[image: image23.jpg]Doc# OMA-DLDRM-2003-0038-Unconnected Device Support
Submitted to BAC-DLDRM
1 March 2003
Doc# OMA-DLDRM-2003-0038-Unconnected Device Support
Submitted to BAC-DLDRM
1 March 2003

Input Contribution

Title:
Unconnected Devices Support
 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

To:
DL DRM

Source:
James Irwin, Vodafone

+441635672790

James.Irwin@Vodafone.com

Attachments:
n/a
 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

Replaces:
n/a

1 Reason for Contribution

This input proposes the changes necessary to add support for Unconnected Devices in OMA DRM v2.

2 Summary of Contribution

This input contribution details the changes need to support Unconnected Devices in OMA DRM v2. See section 3 for details.

3 Detailed Proposal

2. References

3.1 Normative References

[3GPP PSS]
Transparent end-to-end packet switched streaming service (PSS); 3GPP 26.234; Protocols and codecs - Release 5. http://www.3gpp.org/

[3GPP TS 24.008]
Technical Specification Group Core Network; Mobile radio interface layer 3 specification; Core Network Protocols; Stage 3(Release 5)

[3GPP TS 31.102]
Technical Specification Group Terminals; Characteristics of the USIM Application (Release 5).

[3GPP TS 11.11]
Specification of the Subscriber Identity Module -Mobile Equipment (SIM - ME) interface (Release 5)

[AES]
NIST FIPS 197: Advanced Encryption Standard (AES). November 2001.

URL:http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[Bluetooth SDP]
Assigned Numbers – Service Discovery Protocol (SDP), Bluetooth SIG, August 2003.

[CP]
OMA Certificate and CRL Profiles, draft version 2003-02-16

[CREQ]
“Specification of WAP Conformance Requirements”. Open Mobile Alliance(. WAP‑221‑CREQ. URL:http//www.wapforum.org/ <to be replaced by an OMA ref when available>

[DRM]
“Digital Rights Management”, Open Mobile AllianceTM, OMA-Download-DRM-v1_0, http://www.openmobilealliance.org/

[DRMARCH]
DRM Architecture Specification, Open Mobile Alliance, OMA-Download_DRMARCH_v1_0

http://www.openmobilealliance.org/

[DRMCF]
“DRM Content Format”, Open Mobile AllianceTM, OMA-Download-DRMCF-v1_0, http://www.openmobilealliance.org/

[DRMCF-v2]
DRM Content Format, OMA, v2

[DRMREL]
“DRM Rights Expression Language”, Open Mobile AllianceTM, OMA-Download-DRMREL-v1_0, http://www.openmobilealliance.org/

[DRMREL-v2]
DRM Rights Expression Language, OMA, v2

[DRMREQ-v2]
DRM Requirements Specification, OMA, v2

[HMAC]
RFC 2104: HMAC: Keyed-Hashing for Message Authentication. H. Krawczyk, M. Bellare, and R. Canetti. Informational, February 1997.

http://www.ietf.org/rfc/rfc2104.txt

[HTTP]
RFC 2616. Hypertext Transfer Protocol – HTTP/1.1. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June 1999. http://www.ietf.org/rfc/rfc2616.txt

[MIME]
RFC 2045. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies. N. Freed & N. Borenstein. November 1996.

http://www.ietf.org/rfc/rfc2045.txt

[OBEX]
IrDA Object Exchange Protocol (OBEX), Version 1.3, January 2003.

[OCSP]
Online Certificate Status Protocol, http://www.ietf.org/rfc/rfc2560.txt

[OCSP-MP]
OMA Online Certificate Status Protocol (profile of [OCSP]), draft version 2002-08-09

[RFC2119]
“Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
http://www.ietf.org/rfc/rfc2119.txt

[RFC2045]
"Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies", N. Freed & N. Borenstein, November 1996, http://www.ietf.org/rfc/rfc2045.txt

[RFC2234]
“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell.
November 1997. URL:http://www.ietf.org/rfc/rfc2234.txt

[RFC2387]
“The MIME Multipart/Related Content-type”, E. Levinson, 1998, http://www.ietf.org/

[RFC2396]
“Uniform Resource Identifiers (URI): Generic Syntax”. T. Berners-Lee, R. Fielding, L. Masinter. August 1998. http://www.ietf.org/rfc/rfc2396.txt

[RFC2616]
“Hypertext Transfer Protocol -- HTTP/1.1”. R. Fielding, et al. June 1999.

http://www.ietf.org/rfc/rfc2616.txt.

[RFC 2965]
“HTTP State Management Mechanism”. D. Kristol, L. Montulli, October 2000

http://www.ietf.org/rfc/rfc2965.txt.

[XML-DSIG]
XML-Signature Syntax and Processing. D. Eastlake, J. Reagle, and D. Solo. W3C Recommendation, February 2002.

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

[XML-Encryption]
XML Encryption Syntax and Processing. D. Eastlake and J. Reagle. W3C Candidate Recommendation, December 2002.

http://www.w3.org/TR/2002/CR-xmlenc-core-20020802/

[XML-Schema]
XML Schema Part 1: Structures D. Beech, M. Maloney, and N. Mendelsohn. W3C Recommendation, May 2001.

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

XML Schema Part 2: Datatypes. P. Biron and A. Malhotra. W3C Recommendation, May 2001.

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

[WAPWIM]
"Wireless Application Protocol Architecture Specification", Open Mobile Alliance(. OMA-WAP-WIM-v1_1-20021024-C

2.2 Informative References

[DLOTA]
“OMA Download version 1.0.” Open Mobile Alliance™. OMA-Download-OTA-V1_0. www.openmobilealliance.org/documents.html

[DRMARCH-v2]
“OMA DRM Architecture”, Open Mobile Alliance™. OMA-DRM-ARCH-V2_0. www.openmobilealliance.org/documents.html

[PUSHOTA]
“Push OTA Protocol Specification.” Open Mobile Alliance™. WAP-235-PushOTA. www.openmobilealliance.org/wapdownload.html

[PUSHSI]
“WAP Service Indication Specification.” Open Mobile Alliance™. WAP-167-ServiceInd. www.openmobilealliance.org/wapdownload.html

[PUSHSL]
“WAP Service Loading Specification.” Open Mobile Alliance™. WAP-168-ServiceLoad. www.openmobilealliance.org/wapdownload.html

[UICC]
“Smart cards; UICC-Terminal interface; Physical and logical characteristics (release 5)”, ETSI 102.221 , http://www.etsi.org

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Error! Reference source not found.” and “Error! Reference source not found.”, are normative, unless they are explicitly indicated to be informative.

This specification uses schema documents conforming to W3C XML Schema [SCHEMA] and normative text to describe the syntax and semantics of XML-encoded ROAP messages.

Listing of Rights Object Acquisition Protocol (ROAP) schemas appear like this.

The following typographical conventions are used in the body of the text: <ROAPElement>, ROAPAttribute, ROAPDatatype, ASN.1ValueOrType.
3.2 Definitions

Backup/Remote Storage
Transferring Rights Objects and Content Objects to another location with the intention of transferring them back to the original Device.

Billing Service Provider
The entity responsible for collecting payment from a User.

Combined Delivery
A Release 1 method for delivering Protected Content and Rights Object. The Rights Object and Protected Content are delivered together in a single entity, the DRM Message.

Composite Object
A content object that contains one or more Media Objects by means of inclusion.

Confidentiality
The property that information is not made available or disclosed to unauthorized individuals, entities or processes. (From [ISO 7498-2])

Connected Device
A Connected Device is a Device that SHALL be capable of directly connecting to a Rights Issuer using an appropriate protocol over an appropriate wide area transport/network layer interface. E,g, HTTP over TCP-IP.
A Connected Device MUST support DRM Time.
A Connected Device MAY also implement Unconnected Device functionality, in this case the Connected Device MUST support DRM Time.

Content
One or more Media Objects

Content Issuer
The entity making content available to the DRM Agent in a Device.

Content Provider
An entity that is either a Content Issuer or a Rights Issuer.

Content subscription
A subscription that a User has with a Content Provider for the purposes of paying for Protected Content purchased from that Content Provider and played on a Users Device.

Device
A Device is a user equipment with a DRM Agent. The Device MAY include a smartcard module (e.g. a SIM) or not depending upon implementation.
In the case where functionality is specific to either Connected Devices or Unconnected Devices the explicit terminology (i.e Unconnected Device or Connected Device) will be used, in all other cases the term Device SHALL generically apply to both Connected Devices and Unconnected Devices.

Device Revocation
The process of an RI indicating that a Device is no longer trusted to acquire ROs.

Device Rights Object
An RO dedicated for a particular Device by means of the Device Public Key.

Domain
A set of devices, which are able to share Domain Rights Objects. Devices in a Domain share a Domain Key. A Domain is defined and managed by an RI.

Domain Identifier
A unique string identifier of the Domain Key

Domain Key
A 128 bit symmetric cipher key

Domain Generation
A Counter reflecting the number of times the Domain has been revoked. The Domain Generation is a part of the Domain Identifier (the last two digits).

Domain Context
The Domain Context consists of information necessary for the Device to install Domain Rights Objects, such as Domain Key, Domain Identifier and Expiry Time.

Domain Context Expiry Time
An absolute time after which the Device is not allowed to install ROs for this Domain. Usage of ROs installed before the expiry time are not affected by the expiry.

Domain Revocation
The process of an RI indicating that a Domain Key is not trusted for protection of Domain ROs.

Domain Rights Object
An RO that is dedicated to devices in a particular domain by means of a Domain Key.

DRM Agent
The entity in the Device that manages Permissions for Media Objects on the Device.

DRM Message
An OMA DRM Release 1 term defined in [DRM]

DRM Time
A secure, non-user changeable time source. The DRM Time SHALL be in the UTC
 time format
.

Forward Lock
An OMA DRM Release 1 term defined in [DRM]

Hash Chains
A Method of derivation of Domain Keys of different Domain Generations.

Integrity
The property that data has not been altered or destroyed in an unauthorized manner. (ISO 7498-2)

Join Domain
The process of an RI including a Device in a Domain.

Leave (De-Join) Domain
The process of an RI excluding a non-revoked Device from a Domain.

Media Object
A digital work e.g. a ringing tone, a screen saver, a Java game or a Composite Object.

Permission
Actual usages or activities allowed (by the Rights Issuer) over Protected Content (From [ODRL 1.1])

Play
To create a transient, perceivable rendition of a resource (From [MPEG21 RDD])

Protected Content
Media Objects that are consumed according to a set of Permissions in a Rights Object.

Restore
Transferring the Protected Content and/or Rights Objects from an external location back to the Device from which they were backed up.

Revoke
Process of declaring a Device or Rights Issuer certificate as invalid.

Rights Issuer
An entity that issues Rights Objects to OMA DRM Conformant Devices.

Rights Object
A collection of Permissions and other attributes which are linked to Protected Content.

Rights Object Acquisition Protocol (ROAP)
A protocol defined within this specification. This protocol enables devices to request and acquire Rights Objects from a Rights Issuer.

ROAP Trigger
A URL that, when received by the Device, initiates the ROAP.

Separate Delivery
A Release 1 term defined in [DRM].

Stateless Rights
Stateless Rights are Rights Objects for which the Device does not have to maintain state information. For example, if a Rights Object uses the <datetime> constraint, it depicts Stateless Rights, because you don't need to maintain any usage information in order to enforce the constraint

Stateful Rights
Stateful Rights are Rights Objects for which the Device has to explicitly maintain state information, so that the constraints and permissions expressed in the RO can be enforced correctly. For example, a RO containing the <interval> constraints are considered Stateful Rights because the Device needs to keep track of the first use of the associated content.

Superdistribution
A mechanism that (1) allows a User to distribute Protected Content to other Devices through potentially insecure channels and (2) enables the User of that Device to obtain a Rights Object for the superdistributed Protected Content.

Unconnected Device
. An Unconnected Device SHALL be capable of connecting to a Rights Issuer via a Connected Device using an appropriate protocol over a local connectivity technology. E.g. OBEX over IrDA, Bluetooth or USB. An Unconnected Device MAY support DRM Time.

User
The human user of a Device. The User does not necessarily own the Device.

6 The Rights Object Acquisition Protocol (ROAP) Suite

6.1 Overview

The Rights Object Acquisition Protocol (ROAP) is the common name for a suite of DRM security protocols between a Rights Issuer (RI) and a DRM Agent in a Device. The protocol suite contains a 4-pass protocol for registration of a Device with an RI and two protocols by which the Device requests and acquires Rights Objects (RO). The 2-pass RO Request/Response protocol encompasses request and delivery of an RO whereas the 1-pass ROAP is only a delivery of an RO from an RI to a Device (e.g. messaging/push). The ROAP suite also includes 2-pass protocols for devices joining and leaving a Domain; the Join Domain Request/Response protocol and the Leave Domain Request/Response protocol.

6.1.1 The 4-pass Registration Protocol

The Registration protocol is a complete security information exchange and handshake between the RI and the Device and is generally only executed at first contact, and also, when major changes have been made such as an update of the ROAP or DRM version, or when DRM Time in Device is lost. This protocol includes negotiation of protocol parameters and protocol version, exchange of certificate preferences, optional exchange of certificates, mutual authentication of Device and RI, integrity protection of protocol messages and optional time synchronization.

Successful completion of the Registration protocol results in the establishment of an RI Context in the Device containing security related information of this Rights Issuer, including agreed protocol parameters, protocol version, and certificate preferences. An RI Context is necessary for execution of the other protocols in the ROAP suite: to acquire and install Device ROs and to join/leave domains. The RI may accept other methods for establishment of the RI Context than the 4-pass registration protocol, e.g. a well formed request message with correct parameters using the default algorithms. However, the Registration protocol is needed to synchronise the DRM Time of a Device , or if the RI Context needs to be updated.

[image: image2.wmf]Connected

Device

Rights Issuer

OCSP Responder

a

RegistrationRequest

RegistrationResponse

Device Hello

RI Hello

OCSP Request

OCSP Response

1

1

2

2

3

3

4

4

a

a

b

b

Figure 1: The 4-pass Registration Protocol (Connected Device)
In the case of a Connected Device, the RI may optionally,perform a nonce-based OCSP request for its own certificate (using a nonce supplied by the Device) during the registration protocol. Whether or not to do the nonce-based OCSP request depends on whether the Connected Device’s DRM time is inaccurate with respect to synchronization as desired by the RI or not.
[image: image3.wmf]Connected

Device

Rights Issuer

OCSP Responder

a

1

1

2

2

3

3

4

4

a

a

b

b

Unconnected

Device

Device Hello

RI Hello

RegistrationRequest

RegistrationResponse

Device Hello

RegistrationRequest

OCSP Request

OCSP Response

RI Hello

RegistrationResponse

Figure 2: The 4-pass Registration Protocol (Unconnected Device)
In order to support Unconnected Devices a Connected Device MAY provide the appropriate connectivity to the RI for the Unconnected Device.

If the Unconnected Device does not support DRM Time the RI MUST perform a nonce-based OCSP request for its own certificate (using a nonce supplied by the Device) during the registration protocol
6.1.2 The 2-pass Rights Object Acquisition Protocol

The 2-pass ROAP protocol is the request/response protocol with which the Device acquires Rights Objects. This protocol variant includes request and delivery of RO, mutual authentication of Device and RI, establishment of necessary cryptographic information in the trusted device in order to process the RO and perform integrity check of RO and PDU. The protocol requires an RI Context in the Device e.g. as the result of a prior run of the Registration protocol.

[image: image5.wmf]Connected

Device

Rights Issuer

RO Request

RO Response

1

1

2

2

Figure 3: The 2-pass Rights Object Acquisition Protocol (Connected Device)
In order to support Unconnected Devices a Connected Device MAY provide the appropriate connectivity to the RI for the Unconnected Device.
[image: image6.wmf]Connected

Device

Rights Issuer

RO Request

RO Response

1

1

2

2

Unconnected

Device

RO Request

RO Response

Figure 4: The 2-pass Rights Object Acquisition Protocol (Unconnected Device)
6.1.3 The 1-pass Rights Object Acquisition Protocol

The 1-pass ROAP protocol is designed to meet the messaging/push use case. There has to be an existing RI Context for the sending RI in the Device to be able to run this protocol. In contrast to previous protocol variants, it is initiated unilaterally by the RI and requires no interaction from the Device. One use case is distribution of Rights Objects at regular intervals, e.g. supporting a content subscription. The 1-pass protocol is essentially the last message of the 2-pass variant.

[image: image8.wmf]Connected

Device

Rights Issuer

RO Response

1

1

Figure 5: The 1-pass Rights Object Acquisition Protocol (Connected Device)

1-pass delivery of Domain ROs can alternatively be delivered stand-alone without use of the RO Response PDU.

6.1.4 The 2-pass Join Domain Protocol

The Join Domain protocol is a device initiated request/response protocol whereby a device requests to join an RI-defined domain and receives in the response the Domain Key and other information needed to share ROs in this domain (if successful) or an error message (if not successful). The protocol assumes an existing RI context with this RI.

Successful completion of the Join Domain protocol results in the establishment of a Domain Context in the Device containing security related information of this domain including a Domain Key. A Domain Context is necessary for the Device to be able to install and utilize Domain ROs.

[image: image10.wmf]Connected

Device

Rights Issuer

Join Domain Request

Join Domain Response

1

1

2

2

Figure 6: The 2-pass Join Domain Protocol (Connected Device)
In order to support Unconnected Devices a Connected Device MAY provide the appropriate connectivity to the RI for the Unconnected Device.
[image: image11.wmf]Connected

Device

Rights Issuer

Join Domain Request

Join Domain Response

1

1

2

2

Unconnected

Device

Join Domain Request

Join Domain Response

Figure 7: The 2-pass Join Domain Protocol (Unconnected Device)
6.1.5 The 2-pass Leave Domain Protocol

The Leave Domain protocol is a device initiated request/response protocol whereby a Device that has removed information about an RI-defined domain requests to leave it and receives an acknowledgement that it has left the domain or an error message.

[image: image13.wmf]Connected

Device

Rights Issuer

Leave Domain Request

Leave Domain Response

1

1

2

2

Figure 8: The 2-pass Leave Domain Protocol (Connected Device)
In order to support Unconnected Devices a Connected Device MAY provide the appropriate connectivity to the RI for the Unconnected Device.
[image: image14.wmf]Connected

Device

Rights Issuer

Leave Domain Request

Leave Domain Response

1

1

2

2

Unconnected

Device

Leave Domain Request

Leave Domain Response

Figure 9: The 2-pass Leave Domain Protocol (Unconnected Device)
6.1.6 The ROAP Trigger

The suite of protocols included in the ROAP is initiated using the ROAP Trigger. The Rights Issuer sends the ROAP Trigger to the Device to initiate the ROAP. When the Device receives the ROAP Trigger it immediately initiates the ROAP transaction.
 Since the ROAP comprises several protocols, the ROAP Trigger provides an indication of which actual ROAP (Registration, RO acquisition, leave a domain, join a domain) is to be started by the Device. The ROAP Trigger also contains all the information needed by the Device, which it does not already have, to participate in the ROAP.

[image: image16.wmf]Rights

Issuer

ROAP Trigger {roRequest}

RO Request

RO Response

ROAP Trigger {joinDomain}

Join Domain Request

Join Domain Response

ROAP Trigger {leaveDomain}

Leave Domain Request

Connected

Device

Leave Domain Response

Figure 10: ROAP Trigger (Connected Device)
In order to support Unconnected Devices a Connected Device MAY provide the appropriate connectivity to the RI for the Unconnected Device.
[image: image17.wmf]Rights

Issuer

ROAP Trigger {roRequest}

RO Request

RO Response

ROAP Trigger {joinDomain}

Join Domain Request

Join Domain Response

ROAP Trigger {leaveDomain}

Leave Domain Request

Connected

Device

Leave Domain Response

Unconnected

Device

ROAP Trigger {roRequest}

RO Request

RO Response

ROAP Trigger {joinDomain}

Join Domain Request

Join Domain Response

ROAP Trigger {leaveDomain}

Leave Domain Request

Leave Domain Response

Figure 11: ROAP Trigger (Unconnected Device)

6.2.8 The ROAP Trigger type

The MIME type for the ROAP Trigger is “application/vnd.oma.drm.roap-trigger”.

The schema for the ROAP Trigger is as follows:

<schema

 targetNamespace="urn:oma:bac:dldrm:roap-trigger-20040120"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:roap-trigger="urn:oma:bac:dldrm:roap-trigger-20040120"

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc=http://www.w3.org/2001/04/xmlenc#
 elementFormDefault="unqualified"

 attributeFormDefault="unqualified">

<import namespace="urn:oma:bac:dldrm:roap-20040120" schemaLocation="roap.xsd"/>

<import namespace="http://www.w3.org/2000/09/xmldsig#"

 schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd"/>

<import namespace="http://www.w3.org/2001/04/xmlenc#"

 schemaLocation="http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd"/>

<complexType name="RegistrationRequestTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="roapURL" type="anyURI"/>

 </sequence>

</complexType>

<complexType name="ROAcquisitionTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="roapURL" type="anyURI"/>

 <element name="domainID" type="roap:DomainIdentifier"

 minOccurs="0"/>

 <element name="roID" type="ID" maxOccurs="unbounded"/>

 </sequence>

</complexType>

<complexType name="DomainTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="roapURL" type="anyURI"/>

 <element name="domainID" type="roap:DomainIdentifier"/>

 </sequence>

 <attribute name="id" type="ID"/>

</complexType>

<!-- ROAP trigger -->

<element name="roapTrigger" type="roap-trigger:RoapTrigger"/>

<complexType name="RoapTrigger">

 <annotation>

 <documentation xml:lang="en">

 Message used to trigger the device to initiate the Rights Object

 Acquisition Protocol.

 </documentation>

 </annotation>
 <sequence>

 <choice>

 <element name="registrationRequest" type="roap-trigger:RegistrationRequestTrigger"/>

 <element name="roAcquisition" type="roap-trigger:ROAcquisitionTrigger"/>

 <element name="domainJoin" type="roap-trigger:DomainTrigger"/>

 <element name="domainLeave" type="roap-trigger:DomainTrigger"/>

 </choice>

 <element name="mac" type="ds:SignatureType" minOccurs="0"/>

 <element name="encKey" type="xenc:EncryptedKeyType" minOccurs="0"/>

 </sequence>
 <attribute name="proxy" type="boolean"/>

</complexType>

</schema>

The <riID> element MUST uniquely identify the rights issuer. The DRM agent MUST use this value to verify that it has a valid RI Context with the Rights Issuer. If the DRM Agent does not have a valid RI Context with the identified Rights Issuer then the DRM Agent MUST initiate the Registration Protocol before initiating the protocol indicated in the <roapTrigger> element, except in the case of the RegistrationRequestTrigger.

The <domainID> element MAY be included in the ROAP Trigger. If included, the Device MUST incorporate the domain ID in the ROAP PDU that is sent in response to the trigger.

The <roID> element MAY be included in the ROAP Trigger by the RI to identify the RO to be acquired. The DRM Agent MUST include the <roID> in the RO Info portion of the RO Request PDU. The RI MAY specify more than one <roID> element to initiate download of multiple ROs. The DRM Agent MUST include all <roID> elements in the RO Request.
If present the proxy attribute indicates that the ROAP Trigger is not for the Connected Device but is intended for an Unconnected Device. Upon receipt of a ROAP Trigger containing the proxy attribute with the value set to “True” a Connected Device that support the functionality to provide connectivity for Unconnected Devices (as specified in section 11) MUST start the procedures specified in section 6.3.5.4. If the proxy attribute is present but the value is set to “False” then a Connected Devices MUST treat the ROAP Trigger as if it did not contain the proxy attribute.
The DRM Agent MUST use the URL specified by the <roapURL> element when initiating the ROAP transaction. The <roapURL> is used in conjuction with the protocol indicated in the <roapTrigger> element as described below to determine which ROAP PDU to send. The Device MUST immediately start the appropriate protocol upon receipt of the ROAP Trigger.
A Connected Device MUST support HTTP (or WSP) for transporting ROAP PDUs as described in section Error! Reference source not found. Error! Reference source not found..
A Connected Device MAY support other ROAP transport protocols. Additionally a Connected Device MAY support the functionality to provide connectivity for an Unconnected Device as described in section 11.
An Unconnected Device SHALL support the functionality to use connectivity provided by a Connected Device, as described in section 11.

The ROAP PDU the Device sends is determined by the protocol indicated in the <roapTrigger> element in the ROAP Trigger.

· If the <roapTrigger> element indicates a RegistrationRequest, the ROAP PDU MUST only contain a single valid DeviceHello PDU.

· If the <roapTrigger> element indicates a ROAcquisition, the ROAP PDU MUST only contain a single valid RO Request PDU.

· If the <roapTrigger> element indicates a DomainJoin, the ROAP PDU MUST only contain a single valid Domain Join PDU.

· If the <roapTrigger> element indicates a DomainLeave, the ROAP PDU MUST only contain a single valid Domain Leave PDU.

The Rights Issuer MAY authenticate the ROAP Trigger. If the ROAP trigger is authenticated, a MAC is included in the ROAP Trigger <mac> element. The RI MUST include a <mac> element if the protocol indicated by the <roapTrigger> element is “DomainLeave.” A Device SHOULD inform the user and MUST discard a received "DomainLeave" ROAP Trigger which is not authenticated. If a MAC is included in the ROAP Trigger, the Device MUST verify it prior to initiating the ROAP. If the Device cannot verify the MAC, the Device SHOULD inform the user and MUST discard the ROAP Trigger. The <ds:Reference> element of the <ds:SignedInfo> child element of the <mac> shall reference a DomainTrigger element by using the same value for the URI attribute as the value for the DomainTrigger's id attribute. The <ds:KeyInfo> child element of the <mac> element shall use its URI attribute of the <ds:RetrievalMethod> element to reference a wrapped MAC key in the <encKey> element.

The <encKey> element shall be present when the <mac> element is present and shall contain a MAC key wrapped with the current domain key. The value of the Id attribute of this element shall equal the value of the URI attribute of the <ds:RetrievalMethod> child element of the <mac> element as specified above.

If the DRM Agent has a valid RI Context with the Rights Issuer, and the DRM Agent has obtained user consent for silent rights retrieval for the rights issuer, then the DRM Agent SHOULD initiate the ROAP transaction without user interaction. If no RI Context exists between the Device and the Rights Issuer, the DRM Agent MUST notify the user before initiating the ROAP transaction.For an example of a ROAP trigger message, see Error! Reference source not found..

6.3 ROAP Messages

In this section, ROAP protocol suite messages, including their parameters, encodings and semantics are defined. The ROAP protocol messages are divided into three categories: ROAP trigger, Registration, RO Acquisition, & Domains.

6.3.1 Notation

In the message parameter tables below, "M" stands for a mandatory parameter and "O" stands for optional.

6.3.2 Registration Protocol

6.3.2.1 Device Hello

The ROAP-DeviceHello message is sent from the Device to the Rights Issuer to initiate the 4-pass Registration protocol. This message expresses device information/preferences.

6.3.2.1.1 Message description

Parameter
ROAP-DeviceHello

Version
M

Device ID
M

Supported Algorithms
O

Extensions
O

Table 1: Device Hello Message Parameters

Version is a <major, minor> representation of the highest OMA DRM
 version number supported by the Device. For this version of the protocol, Version SHALL be set to <2,0>. Minor version upgrades must always be backwards compatible.

Device ID identifies the Device, in one or several ways, to the RI. The only identifier currently defined is the SHA-1 hash of the Device's public key info, as it appears in the certificate (i.e. the SHA-1 hash of the complete DER-encoded subjectPublicKeyInfo component in the Device's certificate). Other identifiers are allowed but interoperability when using them is not guaranteed.

Supported Algorithms identifies the cryptographic algorithms (hash algorithms, MAC algorithms, signature algorithms and key wrap algorithms) that are supported by the device. Algorithms are identified using common URIs. The following algorithms and associated URIs MUST be supported by Devices and RIs:

· Hash algorithms:

· SHA-1: http://www.w3.org/2000/09/xmldsig#sha1
· MAC algorithms:

· HMAC-SHA-1: http://www.w3.org/2000/09/xmldsig#hmac-sha1
· Signature algorithms:

· RSA-PSS-Default: http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsa-pss-default
· Key transport algorithms:

· RSA-KEM: http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsa-kem
Use of other algorithm URIs is optional. Since all devices and all RIs must support the algorithms above, they need not be sent. Only URIs for algorithms not in this list needs to be sent in a ROAP-DeviceHello message.

Extensions: The following extensions are defined for the ROAP-DeviceHello message:

- Certificate Caching: Relates to Device certificate. Indicates to the RI that the Device has a capability to remember whether an RI has stored a Device certificate or not. (Note: This is not about whether the Device has stored information of RI certificates or not. For this, the Peer Key Identifier extension is used - see the ROAP-RegistrationRequest, ROAP-RORequest, and ROAP-JoinDomainRequest messages.)

If the Device has capability to store information on whether the RI has stored a device certificate, then the Device MUST include the Certificate Caching extension set to “True” in the ROAP-DeviceHello message. (The semantics of setting this extension to “False” is the same as not including the extension at all.) If this extension is used, the RI can use the Peer Key Identifier or Certificate Caching extension in its ROAP-RIHello message to indicate what Device public key it has stored or what capabilities the RI has to store the Device certificate, respectively.

Note: It has been proposed to add a “Purpose” field to allow an extension of this general handshake protocol for other purposes than registration. This could be added as a separate parameter or as an Extension in ROAP-DeviceHello, but no other purposes have yet been identified.

6.3.2.1.2 Message Syntax

The <deviceHello> element specifies a ROAP request that is the first message sent in a 4-pass ROAP session. It has complex type DeviceHello, which extends the basic Request type. The response to this request is specified by the <riHello> element, and together they implement the ROAP-DeviceHello and ROAP-RIHello messages.

<element name="deviceHello" type="roap:DeviceHello"/>

<complexType name="DeviceHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to establish an RI Context.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="version" type="roap:Version"/>

 <element name="deviceID" type="roap:Identifier"

 maxOccurs="unbounded"/>

 <element name="supportedAlgorithm" type="anyURI"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the Version type. As noted above, for this version of ROAP, its value shall be <major>2</major><minor>0</minor>.
<complexType name="Version">

 <complexContent>

<sequence>

 <element name="majorVersion" type="positiveInteger"/>

 <element name="minorVersion" type="positiveInteger"/>

 </sequence>

 </complexContent>

</complexType>
The following schema fragment defines the Identifier type and its alternatives. Any non-standard identifier value must be expressed in well-formed XML.

<complexType name="Identifier">

 <choice>

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 <any namespace="##other" processContents="strict"/>

 </choice>

</complexType>

<complexType name="KeyIdentifier" abstract="true"/>

A key can be defined by use of a hash of the key. The hash shall be made over the DER-encoded SubjectPublicKeyInfo value from the applicable certificate.

<complexType name="X509SPKIHash">

 <complexContent>

 <extension base="roap:KeyIdentifier">

 <sequence>

 <element name="hash" type="base64Binary"/>

 </sequence>

 <attribute name="hashAlgorithm" type="anyURI"/>

 </extension>

 </complexContent>

</complexType>

<!-- The corresponding ds:KeyInfo type -->

<element name="X509SPKIHash" type="base64Binary"/>

The following extension is defined for the ROAP-DeviceHello message:

<complexType name="CertificateCaching">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="certCachingCapabilities" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

6.3.2.2 RI Hello

The ROAP-RIHello message is the second message of the Registration protocol and is sent from the Rights Issuer to the Device in response to a ROAP-DeviceHello message. The message expresses RI preferences and decisions based on the values supplied by the Device.

6.3.2.2.1 Message description

Parameter
ROAP-RIHello

Status = “Success”
Status ≠ “Success”

Status
M
M

Session ID
M
-

Selected Version
M
-

RI ID
M
-

Selected Algorithms
O
-

RI Nonce
M
-

Trusted Authorities
O
-

Server Info
O
-

Extensions
O
-

Table 2: RI Hello Message Parameters

Status indicates if the ROAP-DeviceHello request was successfully (Status = Success) handled or not. In the latter case an error code as specified in Section Error! Reference source not found. is sent.

Session ID is a protocol session identifier set by the RI. This allows for several, concurrent, RI-Device sessions.

Selected Version is the selected OMA DRM version. The selected version will be min(Device suggested version, highest version supported by RI). This information is part of the RI Context.

RI ID identifies the RI to the Device. Available identifiers are the same as for the Device ID parameter in ROAP-DeviceHello messages. This information is part of the RI Context.

Selected Algorithms specifies the cryptographic algorithms (hash algorithm, signature algorithm, MAC algorithm and key transport algorithm) to use in subsequent ROAP interactions. If the Device indicated support of only mandatory algorithms (i.e. left out the supportedAlgorithms element), then the RI need not send this field. Otherwise, the RI MUST provide this parameter and MUST identify one algorithm of each type.

RI Nonce is a random nonce sent by the RI. Nonces MUST be randomly generated and MUST NOT be re-used.

Trusted Authorities is a list of trust anchors recognized by the RI. This parameter is optional. The parameter is not sent if the RI already has the Device's certificate or otherwise is able to verify a signature made by the Device. If the parameter is present but empty, it indicates that the Device is free to choose any Device certificate to authenticate itself. Otherwise the Device MUST choose a certificate chaining back to one of the recognized trust anchors. Trust anchors are identified by hashes of their public keys.

Server Info contains server-specific information that the device must return unmodified, in the ROAP-RegistrationRequest. The client must not attempt to interpret the value of this parameter.

Extensions: The following extensions are defined for the ROAP-RIHello message:

· Peer Key Identifier: An identifier for a Device key stored by the RI. If the identifier matches the Device's current key, it means the Device need not send its certificate chain in a later request message. Keys are identified in the same way as devices are, see above (SHA-1 hash of DER-encoded subjectPublicKeyInfo component). If the RI has stored the Device public key the RI MUST use this extension in the ROAP-RIHello. This extension also informs the Device that the RI has the capability to store information about the Device certificates.

· Certificate Caching This extension relates to Device certificates. Indicates to the Device that the RI has the capability to store information about the Device certificate and that Device certificate chain sending is not necessary in subsequent 2-pass protocol instances. This extension is unnecessary if the Peer Key Identifier is used, since the latter contains even more specific information.
If the Certificate Caching extension was set to “True” in the ROAP-DeviceHello message and the RI has capabilities to store Device certificates, then the RI MUST send either the Peer Key Identifier or the Certificate Caching extension in the ROAP-RIHello message. If the Certificate Caching extension was not present or set to “False” in the ROAP-DeviceHello message, then the RI MUST NOT send the Certificate Caching extension in ROAP-RIHello. If the ROAP-RIHello contains a Peer Key Identifier extension, it SHOULD NOT contain a Certificate Caching indication.

Information about RI storing Device certificate information is part of the RI Context. If either the Peer Key Identifier or the Certificate Caching extension is sent, the RI must store necessary information about the Device certificate and the Device will note Certificate Caching in the RI Context.

6.3.2.2.2 Message syntax

The <riHello> element specifies a ROAP response that is sent in response to a <deviceHello> element. It has complex type RIHello.
<element name="riHello" type="roap:RIHello"/>

<complexType name="RIHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a DeviceHello.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="selectedVersion" type="roap:Version"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="selectedAlgorithm" type="anyURI" maxOccurs="unbounded"

minOccurs="0"/>

 <element name="riNonce" type="roap:Nonce"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers" minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

<simpleType name="Nonce">

<restriction base='base64Binary'>

<minLength value=''14"/>

</restriction>

</simpleType>

<complexType name="KeyIdentifiers">

 <sequence maxOccurs="unbounded">

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 </sequence>

</complexType>

The Certificate Caching extension is described previously. The following schema fragment defines the Peer Key Identifier extension:

<complexType name="PeerKeyIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="identifier" type="roap:KeyIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

6.3.2.3 Registration Request

A Device sends the ROAP-RegistrationRequest message to an RI to request registration with the RI. The message is sent as the third message in the 4-pass Registration protocol.

6.3.2.3.1 Message description

Parameter
ROAP-RegistrationRequest

Session ID
M

Device Nonce
M

Request Time
M

Certificate Chain
O

Trusted Authorities
O

Server Info
O

Extensions
O

Signature
M

Table 3: Registration Request Message Parameters

Session ID SHALL be identical to the Session ID parameter of the preceding ROAP-RIHello message, otherwise the RI shall terminate the Registration protocol.

Device Nonce is a nonce chosen by the Device. Nonces SHALL be randomly generated and MUST NOT be re-used.

Request Time is the current DRM Time, as measured by the Device. Connected Devices and Unconnected Devices that support DRM Time MUST insert their current DRM Time. Unconnected Devices that do not support DRM Time SHALL insert the following special value as their current DRM Time:
TBD

Certificate Chain: This parameter MUST be present unless the preceding ROAP-RIHello message contained the Peer Key Identifier extension and its value identified the key in the Device's current certificate. When present, the value of a Certificate Chain parameter shall be certificate chain including the Device's certificate. The chain SHALL not include the root certificate. The Device certificate must come first in the list. Each following certificate must directly certify the one preceding it. If the RI indicated trust anchor preferences in the previous ROAP-RIHello message, the Device MUST select a Device certificate and chain which chains back to one of the trust anchors in the RI's list, if possible. This mimics the features of [RFC3546]. If the ROAP-RIHello message contained the Peer Key Identifier or the Certificate Caching extension, then the RI MUST store necessary information about the Device certificate. The RI may need to update this information based on the received Certificate Chain.

Trusted Authorities is a list of trust anchors recognized by the Device. If the parameter is empty, it indicates that the RI is free to choose any certificate. Trust anchors are identified by hashes of their public keys.

Server Info: As discussed above, this parameter will only be present if a Server Info parameter was present in the preceding ROAP-RIHello message. In that case, the Server Info parameter MUST be present and MUST be identical to the ROAP-RIHello message's Server Info parameter.

Extensions: The following extensions are defined for the ROAP-RegistrationRequest message:

· Peer Key Identifier: An identifier for an RI certificate stored in the Device. If the identifier matches the RI's current certificate, it means the RI need not send down its certificate chain in its response message. Certificates are identified by reference.

· No OCSP Response: This extension allows the Device to indicate to the RI that there is no need to send an OCSP Response since the Device has cached a valid OCSP Response for this RI.

· OCSP Responder Key Identifier: This extension identifies an OCSP responder key stored in, and trusted by, the Device and is used to save bandwidth. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

If the Device has stored information about the RI certificate, the Device MUST send the Peer Key Identifier extension. If the Device has a valid OCSP Response, the Device MUST send the No OCSP Response extension. If the Device has stored and trusts the OCSP responder key used by this RI, the Device MUST send the OCSP Responder Key Identifier extension.

Signature is a signature on data sent so far in the protocol. The signature is made using the Device's private key on a hash of the two previous messages (ROAP-DeviceHello, ROAP-RIHello) and all parameters of this message (besides the Signature parameter itself). The signature method is as follows:

· The previous messages and the current one except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The three messages are concatenated in their chronological order, starting with the ROAP-DeviceHello message. The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme.

6.3.2.3.2 Message syntax

The <RegistrationRequest> element specifies the ROAP-RegistrationRequest primitive. It has complex type RegistrationRequest, which extends the basic Request type. The response to this request is specified by the <RegistrationResponse> element, and together they implement the ROAP-RegistrationRequest and ROAP-RegistrationResponse messages.

<element name="registrationRequest" type="roap:RegistrationRequest"/>

<complexType name="RegistrationRequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request registration.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers"

 minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the CertificateChain type:

<complexType name="CertificateChain">

 <sequence maxOccurs="unbounded">

 <element name="certificate" type="base64Binary"/>

 </sequence>

</complexType

The following schema fragment defines the extensions defined for the ROAP-RegistrationRequest message (besides the Peer Key Identifier extension already defined elsewhere in this document):

<complexType name="NoOCSPResponse">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="NoOCSPResponse" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

<complexType name="OCSPResponderKeyIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="identifier" type="roap:KeyIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

6.3.2.4 Registration Response

The ROAP-RegistrationResponse message is sent from the Rights Issuer to the Device in response to a ROAP-RegistrationRequest message. The message completes the Registration protocol, and if successful enables the Device to establish an RI Context for this RI.

6.3.2.4.1 Message description

Parameter
ROAP-RegistrationResponse

Status = “Success”
Status ≠ “Success”

Status
M
M

Session ID
M
M

Certificate Chain
O
-

OCSP Response
O
-

Extensions
O
-

Signature
M
-

Table 4: Registration Response Message Parameters

Status indicates if the ROAP-RegistrationRequest message was successfully (Status = Success) handled or not. In the latter case an error code as specified in Section Error! Reference source not found. is sent.

Session ID shall be identical to the Session ID of the preceding ROAP-RegistrationRequest (and ROAP-RIHello) message. If the Session ID of ROAP-RegistrationResponse does not coincide with the Session ID of the corresponding ROAP-RIHello, the Device MUST terminate the protocol.
Certificate chain: This parameter MUST be present unless the preceding ROAP-RegistrationRequest message contained the Peer Key Identifier extension, the extension was honored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be certificate chain including the RI's certificate. The chain MUST NOT include the chain's root certificate. The RI certificate must come first in the list. Each following certificate must directly certify the one preceding it. If the Device indicated trust anchor preferences in its ROAP-RegistrationRequest message, the RI MUST select a certificate and chain which chains back to one of the trust anchors in the Device's list, if possible
. This mimics the features of [RFC3546]. The Device MUST verify the certificates in the RI certificate chain. The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data MUST uniquely identify the RI certificate and MUST be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to stored RI certificate verification data. If so, the Device SHOULD NOT verify the RI certificate chain. If an RI certificate is received that is not in the RI certificate verification data of this RI, and the registration was successful (see below), and if the Device can determine (in the case of Connected Devices and Unconnected Devices that support DRM Time) that the expiry time (as indicated by the NotValidAfter attribute) of the received RI certificate
is later than the RI Context for this RI, then the Device SHOULD make the RI certficate verification data to that of the received RI certificate and set the RI context expiry time to that of the received RI certificate expiry time.
In the case of Unconnected Devices that do not support DRM Time the Unconnected Device SHOULD compare the value of the NotValidAfter attribute of the received RI certificate to that of the RI certificate validation data stored within the RI Context. If this comparison indicates that the received RI certificate is newer than the certificate from which the certificate validation data was extracted, then the Device SHOULD make the received RI certificate verification data to that of the received RI certificate.
OCSP Response SHALL be a valid OCSP response for the RI's certificate. This parameter will not be sent if the Device sent the Extension No OCSP Response in the preceding ROAP-RegistrationRequest (and the RI was able to interpret that extension). An exception to this is in the case when the RI detects that the Device's DRM Time is out of sync, see below. If the OCSP Response is received, the Device MUST verify that the RI certificate is not revoked; otherwise the registration was not successful.
If the RI detects (using its own criteria) that a Device's DRM Time is inaccurate then the RI MAY return an invalidDeviceTime error in the status parameter of the RegistrationResponse.
For Connected Devices and Unconnected Devices that support DRM Time the RI SHOULD always provide the most recent OCSP Response to the Device (regardless of whether it contains a device-supplied nonce or not, but MAY use a regularly updated time-based OCSP Response.
For Unconnected Devices that do not support DRM Time the RI SHOULD provide a nonce-based OSCP Response containing the DeviceNonce supplied by the Unconnected Device.
If the RI detects that a Device's DRM Time is out of sync then the RI MUST perform a nonce-based (using the Devicenonce) OCSP request and provide the Device with the returned OCSP response.

Extensions: The following extensions are defined for the ROAP-RegistrationResponse message.

· Domain Name Whitelist

This extension allows an RI to specify a list of fully qualified domain names as defined in [RFC 2396]. The Device MUST store the domain names along with the RI Context information that it stores for the RI sending the Registration Response. The Device MUST be able to use these domain names for processing DCFs containing the Silent header or a Preview header with method “preview-rights” and a specified preview URL, as defined in section 6.6.1.1 of this document. The Device MUST treat each domain name received in the Domain Name Whitelist as if it were a fully qualified domain name that had been extracted from a RI URL according to the conditions defined in section 6.6.1.1 of this document.

The Device MUST be capable of storing a maximum of 5 domain names for each RI Context supported on the Device."

Signature is a signature on data sent in the protocol. The signature is made using the RI's private key on a hash of the previous message (ROAP-RegistrationRequest) and all elements of this message (besides the Signature element itself). The signature method is as follows:

· The previous message and the current one except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The two messages are concatenated in their chronological order, starting with the ROAP-RegistrationRequest message. The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The Device MUST calculate the signature in this way and compare with the Signature received in the ROAP-RegistrationResponse message. If equal, and if the RI certificate chain has been successfully verified and if the OCSP response indicates RI cerificate is not revoked, the registration was successful and the Device SHOULD store the RI Context for this RI. If not, the registration failed and the Device MUST NOT store the RI Context for this RI.

The RI Context SHALL contain RI ID, Selected Version, Selected Algorithms, and an Certificate Caching indication if the RI has stored the Device certificate or not (all this information is carried in the ROAP-RIHello message). The RI Context MAY also contain RI certificate validation data, OCSP Responder Key and OCSP Response. For Connected Devices and Unconnected Devices that support DRM Time the RI Context SHALL also contain an RI Context Expiry Time, which is defined to be the RI certificate expiry time. For Unconnected Devices that do not support DRM Time then the RI Context SHALL NOT contain an RI Context Expiry Time. For Unconnected Devices that do not support DRM Time the RI Context is infinite i.e. it does not have an expiry time. If the RI Context has expired, the Device MUST NOT execute any other protocol than the 4-pass Registration protocol with this RI, and upon detection of RI Context expiry the Device SHOULD initiate the Registration protocol. The Device SHALL have at most one RI Context with each RI. An existing RI Context SHALL be replaced with a newly established RI Context after successful registration with the same RI.

6.3.2.4.2 Message syntax

The <RegistrationResponse> element specifies the ROAP-RegistrationResponse primitive, and constitutes the last message in the Registration protocol. It has complex type RegistrationResponse, which extends the basic Response type.

<element name="registrationResponse" type="roap:RegistrationResponse"/>

<complexType name="RegistrationResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 registrationRequest message.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

6.3.3 RO Acquisition

6.3.3.1 RO Request

The ROAP-RORequest message is sent from the Device to the RI to request Rights Objects. This message is the first message of the 2-pass protocol to acquire Rights Objects.

6.3.3.1.1 Message description

ROAP-RORequest

Parameter
Mandatory/Optional

Device ID
M

Domain ID
O

RI ID
M

Device Nonce
M

Request Time
M

RO Info
M

Certificate Chain
O

Extensions
O

Signature
M

Table 5: RO Request Message Parameters

Device ID identifies the requesting Device, similar to the ROAP-DeviceHello message.

Domain ID, when present, identifies the domain for which the requested ROs shall be issued.

RI ID identifies the authorizing RI.

Device Nonce is a nonce chosen by the Device. Nonces SHALL be randomly generated and MUST NOT be re-used.

Request Time is the current DRM Time, as measured by the Device. Connected Devices and Unconnected Devices that support DRM Time MUST insert their current DRM Time. Unconnected Devices that do not support DRM Time SHALL insert the following special value as their current DRM Time:
TBD

RO Info identifies the requested Rights Object(s). The parameter consists of a (non-empty) set of Rights Object identifiers identifying the requested Rights Objects, and for each RO identifier an optional hash of the DCF associated with the requested RO.

Certificate Chain: This parameter is sent unless it is indicated in the RI Context that this RI has stored the necessary information in the Device certificate. When present, the parameter value SHALL be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Extensions: The following extensions are defined for the ROAP-RORequest message:
· Peer Key Identifier: An identifier for an RI key stored in the Device. If the identifier matches the RI's current key, it means the RI need not send down its certificate chain in its response message.

· No OCSP Response: This extension allows the Device to indicate to the RI that there is no need to send an OCSP Response since the Device has cached a valid OCSP Response for this RI.

· OCSP Responder Key Identifier: This extension identifies an OCSP responder key stored in the Device. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

· Transaction Identifier: Allows a Device to provide RI with information for tracking of transactions, for example relating to loyalty programs (an example of this could be reward scheme information from the DCF scheme).

If the Device has stored the RI certificate, the Device MUST send the Peer Key Identifier extension. If the Device has a valid OCSP Response, the Device MUST send the No OCSP Response extension. If the Device has stored and trusts the OCSP responder key used by this RI, the Device MUST send the OCSP Responder Key Identifier extension.
Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

6.3.3.1.2 Message syntax

The <roRequest> element specifies the ROAP-RORequest primitive. It has complex type RORequest, which extends the basic roap:Request type. The response to this request is specified by the <roResponse> element, and together they implement the ROAP-RORequest and ROAP-ROResponse messages.

<element name="roRequest" type="roap:RORequest"/>

<complexType name="RORequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request an RO.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="domainID" type="roap:DomainIdentifier"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="roInfo">

 <complexType>

 <sequence maxOccurs="unbounded">

 <element name ="roID" type="ID"/>

 <element name="dcfHash" type="base64Binary" minOccurs="0"/>

 </sequence>

 </complexType>

 </element>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the Transaction Identifier extension:

<complexType name="TransactionIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="id">

 <simpleType>

 <restriction base="string">

 <length value="16"/>

 </restriction>

 </simpleType>

 </element>

 </sequence>

 </extension>

 </complexContent>

</complexType>

6.3.3.2 RO Response

The ROAP-ROResponse message is sent from the RI to the Device either in response to a ROAP-RORequest message (two-pass variant) or by RI initiative (one-pass variant). It carries the protected ROs.

6.3.3.2.1 Message description

Parameter
ROAP-ROResponse

2-pass

Status = Success
2-pass

Status ≠ Success
1-pass

Status
M
M
M

Device ID
M
-
M

RI ID
M
-
M

Device Nonce
M
-
-

Protected ROs
M
-
M

Certificate Chain
O
-
O

OCSP Response
O
-
M

Extensions
O
-
O

Signature
M
-
M

Table 6: RO Response Message Parameters

Status indicates if the request was successfully handled or not. In the latter case an error code specified in Section Error! Reference source not found. is sent.

Device ID identifies the requesting Device, in the same manner as in the ROAP-DeviceHello message.

RI ID identifies the RI.
Device Nonce is the nonce that was sent by the Device. The parameter, if present, (2-pass) MUST be identical to the corresponding parameter in ROAP-RORequest.

Protected RO(s) are the Rights Objects (in the form of <ProtectedRO> elements), in which sensitive information (such as CEK) is encrypted using the REK.

Certificate Chain: This parameter MUST be present unless the preceding ROAP-RORequest message contained the Peer Key Identifier extension, the extension was honored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message

The Device MUST verify the certificates in the RI certificate chain. The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data MUST uniquely identify the RI certificate and MUST be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to stored RI certificate verification data. If so, the Device SHOULD NOT verify the RI certificate chain.
If an RI cerificate is recieved that is not in the RI certificate verification data of this RI, and the registration was successful (see below), and if the Device can determine (in the case of Connected Devices and Unconnected Devices that support DRM Time) that the expiry time (as indicated by the NotValidAfter attribute) of the received RI certificate is later than the RI Context for this RI, then the Device SHOULD make the RI certificate verification data to that of the received RI certificate and set the RI context expiry time to that of the received RI certificate expiry time.
In the case of Unconnected Devices that do not support DRM Time the Unconnected Device SHOULD compare the value of the NotValidAfter attribute of the received RI certificate to that of the RI certificate validation data stored within the RI Context. If this comparison indicates that the received RI certificate is newer than the certificate from which the certificate validation data was extracted, then the Device SHOULD make the received RI certificate verification data to that of the received RI certificate.
OCSP Response SHALL be a valid OCSP response for the RI's certificate. This parameter will not be sent if the Device sent the Extension No OCSP Response in the preceding ROAP-RegistrationRequest (and the RI was able to interpret that extension). An exception to this is the case where the RI determines (using its own critera) that the Device's DRM Time is inaccurate, see below. If the OCSP Response is received, the Device MUST verify that the RI certificate is not revoked; otherwise the registration was not successful.
If the RI detects (using its own criteria) that a Device's DRM Time is inaccurate then the RI MAY return an invalidDeviceTime error in the status parameter of the ROResponse.

Extensions: The following extensions are defined for the ROAP-ROResponse message:
· Transaction Identifier: Allows an RI to provide a Device with information for tracking of transactions, for example relating to loyalty programs (an example of this could be reward scheme information from the DCFscheme).

Signature is a signature on data sent in the protocol. The signature is computed using the RI's private key and all elements of this message (besides the Signature element itself). The signature method is as follows:

· All elements except the Signature element are canonicalized using the exclusive canonicalization method defined in [xc14n].

· The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The Device MUST calculate the signature in this way and compare with the Signature received in the ROAP-ROResponse message. If equal, and if the RI certificate chain has been successfully verified and if the OCSP response indicates RI cerificate is not revoked, the RO Acquisition protocol was successful. If not, the RO Acquisition protocol failed and the Device MUST NOT install the RO.

If the Protected RO contains a <guid> and optional <timeStamp> element then the Device MUST apply the RO Replay protection mechanism before installing the RO (see Replay Protection Section).

6.3.3.2.2 Message syntax

The <roResponse> element specifies the ROAP-ROResponse primitive. It has complex type ROResponse, which extends the basic Response type.

<element name="roResponse" type="roap:ROResponse"/>

<complexType name="ROResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to an RORequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="protectedRO" type="roap:ProtectedRO" maxOccurs="unbounded"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The Protected RO type is defined in Section The Protected Rights Object payload type
6.3.4 Domain Join/Leave Protocol

6.3.4.1 Join Domain Request

The ROAP-JoinDomainRequest message is sent from the Device to the RI. This message is the first message in the 2-pass protocol to join a device to a domain.

6.3.4.1.1 Message description

ROAP-JoinDomainRequest

Parameter
Mandatory/Optional

DeviceID
M

RI ID
M

Device Nonce
M

Request Time
M

Domain Identifier
M

Certificate Chain
O

Extensions
O

Signature
M

Table 7: Join Domain Request Message Parameters

Device ID identifies the requesting Device.

RI ID identifies the authorizing RI.

Device Nonce is a nonce chosen by the Device. Nonces shall be randomly generated and MUST NOT be re-used.

Request Time is the current DRM Time, as measured by the Device. Connected Devices and Unconnected Devices that support DRM Time MUST insert their current DRM Time. Unconnected Devices that do not support DRM Time SHALL insert the following special value as their current DRM Time:
TBD

Domain Identifier shall identify the domain the device wishes to join.

Certificate Chain: This parameter is sent unless Certificate Caching is indicated in the RI Context with this RI. When present, the parameter value shall be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Extensions: The following extensions are defined for the ROAP-JoinDomainRequest message:
· Peer Key Identifier: An identifier for an RI key stored in the Device. If the identifier matches the RI's current key, it means the RI need not send down its certificate chain in its response message.

· No OCSP Response: This extension allows the Device to indicate to the RI that there is no need to send an OCSP Response since the Device has cached a valid OCSP Response for this RI.

· OCSP Responder Key Identifier: This extension identifies an OCSP responder key stored in the Device. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

· Hash Chain Support: When this extension is set to “True,” it signals that the client supports a technique of generating Domain Keys through hash chains, see the Domains Section.

If the Device has stored information about the RI certificate, the Device MUST send the Peer Key Identifier extension. If the Device has a valid OCSP Response, the Device MUST send the No OCSP Response extension. If the Device has stored and trusts the OCSP responder key used by this RI, the Device MUST send the OCSP Responder Key Identifier extension. If the Device supports hash-chained domain keys the Device MUST send the Hash Chain Support extension.
Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

6.3.4.1.2 Message syntax

The <joinDomainRequest> element specifies the ROAP-JoinDomainRequest primitive. It has complex type roap: DomainRequest, which extends the basic roap:Request type. Note that this type is used both for join and leave domain request messages. The response to this request is specified by the <joinDomainResponse> element, and together they implement the Join Domain protocol (the notMember attribute is only used in ROAP-LeaveDomainRequest messages).

<element name="joinDomainRequest" type="roap:DomainRequest">

<complexType name="DomainRequest">

 <annotation>

 <documentation xml:lang="en">

 General PDU for sending domain-related requests from a Device to

 an RI.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="domainID" type="roap:DomainIdentifier"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="notMember" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the DomainIdentifier type. The last two characters (digits) represent the Domain Generation, see the Domains Section. RIs will always respond with the Domain Key corresponding to the most recent Domain Generation and, if Hash Chains is not supported then all earlier ones for this domain.

<simpleType name="DomainIdentifier">

 <restriction base="string">

 <pattern value=".{1,18}\d{2}"/>

 </restriction>

</simpleType>

The following schema fragment defines the "Hash Chain Support" extension:

<complexType name="HashChainSupport">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="supported" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

6.3.4.2 Join Domain Response

The ROAP-JoinDomainResponse message is sent by an RI to a device in response to a ROAP-JoinDomainRequest message. This message is the second message in the 2-pass protocol to join a device to a domain.

6.3.4.2.1 Message description

Parameter
ROAP-JoinDomainResponse

2-pass

Status = Success
2-pass

Status ≠ Success
1-pass

Status
M
M
M

Device ID
M
-
M

RI ID
M
-
M

Device Nonce
M
-
-

Domain Info
M
-
M

Certificate chain
O
-
O

OCSP Response
O
-
M

Extensions
O
-
O

Signature
M
-
M

Table 8: Join Domain Response Message Parameters

Status indicates if the request was successfully handled or not. In the latter case an error code as specified in Section Error! Reference source not found. is sent.

Device ID identifies the requesting Device, in the same manner as in the ROAP-DeviceHello message.

RI ID identifies the RI.
Device Nonce is the nonce that was sent by the Device. The parameter, if present, (2-pass) MUST be identical to the corresponding parameter in ROAP-RORequest.

Domain Info is the domain information, in which sensitive information (such as Domain Key(s)) is encrypted using the Device's public key. See Domains Section.

Certificate Chain: This parameter MUST be present unless the preceding ROAP-JoinDomainRequest message contained the Peer Key Identifier extension, the extension was honored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message.

The Device MUST verify the certificates in the RI certificate chain. The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data MUST uniquely identify the RI certificate and MUST be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to stored RI certificate verification data. If so, the Device SHOULD NOT verify the RI certificate chain. If an RI cerificate is recieved that is not in the RI certificate verification data of this RI, and the registration was successful (see below), and if the Device can determine (in the case of Connected Devices and Unconnected Devices that support DRM Time) that the expiry time (as indicated by the NotValidAfter attribute) of the received RI certificate is later than the RI Context for this RI, then the Device SHOULD make the RI certificate verification data to that of the received RI certificate and set the RI context expiry time to that of the received RI certificate expiry time.
In the case of Unconnected Devices that do not support DRM Time the Unconnected Device SHOULD compare the value of the NotValidAfter attribute of the received RI certificate to that of the RI certificate validation data stored within the RI Context. If this comparison indicates that the received RI certificate is newer than the certificate from which the certificate validation data was extracted, then the Device SHOULD make the received RI certificate verification data to that of the received RI certificate.
OCSP Response SHALL be a valid OCSP response for the RI's certificate. This parameter will not be sent if the Device sent the Extension No OCSP Response in the preceding ROAP-RegistrationRequest (and the RI was able to interpret that extension). An exception to this is in the case when the RI detects that the Device's DRM Time is out of sync, see below. If the OCSP Response is received, the Device MUST verify that the RI certificate is not revoked; otherwise the registration was not successful.
If the RI detects (using its own criteria) that a Device's DRM Time is inaccurate then the RI MAY return an invalidDeviceTime error in the status parameter of the JoinDomainResponse.

Extensions: The following extensions are currently defined for the ROAP-JoinDomainResponse message:

· Hash Chain Support: This extension set to “True” means the RI is using the technique of generating Domain Keys through hash chains described in the Domains Section. The RI MUST NOT include this extension in the ROAP-JoinDomainResponse unless it was received set to “True” in the ROAP-JoinDomainRequest. If the Device receives the Hash Chains Supported extension set to “True”, then it needs only store the latest Domain Key for a given domain, see below.

Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation

-
The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

The Device MUST calculate the signature in this way and compare with the Signature received in the ROAP-JoinDomainResponse message. If equal, and if the RI certificate chain has been successfully verified and if the OCSP response indicates RI cerificate is not revoked, the Join Domain protocol was successful and the Device SHOULD store the Domain Context for this domain. If not ,, the Join Domain protocol failed and the Device MUST NOT store a Domain Context for this domain.

In the case of Connected Devices and Unconnected Devices that support DRM Timehe Domain Context SHALL contain the Domain ID (which includes the Domain Generation), the Domain Context Expiry Time, and if applicable, an indication that the RI supports hash chained Domain Keys. In the case of Unconnected Devices that do not support DRM Time the Domain Context SHALL contain the Domain ID (which includes the Domain Generation), and if applicable, an indication that the RI supports hash chained Domain Keys.

If the Device and RI both support hash chains, the Domain Context SHALL contain the Domain Key corresponding to the highest known generation, otherwise the Domain Context SHALL contain all Domain Keys of all Domain Generations. The Domain Context SHALL also contain the RI Public Key for the case when the Domain Context Expiry Time extends beyond the RI Context Expiry Time.

A device MUST NOT install any Domain ROs for a domain whose context has expired. In the case of Unconnected Devices that do not support Secure Time then a Domain Context is inifinite, i.e. it does not have an expiry time. A device MAY have several Domain Contexts with an RI.

6.3.4.2.2 Message syntax

The <joinDomainResponse> element specifies the ROAP-JoinDomainResponse primitive. It has complex type JoinDomainResponse, which extends the basic Response type.

<element name="joinDomainResponse" type="roap:JoinDomainResponse"/>

<complexType name="JoinDomainResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 JoinDomainRequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="domainInfo" type="roap:DomainInfo"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the DomainInfo type:

<complexType name="DomainInfo">

 <sequence>

 <element name="notAfter" type="dateTime"/>

 <element name="domainKey" type="roap:ProtectedDomainKey"

 maxOccurs="unbounded"/>

 </sequence>

</complexType>

The <notAfter> element expresses, in UTC, the expiry time of the Domain Context. The special value 9999-12-31T00:00:00Z indicates infinite lifetime of the Domain Context.

The <domainKey> element contains the wrapped domain key and a key-confirming MAC key, see below.

<complexType name="ProtectedDomainKey">

 <sequence maxOccurs="unbounded">

 <element name="encKey" type="xenc:EncryptedKeyType"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="mac" type="base64Binary"/>

 </sequence>

</complexType>

The <encKey> element contains a Domain Key, KD, and a MAC key, KMAC, wrapped as specified in the Key Management Section. The value of the <encKey> element's Id attribute must equal the value of a <domainIdentifier> element in a preceding ROAP-JoinDomainRequest message. If Hash Chains are supported by both Device and RI, only the Domain Key corresponding to the most recent Domain Generation SHOULD be included, otherwise all Domain Keys for all Domain Generations MUST be included (including their identifiers as Id attributes). The child of the <ds:KeyInfo> element inside the <encKey> element SHALL be of type roap:X509SPKIHash, identifying a particular DRM agent's public key through the hash of the subjectPublicKeyInfo value in its certificate.

The <riID> element is necessary for key confirmation purposes. It shall have the same value as the <riID> element of the ROAP-JoinDomainResponse message itself.

The <mac> element provides key-confirmation through a MAC on the canonical [xc14n] version of the <domainKey> element (excluding the <mac> element itself) using the MAC key KMAC wrapped in the <encKey> element. The MAC algorithm to use is defined by the RI Context.

6.3.4.3 Leave Domain Request

The ROAP-LeaveDomainRequest message is sent from the Device to the RI. This message is the first message in the 2-pass protocol for removing a device from a domain.

6.3.4.3.1 Message description

ROAP-LeaveDomainRequest

Parameter
Mandatory/Optional

DeviceID
M

RI ID
M

Device Nonce
M

Request Time
M

Domain Identifier
M

Not Member
O

Certificate Chain
O

Extensions
O

Signature
M

Table 9: Leave Domain Request Message Parameters

Device ID identifies the requesting Device.

RI ID identifies the authorizing RI.

Device Nonce is a nonce to ensure RI liveness.
Request Time is the current DRM Time, as seen by the Device. Connected Devices and Unconnected Devices that support DRM Time MUST insert their current DRM Time. Unconnected Devices that do not support DRM Time SHALL insert the following special value as their current DRM Time:

TBD

Domain Identifier identifies the domain.

Not Member: This parameter, when present, indicates to the RI that the Device does not consider itself a member of this domain (even though it is sending a request for the RI to remove it from the domain). This could happen, for example, if the device already has left the domain, but received a new trigger to leave it (perhaps because the RI never received the previous ROAP-LeaveDomainRequest).

Certificate Chain: This parameter is sent unless Certificate Caching is indicated in the RI Context with this RI. When present, the parameter value shall be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Extensions: This version of ROAP does not define any extensions for the ROAP-LeaveDomainRequest message.
Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

The Device MUST ensure that the Domain Context of the corresponding domain is deleted before sending the JoinDomainRequest to the RI.

If the Device is not a member of the particular domain and thus does not have the Domain Context which it is asked to delete, the Device MUST indicate this by setting the Not Member parameter to “True” and include it in the ROAP-LeaveDomainRequest message.

6.3.4.3.2 Message syntax

The <leaveDomainRequest> element specifies the ROAP-JoinDomainRequest primitive. It has complex type roap:DomainRequest, which extends the basic roap:Request type. The response to this request is specified by the <leaveDomainResponse> element, and together they implement the leave domain protocol.

<element name="leaveDomainRequest" type="roap:DomainRequest">

As already mentioned, the <leaveDomainRequest> element has the same complex type as the <joinDomainRequest>.

6.3.4.4 Leave Domain Response

The ROAP-LeaveDomainResponse message is sent by an RI to a device in response to a ROAP-LeaveDomainRequest message. This message is the second message in the 2-pass protocol for removing a device from a domain.

6.3.4.4.1 Message description

ROAP-LeaveDomainResponse

Parameter
Mandatory/Optional

Status = "Success"
Status ≠ "Success"

Status
M
M

Device Nonce
M
-

Domain Identifier
M
-

Extensions
O
-

Table 10: Leave Domain Response Message Parameters

Status indicates if the request was successfully handled or not. In the latter case an error code defined in section Error! Reference source not found. is sent.

Device Nonce is the nonce sent by the device. It is used by the Device to identify the corresponding LeaveDomainRequest in the case of simultaneous outstanding LeaveDomainResponses.
Domain Identifier identifies the domain from which the RI removed the Device. The Domain Generation part of the Domain Identifier is ignored.

Extensions: No extensions are defined for the ROAP-LeaveDomainResponse message.

The RI sends the LeaveDomainResponse after having deleted the association of this device and the domain. If a device doesn’t receive a response to the LeaveDomainRequest, the Device SHOULD retry two times. If there still is no response, the Device SHOULD notify the user.

6.3.4.4.2 Message Syntax

The <leaveDomainResponse> element specifies the ROAP-LeaveDomainResponse primitive. It has complex type LeaveDomainResponse, which extends the basic Response type.

<element name="leaveDomainResponse" type="roap:LeaveDomainResponse"/>

<complexType name="LeaveDomainResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 leaveDomainRequest

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="nonce" type="roap:Nonce"/>

 <element name="domainID" type="roap:DomainIdentifier"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

6.3.5 OBEX

6.3.5.1 Overview
OBEX is a protocol for exchanging objects. It can be used with Bluetooth, infrared, USB and RS232 and other bearers. The requirements of this document refer to [OBEX] version 1.3.

OBEX is a session-oriented protocol, which allows multiple request/response exchanges in one session. An OBEX session is initiated by an OBEX CONNECT request, and is established when the other Device returns a success response. The connection is terminated by sending a OBEX DISCONNECT request.
In this specification a Connected Device that supports the functionality to provide connectivity for Unconnected Devices (as specified in section 11) MUST contain an OBEX client and an Unconnected Device MUST contain an OBEX server.
When a session has been established, ROAP messages originating from the RI MUST be transferred from the Connected Device to the Unconnected Device using the OBEX PUT method. The Unconnected Device acknowledges the data, by sending a response with a status code, and possibly also containing some ROAP data.

ROAP requires that an OBEX connection is established. Connectionless OBEX cannot be used with ROAP.

6.3.5.2 OBEX Server Identification

The ROAP-OBEX server is identifier by the following UUID (to be used as a value for the "Target" header in OBEX CONNECT operations):

-TBD-
6.3.5.3 OBEX Profile

6.3.5.3.1 OBEX operations

The table below shows the OBEX operations that are used by the ROAP OBEX profile. Connected Devices that support the functionality to provide connectivity for Unconnected Devices (as specified in section 11) and Unconnected Devices MUST support these OBEX operations.

OBEX Operation
Opcode

Connect
0x80

Disconnect
0x81

Put
0x02 (0x82)

Get
0x83

Abort
0xFF

6.3.5.3.2 OBEX headers

The table below shows the OBEX headers that are used in the ROAP OBEX profile. Connected Devices that support the functionality to provide connectivity for Unconnected Devices (as specified in section 11) and Unconnected Devices MUST support these OBEX operations.
OBEX Header
Header Identifier
Comment

Type
0x42
application/vnd.oma.roap+xml

Length
0xC3

Target
0x46
Required in CONNECT requests.

Who
0x4A
Identifies responding server in responses to CONNECT requests

Connection Id
0xCB
Value is set by the Connected Device in response to the CONNECT operation

Body
0x48
Carries ROAP PDUs; present if there is a need to send the PDU in several chunks.

End of Body
0x49
Carries ROAP PDUs.

6.3.5.3.3 OBEX Connect

The OBEX CONNECT operation SHALL contain the following OBEX fields and headers:

Field/Header
Name
Explanation/Value

Field
Opcode for CONNECT
0x80

Field
Packet length
Varies

Field
OBEX version
0x10 (for version 1.0 of the OBEX protocol)

Field
Flags
Varies; normally all zero

Field
Maximum packet length
Varies

Header
Target

The response code to a successful OBEX CONNECT operation SHALL be 0xA0. The following fields and headers SHALL be present in the response:

Field/Header

Name
Explanation/Value

Field
Response code
0xA0 for success

Field
Packet length
Varies

Field
OBEX version
0x10 (for version 1.0 of the OBEX protocol)

Field
Flags
Varies; normally all zero

Field
Maximum packet length
Varies

Header
Who
Shall have same value as the preceding "Target" header

Header
Connection ID
Identifies the connection

6.3.5.3.4 OBEX Disconnect

An OBEX DISCONNECT request SHALL contain the following fields and headers:

Field/Header
Name
Explanation/Value

Field
Opcode for DISCONNECT
0x82

Field
Packet length
Varies

Header
Connection ID
As established in the response to the CONNECT operation

The response code to a successful OBEX DISCONNECT operation SHALL be 0xA0. The following fields and headers SHALL be present in the response:

Field/Header
Name
Explanation/Value

Field
Response code
0xA0 for success

Field
Packet length
Varies

6.3.5.3.5 OBEX Abort

Note: The OBEX ABORT operation MAY
be used to abort a multi-packet operation before it would normally end.

The OBEX ABORT operation SHALL, when requested, contain the following fields and headers:

Field/Header
Name
Explanation/Value

Field
Opcode for ABORT
0xFF

Field
Packet length
Varies

Header
Connection ID
As established in the response to the CONNECT operation

The response code to a successful OBEX ABORT operation SHALL
be 0xA0 (or else the client will simply disconnect the OBEX connection). The following fields and headers SHALL be present in the response:

Field/Header
Name
Explanation/Value

Field
Response code
0xA0 for success; otherwise the client will disconnect with a failure indication

Field
Packet length
Varies

6.3.5.3.6 OBEX PUT
The OBEX PUT operation SHALL contain the following OBEX fields and headers:

Field/Header
Name
Explanation/Value

Field
Opcode for PUT
0x02 or 0x82 (0x02 is used for non-terminal chunked messages, 0x82 is used for the terminal packet in a chunked message, see Error! Reference source not found.

Field
Packet length
Varies

Header
Connection ID
Varies

Header
Type
Application/vnd.oma.roap+XML

Header
Body, End of Body
End of Body identifies the last chunk of an object; for other chunks the Body header shall be used.

In addition to these headers, the Length header MAY be used to indicate the complete length of an object

The response code to a successful OBEX PUT operation SHALL be 0xA0 or 0x90, depending on whether the PUT operation was non-final (0x02) or final (0x82). The following fields and headers SHALL be present in the response:

Field/Header
Name
Explanation/Value

Field
Response code
0x90 (Continue) or 0xA0 (Success) for success

Field
Packet length
Varies

In addition, the following headers SHALL be present when the result of the OBEX PUT operation triggers the transmission of a ROAP message from the unconnected device to the ROAP server (through the Connected Device):

Field/Header
Name
Explanation/Value

Header
Type
application/vnd.oma.roap+XML

Header
Body, End of Body
End of Body is used for last chunk of an object, for other chunks the Body header shall be used.

The response code shall be 0x90 when the size of the ROAP message in the response requires "chunking
." In this case, and in order to retrieve remaining parts, the Connected Device shall issue OBEX GET requests until it receives a response with response code 0xA0 (see below).

6.3.5.3.7 OBEX GET
The OBEX GET operation SHALL contain the following OBEX fields and headers:

Field/Header
Name
Explanation/Value

Field
Opcode for GET
0x83

Field
Packet length
Varies

Header
Connection ID
Varies

Header
Type
application/vnd.oma.roap+xml

The response code to a successful OBEX GET operation SHALL be 0xA0 or 0x90, depending on whether the message contains the complete (final part) of the object or not. The following fields and headers SHALL be present in the response:

Field/Header
Name
Explanation/Value

Field
Response code
0x90 (Continue) or 0xA0 (Success) for success

Field
Packet length
Varies

Header
Body, End of Body
End of Body is used for last chunk of an object, for other chunks the Body header shall be used.

The response code shall be 0x90 when the size of the object requires "chunking." In this case, and in order to retrieve remaining data, the Connected Device SHALL continue to issue OBEX GET requests until it receives a response with response code 0xA0.

Note: Two alternative methods to exchange ROAP messages are:

a) Requiring the Connected Device to continuously re-issue the last PUT request until a response message with response code 0xA0 is received. One problem with this, however, is that it is not obvious is such a PUT request is a new one or one sent in response to a response message with response code 0x90.

b) Never send a Body in a response to a PUT operation but instead require the Connected Device to fetch the next ROAP message using OBEX GET. The disadvantage of this is that there may not be any ROAP message to retrieve (e.g. no response to a ROAP-JoinDomainResponse)

There is a need to make a decision on this.

6.3.5.4 Exchanging ROAP messages over OBEX

ROAP messages originating from the RI are sent from the Connected Device to the Unconnected Device using the OBEX PUT operation. When receiving a ROAP Trigger not directed to itself (i.e. it contains the proxy attribute), the Connected Device SHALL maintain the connection to the RI and attempt to establish an OBEX connection to the Unconnected Device's OBEX server and sends the ROAP Trigger in an OBEX PUT operation. The Connected Device MUST extract the roapURL from the ROAP Trigger and store for later use. The Connected Device searches for available OBEX servers through service discovery, see Section 6.3.5.5.

When receiving a ROAP message in the body of an OBEX response message from the Unconnected Device, the Connected Device SHALL forward the message to the roapURL as specified in the ROAP Trigger, re-using the maintained connection. The Connected Device SHALL close the connection to the RI when the OBEX session ends. The Connected Device MAY close the connection to the RI when receiving a response to a PUT request with response code 0xA0 and no Body (or End of Body) header.

Sending a ROAP message can take one or more OBEX packets. The OBEX server of Unconnected Devices MUST be able to receive multiple sequential PUT requests.

ROAP messages originating from the Unconnected Device are received by the Connected Device in response to PUT operations or by use of the OBEX GET operation (when the response is larger than the maximum OBEX packet length). A Connected Device that has sent a PUT request and receives a response with response code 0x90 MUST issue GET requests until the complete ROAP message has been received (response code 0xA0).

Each ROAP message MUST be transferred as a ROAP MIME media type within the body of the OBEX request or response. However in order to transfer the message it may split the message into several PUT requests (or GET responses), followed by a PUT Final request (or a final GET response).

6.3.5.5 Service Discovery
6.3.5.5.1 IrDA
To enable an OBEX connection over IrDA, the OBEX protocol stack needs to provide IAS setting information to the IAS protocol stack. The Unconnected Device SHOULD use the following IAS entry settings for ROAP communication via OBEX over IrDA:

Class OBEX:ROAP-client

Attribute Name: IrDA:TinyTP:LsapSel

Attribute Type: Integer

Attribute Description: IrLMP LSAP selector for SyncML over IrOBEX, legal values from 0x01 to 0x6F

6.3.5.5.2 USB
TBD
6.3.5.5.3 Bluetooth

Service discovery can enhance the user experience by automating selection procedures. This section contains a definition of the corresponding service records and SDP PDUs, needed to enable a Connected Device to automatically find suitable Unconnected Devices to connect to when using the Bluetooth protocol stack.

To enable ROAP over the Bluetooth protocol stack, the Unconnected Device SHOULD advertise service records, which can be retrieved by a Connected Device using the Bluetooth Service Discovery Protocol (SDP).

In the case of the Unconnected Device, the following information, i.e., service records, SHOULD be put into the SDDB (Service Discovery Database):

Item
Definition
Type/ Size
Value
AttrID
Status
Default Value

Service Class ID List

N/A
0x0001**
MUST

Service Class #0
ROAP unconnected device
UUID
*

N/A
MUST

Protocol Descriptor list

N/A
0x0004**
MUST

Protocol ID #0
L2CAP
UUID
0x0100**
N/A
MUST

Protocol ID #1
RFCOMM
UUID
0x0003**
N/A
MUST

Param #0
CHANNEL
Uint8
Varies
N/A
MUST

Protocol ID #2
OBEX
UUID
0x0008**
N/A
MUST

Service name
Displayable Text name
String
Varies
0x0000+b***
MAY
“ROAP client”

Table 11 ROAP Client Service Records

** The value or the attribute ID is specified in the Bluetooth Assigned Numbers specification.

*** ’b’ in this table represents a base offset as given by the LanguageBaseAttributeIDList attribute. For the principal language b must be equal to 0x0100 as described in the [Bluetooth SDP] specification.

Table 12 shows the specified SDP PDUs (Protocol Data Units), which are required.

PDU no.
SDP PDU
Ability to Send
Ability to Retrieve

ROAP Connected Device
ROAP unconnected device
ROAP Connected Device
ROAP unconnected device

1
SdpErrorResponse
N/A
MUST
MUST
N/A

2
SdpServiceSearchAttribute-Request
MUST
N/A
N/A
MUST

3
SdpServiceSearchAttribute-Response
N/A
MUST
MUST
N/A

Table 12 SDP PDUs

6.3.5.6 Bluetooth Considerations

6.3.5.6.1 Use of Bluetooth security

Bluetooth authentication and link encryption may be used when running ROAP over OBEX (over Bluetooth). Before these services are available the Connected Device and the Unconnected Device must have gone through an initialization procedure, i.e. be paired. The initialization procedure could be a part of the first ROAP session or it could be done in advance if the Connected Device and the Unconnected Device are already paired for other services.
It is expected that devices in the user's environment are paired once to enable several services.

6.3.5.7 Example messages
This sub-section is informative.

6.3.5.7.1 ROAP Trigger

This message is sent from the Connected Device to the Unconnected Device after:

a) The Connected Device has received the trigger from the RI;

b) The Connected Device has determined that the ROAP Trigger is not for itself; and

c) The Connected Device has established a directed OBEX connection to the Unconnected Device's OBEX server.

Bytes
Meaning

 0x82
Opcode PUT, single packet request, final bit set

 0x0301
Packet length (a total of 769 bytes in this case)

 0xCB
Connection Id HI

 0x00000001
ConnectionId = 1

 0x42
Type HI

 0x0027
Total length of Type header (including HI and length fields)

 "application/vnd.oma.roap-trigger+xml"
Type of object, null terminated ASCII text

 0x49
End-of-Body HI

 0x02D2
Length of body (trigger) is 719 bytes (= whole object)(+ 3 bytes header information)

 0x….
The ROAP-JoinDomain trigger goes here…

6.3.5.7.2 ROAP-OBEX Server Response

This is the response message from the Unconnected Device, sent by that device's OBEX server.

Bytes
Meaning

 0xA0
Opcode SUCCESS, Final bit set

 0x016B
Length of response packet (363 bytes)

 0xCB
Connection Id HI

 0x00000001
ConnectionId = 1

 0x42
Type HI

 0x001F
Total length of Type header (28 bytes + 3 bytes header information)

 "application/vnd.oma.roap+xml"
Type of object, null terminated ASCII

 0x49
End-of-Body HI

 0x0144
Body header length (321 bytes + 3 bytes header information)

 0x….
 The triggered ROAP request goes here

11. Unconnected Device Support(Store & Forward)

11.1

11.2

The following section identifies how a Connected Device can act as an intermediary to assist an Unconnected Device to purchase and download content and Rights Objects. This Functionality enables a portable, mobile device that does not have inherent network connectivity to acquire content and associated rights. This functionality known as Store & Forward
builds on the Domain concept as described in section 7
.
Unconnected Devices MUST support the 4-pass Registration protocol as specified in section 6.3.2.
Unconnected Device MUST support Domain Join and Domain Leave protocols as specified in sections 6.3.4.
Unconnected Devices MAY support the 2-pass RO acqusition protocol as specified in section 6.3.3.
Unconnected Devices MAY support DRM Time.
[image: image18.wmf]Connected

Device

Rights Issuer

OCSP Responder

2

2

3

3

4

4

5

5

a

a

b

b

Unconnected

Device

Device Hello

RI Hello

RegistrationRequest

RegistrationResponse

Device Hello

RegistrationRequest

OCSP Request

OCSP Response

RI Hello

RegistrationResponse

ROAP over OBEX

ROAP over HTTP

ROAP Trigger

ROAP Trigger

Domain Join Request

Domain Join Response

Domain Join Request

Domain Join Response

8

8

7

7

6

6

Domain:XYZ

Browsing Session

1

1

Figure 12: Unconnected Device Registration and Domain Establishment
The above diagram shows how an Unconnected Device establishes an RI Context (Registration) and is added to the Domain: XYZ. In the above diagram it is assumed that the Connected Device has already performed the required steps in order to join the Domain: XYZ.

1. The user initiates a browsing session from the Connected Device to an RI. The user indicates to the RI that they would like to add an Unconnected Device to the Domain: XYZ (how this is achieved is outside of the scope of this specification).

2. The The RI returns a ROAP Trigger of type domainJoin to the Connected Device and includes the proxy attribute with the value set to “True”.
Upon receipt of the ROAP Trigger the Connected Device determines that the ROAP Trigger is intended for an Unconnected Device (through examination of the proxy attribute). At this point the Connected Device SHALL maintain the connection to the RI and attempt to establish an OBEX connection to the Unconnected Device's OBEX server. Once the OBEX connection is established the Connected Device MUST send the ROAP Trigger in an OBEX PUT operation. The Connected Device MUST extract the roapURL from the ROAP Trigger and store for later use.
3. Upon reception of the domainJoin ROAP Trigger the Unconnected Device MUST determine whether it has an RI context with the RI or not. If the Unconnected Device does not have an RI context with the RI indicated in the ROAP trigger the Unconnected Device MUST send a ROAP-DeviceHello message in the OBEX response to the Connected Device. The Connected Device SHALL forward the message to the roapURL as specified in the ROAP Trigger, re-using the maintained connection. If the Unconnected Device has an RI Context then steps 4 – 6 do not apply.
4. The RI MUST respond with a ROAP-RIHello message which the Connected Device MUST send to the Unconnected Devices’s OBEX server in an OBEX PUT operation

5. The Unconnected Device MUST respond with a ROAP-RegistrationRequest message in the OBEX response to the Connected Device. The Connected Device SHALL forward the message to the roapURL as specified in the ROAP Trigger re-using the maintained connection.

6. The RI MUST respond with a ROAP-RegistrationRespond message which the Connected Device will send to the Unconnected Devices’s OBEX server in an OBEX PUT operation

7. Upon successfully establishing an RI contect the Unconnected Device will MUST a ROAP-DomainJoinRequest message in the OBEX response to the Connected Device. The Connected Device SHALL forward the message to the roapURL as specified in the ROAP Trigger, re-using the maintained connection.

8. The RI MUST respond with a ROAP-DomainJoinResponse message which the Connected Device MUST send to the Unconnected Devices’s OBEX server in an OBEX PUT operation.

The Unconnected Device MAY respond with an OBEX Disconnect or MAY responsed with an OBEX message containing the code 0xA0 and no Body (or End of Body) header. Upon receptioin of the OBEX Disconnect operation the Connected Device SHALL close the connection to the RI. The Connected Device MAY close the connection to the RI when receiving a response to a PUT request with response code 0xA0 and no Body (or End of Body) header.
In the above diagram and text it is assumed that no ROAP specific errors occur during the ROAP session. If ROAP specific errors occur during the ROAP session then the Unconnected Device SHOULD use the value of status parameter (as defined in section 6.2.5
) to respond accordingly
.
Once an Unconnected Device has successfully registered and joined the same Domain as the Connected Device then the Connected Device can acquire content and rights on behalf of the Unconnected Device. RO acquisition s shown below.
[image: image19.wmf]Connected

Device

Rights Issuer

RO Request (Domain RO)

RO Response (Domain RO)

Domain:XYZ

Figure 13: Content Acquistion
Once the Connected Device has received the Domain RO it SHOULD insert the Domain RO in the associated DCF as specified in section 6.3.5. This enables the DCF and embedded RO to be transferred to the Unconnected Device using a simple file transfer operation over OBEX as shown in the following diagram.

[image: image20.wmf]Connected

Device

1

1

2

2

Unconnected

Device

DCF (with Domain RO)

Domain:XYZ

File Transfer over OBEX

Figure 14: Content Acquistion
Alternatively an Unconnected Device MAY support the ROAP-RORequest message and ROAP-ROResponse message but in order to acquire ROs the Unconnected Device must be connected to a Connected Device.

[image: image21.wmf]Connected

Device

Rights Issuer

2

2

3

3

4

4

Unconnected

Device

RORequest

ROResponse

RORequest

ROResponse

ROAP Trigger

ROAP Trigger

Domain:XYZ

Browsing Session

1

1

ROAP over OBEX

ROAP over HTTP

Figure 15: Content Acquistion

1. The user initiates a browsing session from the Connected Device to an RI. The user indicates to the RI that they would like to acquire RO for Unconnected Device to the Domain: XYZ (how this is achieved is outside of the scope of this specification). The RI returns a ROAP Trigger of type roAcquisition to the Connected Device and includes the proxy attribute with the value set to “True”.
2. Upon receipt of the ROAP Trigger the Connected Device determines that the ROAP Trigger is intended for an Unconnected Device (through examination of the proxy attribute). At this point the Connected Device SHALL maintain the connection to the RI and attempt to establish an OBEX connection to the Unconnected Device's OBEX server and sends the ROAP Trigger in an OBEX PUT operation. The Connected Device MUST extract the roapURL from the ROAP Trigger and store for later use.
3. Upon reception of the roAquisition ROAP Trigger the Unconnected Device will send a ROAP-RORequest message in the OBEX response to the Connected Device. The Connected Device SHALL forward the message to the roapURL as specified in the ROAP Trigger, re-using the maintained connection.
4. The RI will respond with a ROAP-ROResponse message which the Connected Device will send to the Unconnected Devices’s OBEX server in an OBEX PUT operation

The Unconnected Device MAY respond with an OBEX Disconnect or MAY respond with an OBEX message containing the code 0xA0 and no Body (or End of Body) header. Upon reception of the OBEX Disconnect operation the Connected Device SHALL close the connection to the RI. The Connected Device MAY close the connection to the RI when receiving a response to a PUT request with response code 0xA0 and no Body (or End of Body) header.

In the case where a user wishes to remove an Unconnected Device from a Domain, this is achieved as follows:
[image: image22.wmf]Connected

Device

Rights Issuer

2

2

3

3

4

4

Unconnected

Device

RORequest

ROResponse

RORequest

ROResponse

ROAP Trigger

ROAP Trigger

Domain:XYZ

Browsing Session

1

1

ROAP over OBEX

ROAP over HTTP

Figure 16: Content Acquistion
1. The user initiates a browsing session from the Connected Device to an RI. The user indicates to the RI that they would like to remove an Unconnected Device from the Domain: XYZ (how this is achieved is outside of the scope of this specification). The RI returns a ROAP Trigger of type domainLeave to the Connected Device and includes the proxy attribute with the value set to “True”.

2. Upon receipt of the ROAP Trigger the Connected Device determines that the ROAP Trigger is intended for an Unconnected Device (through examination of the proxy attribute). At this point the Connected Device SHALL maintain the connection to the RI and attempt to establish an OBEX connection to the Unconnected Device's OBEX server and sends the ROAP Trigger in an OBEX PUT operation. The Connected Device MUST extract the roapURL from the ROAP Trigger and store for later use.
3. Upon reception of the leaveDomain ROAP Trigger and after performing the steps specified in section 7.4
 the Unconnected Device MUST send a ROAP-LeaveDomainRequest message in the OBEX response to the Connected Device. The Connected Device SHALL forward the message to the roapURL as specified in the ROAP Trigger re-using the maintained connection.

4. The RI will respond with a ROAP-LeaveDomainResponse message which the Connected Device will send to the Unconnected Devices’s OBEX server in an OBEX PUT operation

The Unconnected Device MAY respond with an OBEX Disconnect or MAY responsed with an OBEX message containing the code 0xA0 and no Body (or End of Body) header. Upon receptioin of the OBEX Disconnect operation the Connected Device SHALL close the connection to the RI. The Connected Device MAY close the connection to the RI when receiving a response to a PUT request with response code 0xA0 and no Body (or End of Body) header.

4 Intellectual Property Rights Considerations

NA

5 Recommendation

The group should consider the proposed text for addition into the latest version of the specification.

�PAGE \# "'Page: '#'�'" �Page: 1��� Do we need a better definition here! Any thoughts?

�PAGE \# "'Page: '#'�'" �Page: 1��� Is measure the right word? Perhaps stored?

�PAGE \# "'Page: '#'�'" �� Note: to Editor, align definotions after Requirements Review

�PAGE \# "'Page: '#'�'" �� Note: to Editor, align definotions after Requirements Review

�PAGE \# "'Page: '#'�'" �Page: 1��� Not included 1 pass delivery for unconnected device since there is no network connection over which the RI can push the ROResponse

�Does this require user consent? Can this be done immediately?

�PAGE \# "'Page: '#'�'" �Page: 1���MAY?

�This should be changed to the ROAP version number as per earlier discussions.

�PAGE \# "'Page: '#'�'" �Page: 1��� Can use special value or define this to be optional for Unconnected Device

�could be understood as contradictory to say MUST and then add the clause 'if possible'.

�PAGE \# "'Page: '#'�'" �Page: 1��� Magnus, don’t we need to say which field in the RI Cert should be used here? Is it the NotAfter field?

�PAGE \# "'Page: '#'�'" �Page: 1��� Can use special value or define this to be optional for Unconnected Device

�PAGE \# "'Page: '#'�'" �Page: 1��� Can use special value or define this to be optional for Unconnected Device

�PAGE \# "'Page: '#'�'" �Page: 1��� Can use special value or define this to be optional for Unconnected Device

�PAGE \# "'Page: '#'�'" �Page: 1��� Same change as above if you approve it.

�PAGE \# "'Page: '#'�'" �Page: 1���Ramesh to assign actual MIME types. MIME type can also be the ROAP trigger.

�PAGE \# "'Page: '#'�'" �Page: 1���UUID to be assigned

�PAGE \# "'Page: '#'�'" �Page: 1���MAY?

�PAGE \# "'Page: '#'�'" �Page: 1���SHALL?

�PAGE \# "'Page: '#'�'" �Page: 1���See first comment.

�PAGE \# "'Page: '#'�'" �Page: 1���Ramesh to assign actual MIME type.

�PAGE \# "'Page: '#'�'" �Page: 1��� Magnus, is this a defined term? If not, can’t we be a bit more precise

�PAGE \# "'Page: '#'�'" �Page: 1���Ramesh to assign actual MIME type.

�PAGE \# "'Page: '#'�'" �Page: 1���A value needs to be allocated for ROAP unconnected device same as the UUID above.

�PAGE \# "'Page: '#'�'" �Page: 1��� Biq question – do we need or want to retain the term “Store and forward” at all? Can’t we just talk about “support of Unconnected Devices”?

�PAGE \# "'Page: '#'�'" �Page: 1��� Note to editor: This needs to be referenced

�PAGE \# "'Page: '#'�'" �Page: 1���Note to editor: This needs to be referenced

�PAGE \# "'Page: '#'�'" �Page: 1��� Do we have a section which states what should happen when a Device recieves the different error codes?

�PAGE \# "'Page: '#'�'" �Page: 1���Note to editor: This needs to be referenced

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 1)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20030824]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 56)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20030824]

_1136734989.vsd
�

�

Device�

Rights Issuer�

RO Request�

RO Response�

1�

2�

_1136735213.vsd
�

�

Device�

Rights Issuer�

1�

2�

JoinDomainRequest�

JoinDomainResponse�

_1136735282.vsd
�

�

Device�

Rights Issuer�

1�

2�

LeaveDomainRequest�

LeaveDomainResponse�

_1136736143.vsd
�

�

�

�

Device�

Rights Issuer�

ROAP Trigger {roRequest}�

RO Request�

RO Response�

ROAP Trigger {joinDomain}�

Join Domain Request�

Join Domain Response�

ROAP Trigger {leaveDomain}�

Leave Domain Request�

Leave Domain Response�

_1136735094.vsd
�

�

Device�

Rights Issuer�

RO Response�

1�

_1136734823.vsd
�

�

Device�

Rights Issuer�

Device Hello�

RI Hello�

RegistrationRequest�

RegistrationResponse�

OCSP Responder�

OCSP Request�

OCSP Response�

1�

2�

3�

a�

b�

4�

