperability when using them is not guaranteed.

Supported Algorithms identifies the cryptographic algorithms (hash algorithms, signature algorithms and key wrap algorithms) that are supported by the device. Algorithms are identified using common URIs. The following URIs MUST be supported by Devices and RIs:

· Hash algorithms:

· SHA-1: http://www.w3.org/2000/09/xmldsig#sha1
· MAC algorithms:

· HMAC-SHA-1: http://www.w3.org/2000/09/xmldsig#hmac-sha1
· Signature algorithms:

· RSA-PSS-Default: http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsa-pss-default
· Key transport algorithms:

· RSA-KEM: http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsa-kem
Use of other algorithm URIs is optional.

Extensions is a list of type-value pairs that define optional ROAP features supported by the Device. Unless an extension is marked as critical, an RI needs not be able to interpret it, and an RI is always free to disregard any (non-critical) extensions. The following extensions are defined for the ROAP-DeviceHello message:

· Certificate Caching Indication: Indicates to the RI that the Device has a capability to remember whether an RI has stored a Device certificate or not. If this extension is used, the RI can use the Certificate caching extension in its ROAP-RIHello message to indicate that it has stored the Device cert. (Note: This is not about whether the Device has a capability to store RI certificates or not. For this, the Peer Certificate Identifier extension is used - see the ROAP-SARequest message.)

Note: It has been proposed to add a “Purpose” field to allow an extension of this general handshake protocol for other purposes than registration. This could be added as a separate parameter or as an Extension in ROAP-DeviceHello, but no other purposes have yet been identified.

1.3.2.3 XML syntax

The <deviceHello> element specifies a ROAP request that is the first message sent in a 4-pass ROAP session. It has complex type DeviceHello, which extends the basic Request type. The response to this request is specified by the <riHello> element, and together they implement the ROAP-DeviceHello and ROAP-RIHello messages.

<element name="deviceHello" type="roap:DeviceHello"/>

<complexType name="DeviceHello">

<annotation>

<documentation xml:lang="en">

Message sent from Device to RI to start

a new ROAP session, negotiating version of ROAP.

</documentation>

</annotation>

<complexContent>

<extension base="roap:Request">

<sequence>

<element name="version" type="roap:Version"/>

<element name="deviceID" type="roap:Identifier" maxOccurs="unbounded"/>"/>

<element name="supportedAlgorithms" type="anyURI" maxOccurs="unbounded"/>

<element name="extensions" type="roap:Extensions" minOccurs="0"/>

</sequence>

</extension>

</complexContent>

</complexType>

The following schema fragment defines the Version type. As noted above, for this version of ROAP, it's value shall be <major>1</major><minor>0</minor>.
<complexType name="Version">

<complexContent>

<sequence>

<element name="majorVersion" type="positiveInteger"/>

<element name="minorVersion" type="positiveInteger"/>

</sequence>

</complexContent>

</complexType>
The following schema fragment defines the Identifier type and it's alternatives. Any non-standard identifier value must be expressed in well-formed XML.

<complexType name="Identifier">

<choice>

 <element name="imei" type="roap:IMEI"/>

 <element name="imsi" type="roap:IMSI"/>

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 <any namespace="##other"/>

 </choice>

</complexType>

<simpleType name="IMEI">

 <annotation>

<documentation xml:lang="en">

 IMEI, 17 digits.

 </documentation>

 </annotation>

 <restriction base="string">

 <pattern value="\d{17}"/>

 </restriction>

</simpleType>

<simpleType name="IMSI">

<annotation>

<documentation xml:lang="en">

 IMSI, between 6 and 16 digits.

 </documentation>

 </annotation>

 <restriction base="string">

 <pattern value="\d{6,16}"/>

 </restriction>

</simpleType>

<complexType name="KeyIdentifiers">

 <sequence maxOccurs="unbounded">

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 </sequence>

</complexType>

<complexType name="KeyIdentifier" abstract="true"/>

A key can also be defined by referring to a certificate containing the key. There are two defined ways to identify a certificate: By a combination of its issuer name and serial number, or by a hash of the complete, DER-encoded certificate. Other ways to identify certificates MAY be used, in which case well-formed XML is required.

<complexType name="CertificateIdentifier">

 <complexContent>

 <extension base="roap:KeyIdentifier">

 <choice>

 <element name="X509IssuerSerial" type="ds:X509IssuerSerialType"/>

 <element name="X509CertificateSHA1Hash" type="base64Binary"/>

 <any namespace="##other"/>

 </choice>

 </extension>

 </complexContent>

</complexType>

Besides identifying a particular key using a certificate identifier, it is also possible to use a hash of the key (or the complete certificate). The hash shall be made over the DER-encoded SubjectPublicKeyInfo value from the applicable certificate.

<complexType name="KeySHA1Hash">

 <complexContent>

 <extension base="roap:KeyIdentifier">

 <sequence>

 <element name="hash" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name="X509Certificate">

 <complexContent>

 <extension base="roap:KeyIdentifier">

 <sequence>

 <element name="certificate" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the Extensions and the Extension type.

<complexType name="Extensions">

 <sequence maxOccurs="unbounded">

 <element name="extension" type="roap:Extension"/>

 </sequence>

</complexType>

<complexType name="Extension" abstract="true">

 <attribute name="critical" type="boolean"/>

</complexType>

The following extension is defined for the ROAP-DeviceHello message:

<complexType name="CertificateCaching">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="certCachingCapabilities" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

</complexType>

1.3.2.4 PDU Processing

TBD, incorporate ROAP semantics relative to this PDU in this sub-section

1.3.3 RI Hello

1.3.3.1 Purpose

The ROAP-RIHello message is sent from the Rights Issuer to the Device in response to a ROAP-DeviceHello message. The message expresses RI preferences and decisions based on Device-supplied values.

1.3.3.2 Message parameters

	Parameter
	ROAP-RIHello

	
	Status = “Success”
	Status ≠ “Success”

	Status
	M
	M

	Session ID
	M
	-

	Selected Version
	M
	-

	RI ID
	M
	-

	Selected Algorithms
	M
	-

	RI Nonce
	M
	-

	Trusted Authorities
	O
	-

	Server Info
	O
	-

	Extensions
	O
	-

Status indicates if the ROAP-DeviceHello request was successfully (Status = Success) handled or not. In the latter case an error code as specified in Section 1.2.5 is sent.

Session ID is a protocol session identifier set by the RI. Allows several, concurrent, RI-Device sessions.

Selected Version is the selected protocol version. The selected version will be min(Device suggested version, highest version supported by RI).

RI ID identifies the RI to the Device. Available identifiers are the same as for the Device ID parameter in ROAP-DeviceHello messages.
Selected Algorithms specifies the cryptographic algorithms (hash algorithm, signature algorithm, MAC algorithm and key transport algorithm) to use in subsequent ROAP interactions.

RI Nonce is a random nonce sent by the RI. Nonces MUST be randomly generated and MUST NOT be re-used.

Trusted Authorities is a list of trust anchors recognized by the RI. This parameter is optional. The parameter is not sent if the RI already has the Device's certificate or otherwise is able to verify a signature made by the Device. If the parameter is present but empty, it indicates that the Device is free to choose any Device certificate to authenticate itself. Otherwise the Device MUST choose a certificate chaining back to one of the recognized trust anchors. Trust anchors are identified by reference to their certificates or hashes of their public keys.

Server Info contains server-specific information which the client MUST return in a subsequent request. The client must not attempt to interpret the value of this parameter.

Extensions is a list of type-value pairs that define optional ROAP features supported by the Rights Issuer. Unless an extension is marked as critical, a Device needs not be able to interpret it, and a Device can always disregard any (non-critical) extensions. The following extensions are defined for the ROAP-RIHello message:

· Certificate Caching: Indicates to the Device that the RI has the capability to store the Device certificate and that Device certificate chain sending is not necessary in subsequent 2-pass protocol instances.

· Peer Certificate Identifier: An identifier for a Device certificate stored by the RI. If the identifier matches the Device's current certificate, it means the Device need not send its certificate chain in a later request message. Certificates are identified by reference.

1.3.3.3 XML syntax

The <riHello> element specifies a ROAP response that is sent in response to a <deviceHello> element. It has complex type RIHello.
<element name="riHello" type="roap:RIHello"/>

<complexType name="RIHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a DeviceHello.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="selectedVersion" type="roap:Version"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="selectedAlgorithms" type="anyURI" maxOccurs="unbounded"/>

 <element name="riNonce" type="roap:Nonce"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers" minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<simpleType name="Nonce">

<restriction base='hexBinary'>

<minLength value=''32"/>

</restriction>

</simpleType>

The following schema fragment defines the Peer Certificate Identifier extension:

<complexType name="PeerCertificateIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="identifier" type="roap:CertificateIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

1.3.3.4 PDU Processing

TBD

1.3.4 SA Request

1.3.4.1 Purpose

A Device sends the ROAP-SARequest message to an RI to request registration with the RI. The message is sent as the third message in the 4-pass Registration protocol.

1.3.4.2 Message parameters

	Parameter
	ROAP-SARequest

	Session ID
	M

	Request Time
	M

	Device Nonce
	M

	Certificate Chain
	O

	Trusted Authorities
	O

	Server Info
	O

	Extensions
	O

	Signature
	M

Session ID is identical to the Session ID parameter of the preceeding ROAP-RIHello message.

Request Time is the current time, as seen by the Device.

Device Nonce is a nonce chosen by the Device. Nonces shall be randomly generated and MUST NOT be re-used.

Certifcate Chain: This parameter MUST be present unless the preceding ROAP-RIHello message contained the Peer Certificate Identifier extension and its value identified the Device's current certificate. When present, the value of a Certificate Chain parameter shall be certificate chain including the Device's certificate. The chain SHALL not include the root certificate. The Device certificate must come first in the list. Each following certificate must directly certify the one preceding it. If the RI indicated trust anchor preferences in the previous ROAP-RIHello message, the Device MUST select a Device certificate and chain which chains back to one of the trust anchors in the RI's list, if possible. This mimics the features of [RFC3546].

Trusted Authorities is a list of trust anchors recognized by the Device. If the parameter is empty, it indicates that the RI is free to choose any certificate. Trust anchors are identified by reference to their certificates or hashes of their public keys.

Server Info: As discussed above, this parameter will only be present if a Server Info parameter was present in the preceding ROAP-RIHello message. In that case, the Server Info parameter MUST be present and MUST be identical to the ROAP-RIHello message's Server Info parameter.

Extensions: This parameter has the same meaning as in other messages. As usual, unless an extension is marked as critical, an RI needs not be able to interpret it. The following extensions are defined for the ROAP-SARequest message:

· Peer Certificate Identifier: An identifier for an RI certificate stored in the Device. If the identifier matches the RI's current certificate, it means the RI need not send down its certificate chain in its response message. Certificates are identified by reference.

· No OCSP Response: This extension allows the Device to indicate to the RI that there is no need to send an OCSP Response since the Device has cached a valid OCSP Response for this RI.

· OCSP Responder Certificate Identifier: This extension identifies an OCSP responder certificate stored in the Device and is used to save bandwidth. If the identifier matches the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

Signature is a signature on data sent so far in the protocol. The signature is made using the Device's private key on a hash of the two previous messages (ROAP-DeviceHello, ROAP-RIHello) and all parameters of this message (besides the Signature parameter itself). The signature method is as follows:

· The previous messages and the current one except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The three messages are concatenated in their chronological order, starting with the ROAP-DeviceHello message. The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme.

1.3.4.3 XML syntax

The <saRequest> element specifies the ROAP-SARequest primitive. It has complex type SARequest, which extends the basic Request type. The response to this request is specified by the <saResponse> element, and together they implement the ROAP-SARequest and ROAP-SAResponse messages.

<element name="saRequest" type="roap:SARequest"/>

<complexType name="SARequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request registration.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="time" type="dateTime"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="certificateChain" type="roap:CertificateChain" minOccurs="0"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers"

 minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary"/>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the CertificateChain type:

<complexType name="CertificateChain">

 <sequence maxOccurs="unbounded">

 <element name="certificate" type="base64Binary"/>

 </sequence>

</complexType
The following schema fragment defines the extensions defined for the ROAP-SARequest message (besides the Peer Certificate Identifier extension already defined):

<complexType name="NoOCSPResponse">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="NoOCSPResponse" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

<complexType name="OCSPCertificateIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="identifier" type="roap:CertificateIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

1.3.4.4 PDU Processing

TBD

1.3.5 SA Response

1.3.5.1 Purpose

The ROAP-SAResponse message is sent from the Rights Issuer to the Device in response to a ROAP-SARequest message. The message completes the registration protocol, and establishes an SA between the Device and the RI.

1.3.5.2 Message parameters

	Parameter
	ROAP-SAResponse

	
	Status = “Success”
	Status ≠ “Success”

	Status
	M
	M

	Session ID
	M
	M

	Certificate Chain
	O
	-

	OCSP Response
	O
	-

	Extensions
	O
	-

	Signature
	M
	-

Status indicates if the ROAP-SARequest message was successfully (Status = Success) handled or not. In the latter case an error code as specified in Section 1.2.5 is sent.

Session ID shall be identical to the Session ID of the preceding ROAP-SARequest (and ROAP-RIHello) message.
Certificate chain: This parameter MUST be present unless the preceding ROAP-SARequest message contained the Peer Certificate Identifier extension, the extension was honored by the RI, and its value identified the RI's current certificate. When present, the value of a Certificate Chain parameter shall be certificate chain including the RI's certificate. The chain SHALL not to include the root certificate. The RI certificate must come first in the list. Each following certificate must directly certify the one preceding it. If the Device indicated trust anchor preferences in its ROAP-SARequest message, the RI MUST select a Device certificate and chain which chains back to one of the trust anchors in the Device's list, if possible. This mimics the features of [RFC3546].

OCSP Response shall be a valid OCSP response for the RI's certificate. This parameter will not be sent if the Device sent the Extension No OCSP Response in the preceding ROAP-SARequest (and the RI was able to interpret that extension)..An exception to this is when the RI detects that the Device's clock is out of sync, see below.

Extensions: This parameter has the same meaning as in other messages. As usual, unless an extension is marked as critical, a Device needs not be able to interpret it. No extensions are defined in this version of ROAP for the ROAP-SAResponse message.
Signature is a signature on data sent in the protocol. The signature is made using the RI's private key on a hash of the previous message (ROAP-SARequest) and all elements of this message (besides the Signature element itself). The signature method is as follows:

· The previous message and the current one except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The two messages are concatenated in their chronological order, starting with the ROAP-SARequest message. The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme.

1.3.5.3 XML syntax

The <saResponse> element specifies the ROAP-SAResponse primitive, and constitutes the last message in the Registration protocol. It has complex type SAResponse, which extends the basic Response type.

<element name="saResponse" type="roap:SAResponse"/>

<complexType name="SAResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to an

 SARequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

1.3.5.4 PDU Processing

TBD

1.3.6 RO Request

1.3.6.1 Purpose

The ROAP-RORequest message is sent from the Device to the RI to request Rights Objects. This message is the first message of the 2-pass protocol to acquire Rights Objects.

1.3.6.2 Message parameters

	
ROAP-RORequest

	Parameter
	Mandatory/Optional

	Device ID
	M

	
	

	RI ID
	M

	Request Time
	M

	Device Nonce
	M

	RO Info
	M

	Certificate Chain
	O

	Extensions
	O

	Signature
	M

Device ID identifies the requesting Device, similar to the ROAP-DeviceHello message.

RI ID identifies the authorizing RI.

Request Time is the current time, as seen by the Device.
Device Nonce is a nonce chosen by the Device. Nonces shall be randomly generated and MUST NOT be re-used.

RO Info identifies the requested Rights Object(s). The parameter consists of a (non-empty) set of Rights Object URLs identifying the requested Rights Objects, and for each RO URL an optional hash of the DCF associated with the requested RO..

Certificate Chain: This parameter is sent unless the extension Certificate Caching is indicated in the SA with this RI. When present, the parameter value shall be as described for the Certificate Chain parameter in the ROAP-SARequest message.

Extensions: This parameter has the same meaning as in other messages. As usual, unless an extension is marked as critical, an RI needs not be able to interpret or honor it. The following extensions are defined for the ROAP-RORequest message:
· Peer Certificate Identifier: An identifier for an RI certificate stored in the Device. If the identifier matches the RI's current certificate, it means the RI need not send down its certificate chain in its response message. Certificates are identified by reference.

· No OCSP Response: This extension allows the Device to indicate to the RI that there is no need to send an OCSP Response since the Device has cached a valid OCSP Response for this RI.

· OCSP Responder Certificate Identifier: This extension identifies an OCSP responder certificate stored in the Device. If the identifier matches the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

· Transaction Identifier: Allows a Device to provide RI with information for tracking of transactions, for example relating to loyalty programs (an example of this could be reward scheme information from the DCFscheme).

Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

1.3.6.3 XML syntax

The <roRequest> element specifies the ROAP-RORequest primitive. It has complex type RORequest, which extends the basic roap:Request type. The response to this request is specified by the <roResponse> element, and together they implement the ROAP-RORequest and ROAP-ROResponse messages.

<element name="roRequest" type="roap:RORequest"/>

complexType name="Request">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request a RO.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="time" type="dateTime"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="roInfo" type="roap:ROInfo"/>

 <element name="certificateChain" type="roap:CertificateChain" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the RO Info parameter:

<complexType name="ROInfo">

 <sequence maxOccurs="unbounded">

 <element name ="roURL" type="anyURI" maxOccurs="unbounded"/>

 <element name="dcfHash" type="base64Binary" minOccurs="0"/>

 </sequence>
</complexType>

The following schema fragment defines the Transaction Identifier extension:

<complexType name="TransactionIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="id" type="string"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>
1.3.6.4 PDU Processing

TBD

1.3.7 RO Response

1.3.7.1 Purpose

The ROAP-ROResponse message is sent from the RI to the Device either in response to a ROAP-RORequest message (two-pass variant) or by RI initiative (one-pass variant). It carries the protected ROs.

1.3.7.2 Message parameters

	Parameter
	ROAP-ROResponse

	
	2-pass

Status = Success
	2-pass

Status ≠ Success
	1-pass

	Status
	M
	M
	M

	Message ID
	M
	M
	M

	Device ID
	M
	-
	M

	RI ID
	M
	-
	M

	Device Nonce
	M
	-
	-

	Response Time
	O
	-
	M

	Protected ROs
	M
	-
	M

	
	
	
	

	Certificate Chain
	O
	-
	O

	OCSP Response
	O
	-
	M

	Extensions
	O
	-
	O

	MAC
	M
	-
	M

	
	
	
	

Status indicates if the request was successfully handled or not. In the latter case an error code specified in Section 1.2.5 is sent.

Message ID is a protocol message identity defined uniquely for by each RI.
Device ID identifies the requesting Device, in the same manner as in the ROAP-DeviceHello message.

RI ID identifies the RI.
Device Nonce is the nonce that was sent by the Device. The parameter, if present, (2-pass) MUST be identical to the corresponding parameter in ROAP-RORequest.

Response Time is the current time, as seen by the RI. This is mandatory in 1-pass since RI authentication is time-based in that case.

Protected RO(s) are the Rights Objects, in which sensitive information (such as CEK) is encrypted using the REK.

Certificate Chain:This parameter MUST be present unless the preceding ROAP-RORequest message contained the Peer Certificate Identifier extension, the extension was honored by the RI, and its value identified the RI's current certificate. When present, the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-SAResponse message
.

OCSP Response shall be a valid OCSP response for the RI's certificate. This parameter is sent unless the extension No OCSP Response was received in the preceding ROAP-RORequest.

Extensions: This parameter has the same meaning as in other messages. As usual, unless an extension is marked as critical, a Device needs not be able to interpret or honor it. The following extensions are defined for the ROAP-ROResponse message:
· Transaction Identifier: Allows an RI to provide a Device with information for tracking of transactions, for example relating to loyalty programs (an example of this could be reward scheme information from the DCFscheme).

MAC is a MAC providing key confirmation (i.e. that the sender knew the key being transported). The MAC is computed using a MAC key and all elements of this message (besides the Signature element and the MAC element itself). See section Error! Reference source not found. for a description of how the MAC key is derived. The MAC method is as follows:

· All elements except the MAC and the Signature elements are canonicalized using the exclusive canonicalization method defined in [xc14n].

· The resulting data d is considered as input to the MAC operation.

· The MAC is calculated on d in accordance with the rules of the negotiated MAC scheme

·
·
·

1.3.7.3 XML syntax

The <roResponse> element specifies the ROAP-ROResponse primitive. It has complex type ROResponse, which extends the basic Response type.

<element name="roResponse" type="roap:ROResponse"/>

<complexType name="ROResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to an RORequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime" minOccurs="0"/>

<any namespace="urn:oma-dldrm-roap-core-20031124"

 processContents="strict"/> "/>

 <element name="certificateChain" type="roap:CertificateChain" minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="mac" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

1.3.7.4 PDU Processing

TBW

1.3.8 Join Domain request
1.3.8.1 Purpose

The ROAP-JoinDomainRequest message is sent from the Device to the RI. This message is the first message in the 2-pass protocol to join a device to a domain.

1.3.8.2 Message parameters

	ROAP-JoinDomainRequest

	Parameter
	Mandatory/Optional

	DeviceID
	M

	RI ID
	M

	Request Time
	M

	Device Nonce
	M

	Domain Info
	M

	Certificate Chain
	O

	Extensions
	O

	Signature
	M

Device ID identifies the requesting Device.

RI ID identifies the authorizing RI.

Request Time is the current time, as seen by the Device.
Device Nonce is a nonce chosen by the Device. Nonces shall be randomly generated and MUST NOT be re-used.

Domain Info shall identify the domain. The parameter consists of a (non-empty) set of domain identifiers and (optional) generation qualifiers. An RI may make use of generation qualifiers to simplify device key management, see Section ?
Certificate Chain: This parameter is sent unless the extension Certificate Caching is indicated in the SA with this RI. When present, the parameter value shall be as described for the Certificate Chain parameter in the ROAP-SARequest message.

Extensions: This parameter has the same meaning as in other messages. As usual, unless an extension is marked as critical, an RI needs not be able to interpret or honor it. The following extensions are defined for the ROAP-JoinDomainRequest message:
· Peer Certificate Identifier: An identifier for an RI certificate stored in the Device. If the identifier matches the RI's current certificate, it means the RI need not send down its certificate chain in its response message. Certificates are identified by reference.

· No OCSP Response: This extension allows the Device to indicate to the RI that there is no need to send an OCSP Response since the Device has cached a valid OCSP Response for this RI.

· OCSP Responder Certificate Identifier: This extension identifies an OCSP responder certificate stored in the Device. If the identifier matches the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation.
· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.
1.3.8.3 XML syntax

The <joinDomainRequest> element specifies the ROAP-JoinDomainRequest primitive. It has complex type roap: DomainRequest, which extends the basic roap:Request type. The response to this request is specified by the <joinDomainResponse> element, and together they implement the domain join protocol.

<element name="joinDomainRequest" type="roap:DomainRequest">

<complexType name="DomainRequest">

 <annotation>

 <documentation xml:lang="en">

 General PDU for sending domain-related requests.
 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="time" type="dateTime"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="domainInfo" type="roap:DomainInfo"/>

 <element name="certificateChain" type="roap:CertificateChain" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>
1.3.8.4 PDU processing
TBW
1.3.9 Join domain response
1.3.9.1 Purpose
The ROAP-JoinDomainResponse message is sent by an RI to a device in response to a ROAP-JoinDomainRequest message. This message is the second message in the 2-pass protocol to join a device to a domain.

1.3.9.2 Message parameters

	Parameter
	ROAP-JoinDomainResponse

	
	2-pass

Status = Success
	2-pass

Status ≠ Success
	1-pass

	Status
	M
	M
	M

	Message ID
	M
	M
	M

	Device ID
	M
	-
	M

	RI ID
	M
	-
	M

	Device Nonce
	M
	-
	-

	Response Time
	O
	-
	M

	Protected Domain Info
	M
	-
	M

	OCSP Response
	O
	-
	M

	Extensions
	O
	-
	O

	MAC
	M
	-
	M

Status indicates if the request was successfully handled or not. In the latter case an error code as specified in Section 1.2.5 is sent.

Message ID is a protocol message identity defined uniquely for by each RI.
Device ID identifies the requesting Device, in the same manner as in the ROAP-DeviceHello message.

RI ID identifies the RI.
Device Nonce is the nonce that was sent by the Device. The parameter, if present, (2-pass) MUST be identical to the corresponding parameter in ROAP-RORequest.

Response Time is the current time, as seen by the RI. This is mandatory in 1-pass since RI authentication is time-based in that case.

Protected DomainInfo(s) is the domain information, in which sensitive information (such as the domain key, DK) is encrypted using the device's public key.

OCSP Response shall be a valid OCSP response for the RI's certificate. This parameter is sent unless the extension No OCSP Response was received in the preceding ROAP-JoinDomainRequest.

Extensions: This parameter has the same meaning as in other messages. As usual, unless an extension is marked as critical, a Device needs not be able to interpret or honor it. No extensions are currently defined for the ROAP-JoinDomainResponse message.
MAC is a MAC providing key confirmation (i.e. that the sender knew the key being transported). The MAC is computed using a MAC key and all elements of this message (besides the MAC element itself). See section 1.4 for a description of how the MAC key is derived. The MAC method is as follows:

· All elements except the MAC element are canonicalized using the exclusive canonicalization method defined in [xc14n].

· The resulting data d is considered as input to the MAC operation.

· The MAC is calculated on d in accordance with the rules of the negotiated MAC scheme.
1.3.9.3 XML syntax

The <joinDomainResponse> element specifies the ROAP-JoinDomainResponse primitive. It has complex type JoinDomainResponse, which extends the basic Response type.

<element name="joinDomainResponse" type="roap:JoinDomainResponse"/>

<complexType name="JoinDomainResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a JoinDomainRequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime" minOccurs="0"/>

 <any namespace="urn:oma-dldrm-roap-core-20031124"

 processContents="strict"/>

 <element name="certificateChain" type="roap:CertificateChain" minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="mac" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>
</complexType>
1.3.9.4 PDU Processing

TBD
1.3.10 Leave domain request

1.3.10.1 Purpose

The ROAP-LeaveDomainRequest message is sent from the Device to the RI. This message is the first message in the 2-pass protocol for removing a device from a domain.

1.3.10.2 Message parameters

	ROAP-LeaveDomainRequest

	Parameter
	Mandatory/Optional

	DeviceID
	M

	RI ID
	M

	Request Time
	M

	Device Nonce
	M

	Domain Info
	M

	Certificate Chain
	O

	Extensions
	O

	Signature
	M

Device ID identifies the requesting Device.

RI ID identifies the authorizing RI.

Request Time is the current time, as seen by the Device.
Device Nonce is a nonce to ensure RI liveness.
Domain Info identifies the domain. The parameter consists of a (non-empty) set of domain identifiers and (optional) generation qualifiers.

Certificate Chain: This parameter is sent unless the extension Certificate Caching is indicated in the SA with this RI. When present, the parameter value shall be as described for the Certificate Chain parameter in the ROAP-SARequest message.

Extensions: This parameter has the same meaning as in other messages. As usual, unless an extension is marked as critical, an RI needs not be able to interpret or honor it. This version does not define any extensions for the ROAP-LeaveDomainRequest message.
Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

1.3.10.3 XML syntax

The <leaveDomainRequest> element specifies the ROAP-JoinDomainRequest primitive. It has complex type roap:DomainRequest, which extends the basic roap:Request type. The response to this request is specified by the <leaveDomainResponse> element, and together they implement the leave domain protocol.

<element name="leaveDomainRequest" type="roap:DomainRequest">

1.3.10.4 PDU processing

TBW

1.3.11 Leave domain response

1.3.11.1 Purpose

The ROAP-LeaveDomainResponse message is sent by an RI to a device in response to a ROAP-LeaveDomainRequest message. This message is the second message in the 2-pass protocol for removing a device from a domain.

1.3.11.2 Message parameters

	ROAP-LeaveDomainResponse

	Parameter
	Mandatory/Optional

	Status
	M

	Message ID
	M

	Domain Info
	M

Status indicates if the request was successfully handled or not. In the latter case an error code defined in 1.2.5 is sent.

Message ID is a protocol message identity defined uniquely for by each RI.
DomainInfo identifies the domain which the RI removed the Device from.

1.3.11.3 XML Syntax
The <leaveDomainResponse> element specifies the ROAP-LeaveDomainResponse primitive. It has complex type LeaveDomainResponse, which extends the basic Response type.

<element name="leaveDomainResponse" type="roap:LeaveDomainResponse"/>

<complexType name="LeaveDomainResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a leaveDomainRequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="domainInfo" type="roap-core:DomainInfo"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

1.3.11.4 PDU processing

TBW
1.4 Key Management

1.4.1 Key transport mechanism

The following description applies both in the case of an RI transporting a domain key and in the case of an RI transporting a Rights Object Encryption Key to a device.

After receiving a valid request, the RI generates a shared secret value Z and a corresponding ciphertext C using the Device's public key establishment key:

(Z, C) = SVES.Generate (PubKeyDevice)

SVES is the secret value encapsulation scheme RSASVES1 described in [X9.44D6] and [ISO/IEC 18033]. When PubKeyDevice is an RSA key, Z shall be chosen as a statistically uniform random integer in the interval [0,…,n-1] where n is the modulus of PubKeyDevice. The ciphertext C is transmitted as the <encryptedKeyMaterial> element in the <recipientInfo> element in the subsequent ROAP-ROResponse message.

After receiving a valid response, the DRM Device decrypts C using its private key, yielding Z:

Z = SVES.Regenerate (PrivKeyDevice, C)
Both parties then convert the value Z to master key material as follows:

KMASTER = KDF(Z, NULL, kLenMASTER)

Where KDF is KDF2 from [X9.44D6], NULL is the empty string, and kLenMASTER shall be set to 32 (indicating the length of KMASTER in octets). From KMASTER actual keys are derived as follows:

KMAC = KDF(KMASTERMSB, "MAC", kLenMAC)

KKEK = KDF(KMASTERLSB, "KEK", kLenKEK)

Where KMASTERMSB is the most significant bytes of KMASTER (i.e.the top-most 128 bits in big-endian or network-byte order), KMASTERLSB is the least significant bytes of KMASTER (i.e. the bottom-most 128 bits in big-endian order), "MAC" and "KEK" both are ascii-strings of length three, and kLenMAC and kLenKEK both shall have the value 16 (indicating the length of KMAC and KKEK in octets). By splitting KMASTER in two halfes, the requirement from [X944D6] to not run KDF2 more than once on a given shared secret value is met.
If the response was for a device,
KMAC will be the MAC key for the ROAP-ROResponse, and KKEK is the key-encryption key KREK for the content-encryption key in the Rights Object in the ROAP-ROResponse. If the response was for a domain (ROAP-JoinDomainResponse), KMAC will be used as the domain MAC key in subsequent ROAP-ROResponses, and KKEK will be used to wrap KREK keys in subsequent ROAP-ROResponses.
The following URI shall be used to identify this key transport scheme in XML elements, e.g. the <keyTransportAlgorithm> element in the <roap:RecipientInfo> type:

http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsa-kem
1.4.2 Wrapping of symmetric keys
Content-encryption keys are AES keys. They will be wrapped using other AES keys ("key-wrapping" keys) by use of the AES key-wrapping scheme described in [RFC3394] ("Wrap 128 bits of Key Data with a 128-bit KEK"). KREK keys derived as in 1.4.1 shall be used as the key-wrapping keys. KREK keys themselves are, as described in 1.4.1, either derived from key material wrapped with the Device's public key, or wrapped by a domain KKEK.
1.5 OCSP usage

1.5.1 RI OCSP usage

< Describe relevant processing by RI during OCSP Request/Response
>
RI sends OCSP Request to CA

CA sends OCSP Response to RI

< Suggested text for OCSP checking: >

1.5.2 Certificate status checking by DRM Agents

DRM agents MUST check the certificate status of Rights Issuer certificates. The means to do this are specified in the ROAP description above. DRM agents MUST support all client requirements in [OMA-OCSP-MP] with the following exceptions:

· DRM agents need not be able to generate OCSPRequests

· Clients need only to handle OCSPResponses with one SingleResponse value

· Clients need not support the authorityInfoAccess certificate extension (as they will not contact OCSP responders directly)

· DRM agents need not support OCSP over HTTP/1.1 (as they will not contact OCSP responders directly)

Clients MUST be able to match a nonce sent for OCSP purposes in the ROAP protocol with a nonce in the received OCSPResponse

1.5.3 Device time synchronization

When a device is aware of having lost its time synchronization… Need to develop text for both devices that have inherent capability to connect (like phones), and devices that can connect using a proxy device (like music players).

Appendix A. Example ROAP messages

Example of a roap:SignedROAPPayload message

<?xml version="1.0" encoding="UTF-8"?>

<!-- $Id:$ -->

<!—signedROAPPayload example -->
<roap-core:signedROAPPayload

 xmlns:roap-core="urn:oma-dldrm-roap-core-20031124"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma-dldrm-roap-core-20031124

 ../roap-core.xsd http://www.w3.org/2000/09/xmldsig#

 ../W3C/xmldsig-core-schema.xsd

 http://http://www.w3.org/2001/04/xmlenc#

 ../W3C/xenc-schema.xsd">

 <roapPayload Id="CT1">

 <version>

 <major>1</major>

 <minor>0</minor>

 </version>

 <domainPayload>

 <domainIdentifier>RI-A-Domain-1-Gen.11</domainIdentifier>

 <encryptedKey Id="DK1">

 <xenc:EncryptionMethod

 Algorithm="http://www.rsasecurity.com/rsalabs/xml/rsa-kem#"/>

 <ds:KeyInfo>

 <roap-core:SPKIHash>999098mhj987fdlkj98lkj098lkjr111</roap-core:SPKIHash>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>999098mhj987fdlkj98lkj098lkjr111</xenc:CipherValue>

 </xenc:CipherData>

 <xenc:CarriedKeyName>"Domain1Key1"</xenc:CarriedKeyName>

 </encryptedKey>

 </domainPayload>

 </roapPayload>

 <signature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#CT1">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:SignatureValue>

 <ds:KeyInfo>

 <ds:X509Data>

 <ds:X509Certificate>d93e5fue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</ds:X509Certificate>

 </ds:X509Data>

 </ds:KeyInfo>

 </signature>

</roap-core:signedROAPPayload>
�PAGE \# "'Page: '#'�'" ��Note! This section is just a strawman for now, it needs much more text.

�PAGE \# "'Page: '#'�'" �Page: 8���Need to decide on this one.

�PAGE \# "'Page: '#'�'" �Page: 11���Is this OK?

�PAGE \# "'Page: '#'�'" �Page: 22���Not needed if we can solve the client session id issue.

�PAGE \# "'Page: '#'�'" �Page: 22���This will not likely be the case for domain RO responses

�PAGE \# "'Page: '#'�'" �Page: 22���Why send it if we're MACing?

�PAGE \# "'Page: '#'�'" �Page: 30���Are you intending this section to be about the RI checking the status of the DRM agent's certificate, Göran?

_1130567591.vsd
�

�

Device�

Rights Issuer�

RO Request�

RO Response�

1�

2�

Figure XX: The 2-pass Rights Object Acquisition Protocol�

_1130567713.vsd
�

�

Device�

Rights Issuer�

RO Response�

1�

Figure XX: The 1-pass Rights Object Acquisition Protocol�

_1130049894.vsd
�

�

Device�

Rights Issuer�

Device Hello�

RI Hello�

SA Request�

SA Response�

OCSP Responder�

OCSP Request�

OCSP Response�

1�

2�

3�

a�

b�

4�

Figure XX: The 4-pass Registration Protocol�

