[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Doc# OMA-DLDRM-2003-0034- ROAP over OBEX
Submitted to BAC-DLDRM
25 Feb 2003
Doc# OMA-DLDRM-2003-0034- ROAP over OBEX
Submitted to BAC-DLDRM
25 Feb 2003

Input Contribution

Title:
ROAP Over OBEX
 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

To:
DL DRM

Source:
James Irwin, Vodafone

+441635672790

James.Irwin@Vodafone.com

Attachments:
n/a
 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

Replaces:
n/a

1 Reason for Contribution

Vodafone agreed to provide an input contribution on how ROAP could be mapped to OBEX in order to support Unconnected Devices. This input contribution represents an early draft that will be used to generate actual specification text. This draft is provided for information and to stimulate comments, in advance of the actual specification text being available.

2 Summary of Contribution

See section 3 for details.

3 Detailed Proposal

31.
Scope

2.
Formatting conventions
4
3.
ROAP OBEX binding
5
3.1
Introduction
5
3.2
OBEX Server Identification
5
3.3
OBEX Profile
5
3.3.1
OBEX operations
5
3.3.2
OBEX headers
6
3.3.3
OBEX Connect
6
3.3.4
OBEX Disconnect
7
3.3.5
OBEX Abort
7
3.3.6
OBEX Put
8
3.3.7
OBEX Get
8
3.4
Exchanging ROAP messages over OBEX
9
4.
IrDA considerations
10
4.1
Service discovery
10
5.
Bluetooth Considerations
11
5.1
Use of Bluetooth security
11
5.2
Bluetooth Service Discovery
11
6.
Example messages
13
6.1
ROAP trigger
13
6.2
ROAP-OBEX Server response
13
7.
References
14
1.
Scope

This document describes how to use the ROAP over OBEX [1]. The document uses primitives and methods defined in the OBEX specification V1.3.

The document assumes a scenario consisting of a ROAP client (the "unconnected device"), a ROAP server, and a conduit (the "Connected Device"), that acts as a gateway, passing ROAP messages between the ROAP client and the ROAP server.
2. Formatting conventions

The key words "MUST", "SHALL", "SHOULD", "MAY" and "OPTIONAL" in this document are to be interpreted as described in [2].

In tables, the letter M is used to indicate MUST, and O to indicate OPTIONAL.

3. ROAP OBEX binding

3.1 Introduction

OBEX is a protocol for exchanging objects. It can be used with Bluetooth, infrared, USB and RS232 and other bearers. The requirements of this document refer to OBEX version 1.3.

OBEX is a session-oriented protocol, which allows multiple request/response exchanges in one session. An OBEX session is initiated by an OBEX CONNECT request, and is established when the other device returns a success response. The connection is terminated by sending a DISCONNECT request.

In this specification, the ROAP client works as an OBEX server at the OBEX protocol layer. In consequence, the Connected Device works as an OBEX client.

When a session has been established, ROAP messages originating from the ROAP server are transferred from the Connected Device to the unconnected device using the OBEX PUT method. The unconnected device acknowledges the data, by sending a response with a status code, and possibly also containing some ROAP data.

ROAP requires that an OBEX connection is established. Connectionless OBEX cannot be used with ROAP.

The unconnected device's ROAP application is built above a ROAP-OBEX server.

3.2 OBEX Server Identification

The ROAP-OBEX server is identifier by the following UUID (to be used as a value for the "Target" header in OBEX CONNECT operations):

-TBD-
3.3 OBEX Profile

3.3.1 OBEX operations

The table below shows the OBEX operations that are used by the ROAP OBEX profile. Unconnected devices and Connected Devices MUST support these OBEX operations.

OBEX Operation
Opcode

Connect
0x80

Disconnect
0x81

Put
0x02 (0x82)

Abort
0xFF

OBEX headers

The table below shows the OBEX headers that are used in the ROAP OBEX profile. Unconnected devices and Connected Devices MUST support these headers.

OBEX Header
Header Identifier
Comment

Type
0x42
application/vnd.oma.roap+xml

Length
0xC3

Target
0x46
Required in CONNECT requests.

Who
0x4A
Identifies responding server in responses to CONNECT requests

Connection Id
0xCB
Value is set by the Connected Device in response to the CONNECT operation

Body
0x48
Carries ROAP PDUs; present if there is a need to send the PDU in several chunks.

End of Body
0x49
Carries ROAP PDUs.

3.3.2 OBEX Connect

The OBEX CONNECT operation SHALL contain the following OBEX fields and headers:

Field/Header
Name
Explanation/Value

Field
Opcode for CONNECT
0x80

Field
Packet length
Varies

Field
OBEX version
0x10 (for version 1.0 of the OBEX protocol)

Field
Flags
Varies; normally all zero

Field
Maximum packet length
Varies

Header
Target

The response code to a successful OBEX CONNECT operation SHALL be 0xA0. The following fields and headers SHALL be present in the response:

Field/Header

Name
Explanation/Value

Field
Response code
0xA0 for success

Field
Packet length
Varies

Field
OBEX version
0x10 (for version 1.0 of the OBEX protocol)

Field
Flags
Varies; normally all zero

Field
Maximum packet length
Varies

Header
Who
Shall have same value as the preceding "Target" header

Header
Connection ID
Identifies the connection

3.3.3 OBEX Disconnect

An OBEX DISCONNECT request SHALL contain the following fields and headers:

Field/Header
Name
Explanation/Value

Field
Opcode for DISCONNECT
0x82

Field
Packet length
Varies

Header
Connection ID
As established in the response to the CONNECT operation

The response code to a successful OBEX DISCONNECT operation SHALL be 0xA0. The following fields and headers SHALL be present in the response:

Field/Header
Name
Explanation/Value

Field
Response code
0xA0 for success

Field
Packet length
Varies

3.3.4 OBEX Abort

Note: The OBEX ABORT operation may be used to abort a multi-packet operation before it would normally end.

The OBEX ABORT operation SHALL, when requested, contain the following fields and headers:

Field/Header
Name
Explanation/Value

Field
Opcode for ABORT
0xFF

Field
Packet length
Varies

Header
Connection ID
As established in the response to the CONNECT operation

The response code to a successful OBEX ABORT operation shall be 0xA0 (or else the client will simply disconnect the OBEX connection). The following fields and headers SHALL be present in the response:

Field/Header
Name
Explanation/Value

Field
Response code
0xA0 for success; otherwise the client will disconnect with a failure indication

Field
Packet length
Varies

OBEX Put

The OBEX PUT operation SHALL contain the following OBEX fields and headers:

Field/Header
Name
Explanation/Value

Field
Opcode for PUT
0x02 or 0x82 (0x02 is used for non-terminal chunked messages, 0x82 is used for the terminal packet in a chunked message, see [1]

Field
Packet length
Varies

Header
Connection ID
Varies

Header
Type
Application/vnd.oma.roap+XML

Header
Body, End of Body
End of Body identifies the last chunk of an object; for other chunks the Body header shall be used.

In addition to these headers, the Length header MAY be used to indicate the complete length of an object

The response code to a successful OBEX PUT operation SHALL be 0xA0 or 0x90, depending on whether the PUT operation was non-final (0x02) or final (0x82). The following fields and headers SHALL be present in the response:

Field/Header
Name
Explanation/Value

Field
Response code
0x90 (Continue) or 0xA0 (Success) for success

Field
Packet length
Varies

In addition, the following headers SHALL be present when the result of the OBEX PUT operation triggers the transmission of a ROAP message from the unconnected device to the ROAP server (through the Connected Device):

Field/Header
Name
Explanation/Value

Header
Type
application/vnd.oma.roap+XML

Header
Body, End of Body
End of Body is used for last chunk of an object, for other chunks the Body header shall be used.

The response code shall be 0x90 when the size of the ROAP message in the response requires "chunking." In this case, and in order to retrieve remaining parts, the Connected Device shall issue OBEX GET requests until it receives a response with response code 0xA0 (see below).

3.3.5 OBEX Get

The OBEX GET operation SHALL contain the following OBEX fields and headers:

Field/Header
Name
Explanation/Value

Field
Opcode for GET
0x83

Field
Packet length
Varies

Header
Connection ID
Varies

Header
Type
application/vnd.oma.roap+xml

The response code to a successful OBEX GET operation SHALL be 0xA0 or 0x90, depending on whether the message contains the complete (final part) of the object or not. The following fields and headers SHALL be present in the response:

Field/Header
Name
Explanation/Value

Field
Response code
0x90 (Continue) or 0xA0 (Success) for success

Field
Packet length
Varies

Header
Body, End of Body
End of Body is used for last chunk of an object, for other chunks the Body header shall be used.

The response code shall be 0x90 when the size of the object requires "chunking." In this case, and in order to retrieve remaining data, the Connected Device SHALL continue to issue OBEX GET requests until it receives a response with response code 0xA0.

Note: Two alternative methods to exchange ROAP messages are:

a) Requiring the Connected Device to continuously re-issue the last PUT request until a response message with response code 0xA0 is received. One problem with this, however, is that it is not obvious is such a PUT request is a new one or one sent in response to a response message with response code 0x90.

b) Never send a Body in a response to a PUT operation but instead require the Connected Device to fetch the next ROAP message using OBEX GET. The disadvantage of this is that there may not be any ROAP message to retrieve (e.g. no response to a ROAP-JoinDomainResponse)

There is a need to make a decision on this.

3.4 Exchanging ROAP messages over OBEX

ROAP messages originating from the ROAP server are sent from the Connected Device to the ROAP client using the OBEX PUT operation. When receiving a ROAP trigger not directed to itself, the Connected Device maintains the connection to the ROAP server and establishes an OBEX connection to the unconnected device's ROAP-OBEX server and sends the ROAP trigger in an OBEX PUT operation. The Connected Device searches for available ROAP-OBEX servers through service discovery, see Section 5.2 and ?.

When receiving a ROAP message in the body of an OBEX response message from the Unconnected Device, the Connected Device forwards the message to the ROAP server re-using the maintained connection. The Connected Device SHALL close the connection to the ROAP server when the OBEX session ends. The Connected Device MAY close the connection to the ROAP server when receiving a response to a PUT request with response code 0xA0 and no Body (or End of Body) header.

Sending a ROAP message can take one or more OBEX packets. Compliant ROAP-OBEX servers MUST be able to receive multiple sequential PUT requests.

ROAP messages originating from the ROAP client are received by the Connected Device in response to PUT operations or by use of the OBEX GET operation (when the response is larger than the maximum OBEX packet length). A Connected Device that has sent a PUT request and receives a response with response code 0x90 MUST issue GET requests until the complete ROAP message has been received (response code 0xA0).

Each ROAP message MUST be transferred as a ROAP MIME media type within the body of the OBEX request or response. However in order to transfer the message the OBEX layer may split the message into several PUT requests (or GET responses), followed by a PUT Final request (or a final GET response).

4. IrDA considerations

4.1 Service discovery

The ROAP-OBEX server application MUST have an IAS entry with the following attribute, enabling connecting devices to detect the presence of the ROAP-OBEX service:

Needs to be verified with IrDA OBEX experts
5. Bluetooth Considerations

5.1 Use of Bluetooth security

Bluetooth authentication and link encryption may be used when running ROAP over OBEX (over Bluetooth). Before these services are available the Connected Device and the Unconnected Device must have gone through an initialisation procedure, i.e. be paired. The initialisation procedure could be a part of the first ROAP session or it could be done a priori if the Connected Device and the unconnected device are already paired for other services. It is expected that devices in the user's environment are paired once to enable several services.

5.2 Bluetooth Service Discovery

Service discovery can enhance the user experience by automating selection procedures. This section contains a definition of the corresponding service records and SDP PDUs, needed to enable a Connected Device to automatically find suitable devices to connect to.

To enable ROAP over the Bluetooth protocol stack, the Unconnected Device Bluetooth client SHOULD advertise service records, which can be retrieved by a connecting device using the Bluetooth Service Discovery Protocol (SDP).

In the case of the Unconnected Device, the following information, i.e., service records, SHOULD be put into the SDDB (Service Discovery Database):

Item
Definition
Type/ Size
Value
AttrID
Status
Default Value

Service Class ID List

N/A
0x0001**
MUST

Service Class #0
ROAP unconnected device
UUID
*

N/A
MUST

Protocol Descriptor list

N/A
0x0004**
MUST

Protocol ID #0
L2CAP
UUID
0x0100**
N/A
MUST

Protocol ID #1
RFCOMM
UUID
0x0003**
N/A
MUST

Param #0
CHANNEL
Uint8
Varies
N/A
MUST

Protocol ID #2
OBEX
UUID
0x0008**
N/A
MUST

Service name
Displayable Text name
String
Varies
0x0000+b***
MAY
“ROAP client”

Table 1 ROAP Client Service Records

** The value or the attribute ID is specified in the Bluetooth Assigned Numbers specification.

*** ’b’ in this table represents a base offset as given by the LanguageBaseAttributeIDList attribute. For the principal language b must be equal to 0x0100 as described in the Bluetooth SDP specification [3].

Table 2 shows the specified SDP PDUs (Protocol Data Units), which are required.

PDU no.
SDP PDU
Ability to Send
Ability to Retrieve

ROAP Connected Device
ROAP unconnected device
ROAP Connected Device
ROAP unconnected device

1
SdpErrorResponse
N/A
MUST
MUST
N/A

2
SdpServiceSearchAttribute-Request
MUST
N/A
N/A
MUST

3
SdpServiceSearchAttribute-Response
N/A
MUST
MUST
N/A

Table 2 SDP PDUs

6. Example messages

6.1 ROAP trigger

This message is sent from the Connected Device to the Unconnected Device after:

a) The Connected Device has received the trigger from the ROAP server;

b) The Connected Device has determined that the trigger is not for itself; and

c) The Connected Device has established a directed OBEX connection to the unconnected device's ROAP-OBEX server.

Bytes
Meaning

 0x82
Opcode PUT, single packet request, final bit set

 0x0301
Packet length (a total of 769 bytes in this case)

 0xCB
Connection Id HI

 0x00000001
ConnectionId = 1

 0x42
Type HI

 0x0027
Total length of Type header (including HI and length fields)

 "application/vnd.oma.roap-trigger+xml"
Type of object, null terminated ASCII text

 0x49
End-of-Body HI

 0x02D2
Length of body (trigger) is 719 bytes (= whole object)(+ 3 bytes header information)

 0x….
The ROAP-JoinDomain trigger goes here…

6.2 ROAP-OBEX Server response

This is the response message from the ROAP client in the Unconnected Device, sent by that device's ROAP-OBEX server.

Bytes
Meaning

 0xA0
Opcode SUCCESS, Final bit set

 0x016B
Length of response packet (363 bytes)

 0xCB
Connection Id HI

 0x00000001
ConnectionId = 1

 0x42
Type HI

 0x001F
Total length of Type header (28 bytes + 3 bytes header information)

 "application/vnd.oma.roap+xml"
Type of object, null terminated ASCII

 0x49
End-of-Body HI

 0x0144
Body header length (321 bytes + 3 bytes header information)

 0x….
 The triggered ROAP request goes here

7. References
[1] IrDA Object Exchange Protocol (OBEX), Version 1.3, January 2003.

[2] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels," IETF RFC 2119, March 1997.

[3] Assigned Numbers – Service Discovery Protocol (SDP), Bluetooth SIG, August 2003.

4 Intellectual Property Rights Considerations

None known.

5 Recommendation

Input provided for information, to stimulate discusion.

�PAGE \# "'Page: '#'�'" �Page: 1���Ramesh to assign actual MIME types. MIME type can also be the ROAP trigger.

�PAGE \# "'Page: '#'�'" �Page: 1���UUID to be assigned

�PAGE \# "'Page: '#'�'" �Page: 1���See first comment.

�PAGE \# "'Page: '#'�'" �Page: 1���Ramesh to assign actual MIME type.

�PAGE \# "'Page: '#'�'" �Page: 1���Ramesh to assign actual MIME type.

�PAGE \# "'Page: '#'�'" �Page: 1���A value needs to be allocated for ROAP unconnected device same as the UUID above.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 1)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20030824]

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Page 13 (of 1)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20030824]

