OMA-DLDRM-2005-0064-Broadcast-Rights-Object [image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

OMA-DLDRM-2005-0071-subscriber-group-addressing
Change Request

Change Request

	Title:
	Broadcast rights object
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA DLDRM

	Doc to Change:
	OMA-TS-DRM-XBS-20050221-I

	Submission Date:
	7 Mar 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Robert Lukassen, Philips, robert.lukassen@philips.com

	Replaces:
	n/a

1 Reason for Change

This is a first contribution to the subject of broadcast rights object that is part of the Broadcast Extensions for OMA DRM.

2 Impact on Backward Compatibility

n/a

3 Impact on Other Specifications

n/a

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

To examine the proposed change request and discuss it in the Chicago meeting. It is recommended that the group considers taking this CR as basis for further work on broadcast rights object.

6 Detailed Change Proposal

7. Broadcast Rights

7.1 Broadcast Rights Objects

7.1.1 Goals and Constraints

The delivery of rights objects over a Broadcast network without return channel necessitates some changes to the current ROAP because of the following reasons:

· the XML encoding according to the ROAP schema is not optimised for size

· the current ROAP does not support a subscription group addressing mechanism

· the current ROAP uses signatures based on the RSA PKI scheme that yield large signatures.

This chapter defines a new format for the delivery of authenticated and integrity protected rights objects, in which content encryption keys are cryptographically protected with either:

· domain key

· subscription group addressing group key

· subscription group addressing subset key (derived key)

· subscription group addressing device key

The primary design goal is to offer the same or equivalent cryptographic protection on Broadcast Rights Objects as is available for Rights Objects obtained via the standard ROAP protocol. This includes authentication, integrity checking and confidentiality of encryption keys.

The secondary design goal is optimisation of message size. This is motivated by the fact that these rights objects may have to be Broadcast repeatedly, as no return path is available to confirm reception. It is assumed that an out-of-band mechanism is available to perform an equivalent of a RORequest, i.e. the initiation of rights object acquisition.

7.1.2 Design Considerations and Decisions

The Broadcast Rights Objects (BCRO) are intended to be Broadcast to receivers in a well-defined repetitive manner. The particular means of delivery is to be defined in the context of the Broadcast system. It is the intention to support devices without a return channel (next to more capable devices), which implies that Broadcast rights object will be transmitted repeatedly to increase the chance of a receiver to capture rights objects addressed to that device.

The key-wrapping technique used in standard ROAP to cryptographically bind a MAC and REK to a device or domain will not be used. Instead the domain key or subscription group key is directly used to protect the content encryption keys in the Broadcast Rights Object. The motivation for this is that a REK adds little or no extra security, but adds significant size to a Broadcast Rights Object.

Because subscription group addressing offers the possibility to address a single unique device, BCROs will offer only addressing subscription groups or domains. Addressing a device using its device ID will not be supported with a BCRO.

RSA signatures on Broadcast rights objects would contribute very significantly to the size of each BCRO. Instead, each BCRO is protected with a MAC, based on an authentication key that is registered in the rights issuer context in a device. At registration, this authentication key is provided along with the subscription group addressing key material.

The broadcast content is protected with a varying encryption key. The encryption keys associated with assets in the BCRO will be applied to decrypt the key stream messages on the key stream layer. Besides decryption, such messages should also be authenticated. To avoid using the rights issuer authentication key for these frequent messages, the BCRO also carries an authentication key to be used for authenticating key stream messages. [This is subject to specifications of the key stream layer in OMA BCAST.]

7.1.3 Format of the OMADRMBroadcastRightsObject class

The OMADRMAsset, OMADRMPermission and OMADRMConstraint object correspond in their meaning to their counterparts in OMA-DRM-REL-V2_0. The OMADRMAction object corresponds to the allowed elements in the permissions element from the same specification.

align(8) class OMADRMBroadcastRightsObject

{

int i;

bit(1)
future_extensions_flag;

bit(1)
reserved;

bit(1)
permissions_flag;

bit(1)
locally_changed_flag;

bit(12)
bcro_length;

// MAC protected part starts here

bit(1)
group_size_flag;

bit(1)
timestamp_flag;

bit(1)
stateful_flag;

bit(1)
refresh_time_flag;

bit(2)
address_mode;

bit(1)
domain_ro_flag;

bit(1)
rights_issuer_flag;

bit(32)
address;

if (address_mode == 0x1)

{

if (group_size_flag == 0)

{

bit(256)
bit_access_mask;

}

else

{

bit(512)
bit_access_mask;

}

}

else if (address_mode&0x2 == 0x2)

{

bit(8)
position_in_group;

}

if (domain_ro_flag == 1)

{

bit(32)
domain_id;

}

if (rights_issuer_flag == 1)

{

bit(160)
rights_issuer_id;

}

if (timestamp_flag == 1)

{

bit(40)
bcro_timestamp;

}

if (refresh_time_flag == 1)

{

bit(40)
refresh_time;

}

bit(1)
extended_rights_object_id_flag;

bit(1)
reserved;

if (extended_rights_object_id_flag == 0)

{

bit(14)
rights_object_id;

}

else

{

bit(30)
rights_object_id;

}

bit(8)
number_of_assets;

for (i=0; i<number_of_assets; i++)

{

OMADRMAsset
asset[i];

}

if (permissions_flag == 1)

{

bit(8)
number_of_permissions;

for (i=0; i<number_of_permissions; i++)

{

OMADRMPermission permission[i];

}

}

if (future_extensions_flag == 1)

{

bit(16)
future_extensions_length;

for (i=0; i<future_extensions_length; i++)

{

bit(8)
future_byte;

}

}

// MAC protected part ends here

bit(96)
MAC;

if (locally_changed_flag == 1)

{

bit(160)
stored_rights_issuer_id;

bit(16)
local_length;

for (i=0; i<local_length; i++)

{

bit(8)
local_byte;

}

}

}

future_extensions_flag: 1-bit flag which indicates the version of the BCRO message format. If set to 0 the original format is used. If set to 1 additional information is contained in a later part of the BCRO. The format of this additional information is beyond the scope of this specification.

permissions_flag: 1-bit flag indicating that the BCRO contains at least 1 permission.

locally_changed_flag: 1-bit flag indicating that information (e.g. the RI ID) has been added after the MAC field (after the protected part of the BCRO). This mechanism can be used to store or forward the BCRO together with additional information. Receivers who do not understand the local additions should skip the locally added extensions.

The first two bytes of the BCRO are not protected by the MAC.

bcro_length: 12-bit field indicating the length in bytes of the BCRO starting immediately after this field (excluding locally added information). The size of an BCRO SHALL NOT exceed 4096 bytes. Note however that other restrictions, e.g. the UDP packet size can restrict the size of an BCRO even more.

Note: the fields up to and including ‘length’ are not protected by a MAC. All following fields up to but not including the MAC field will be protected by a MAC.

group_size_flag: 1-bit field indicating the group size used. 0 – a maximum group size 256 is used, 1 – a maximum group size of 512 is used

timestamp_flag: 1-bit field indicating that the BCRO is timestamped.
stateful_flag: 1-bit flag indicating that when set to 1 the BCRO contains stateful information.

refresh_time_flag: 1-bit flag indicating that a refresh_time for the BCRO is contained in this BCRO

address_mode: 2-bit field indicating the addressing mode used by this BCRO.

	Field: address_mode
	Description

	0x0
	addressing whole of unique group

	0x1
	addressing of Subscription group using a bit_mask size of 256 or 512 bit depending on group_size_flag (subset of unique group)

	0x2-0x3
	addressing of unique device

domain_ro_flag: 1-bit flag indicating that the BCRO is addressed to a certain OMA domain. If set the keys in the assets are encoded using the domain key.

rights_issuer_flag: 1-bit flag indicating that the rights issuer id is listed in this BCRO. Normally this information is given via a dedicated BCRO stream. This flag will only be set if BCROs from different rights issuers are carried in the same stream.

rights_issuer_id: The ID of the rights issuer. This is the 160-bit SHA1 hash of the DER encoded public key of the RI. See X509PKISHash in OMA.

address: 4-byte group address. Each rights issuer has its own address space.

bit_access_mask: If the BCRO addresses a subset of a unique group (address_mode 0x1 or 0x2) than the bit_access_mask defines to which receivers in the group this BCRO is addressed to. Receivers not listed in the bit_access_mask cannot decrypt the key material in this BCRO as zero message Broadcast encryption is used for the encryption of the key material. The size of the bit_access_mask is given by the address mode

position_in_group: If the BCRO addresses a unique device then this field specifies the position of the unique device in the given Subscription group. If group_size_flag is 0 than the position in the group is directly given by the position_in_group field. If group_size_flag is 1 then 9 bit are used to identify the position in the group. If group_size_flag is 1 and the address_mode&0x2==0x2 ten bit 0 from the address_mode is used as the 9th bit, the MSB. The real position in the group is then given by:

int real_position_in_group;

if(address_mode&0x2==0x2)

{

if(group_size_flag == 0)

{

//maximum size of 256 devices in group.

real_position_in_group = position_in_group;

}

else

{

//maximum size of 512 devices in group;

real_position_in_group =

((address_mode&0x1)<<8)||position_in_group;

}

}
domain_id: Field indicating the domain id. If the BCRO is addressed to a certain OMA domain then the keys in the asset object are encrypted using the OMA domain key. The value of the domain_id is coded as 8 digits in 4-bit Binary Coded Decimal (BCD).

bcro_timestamp: Field containing a timestamp at the point of issuing of the BCRO. This 40-bit field contains the time and date of the moment of issuing of the BCRO in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

EXAMPLE 1: 93/10/13 12:45:00 is coded as "0xC079124500".

refresh_time: The refresh_time specifies the time when the terminal should acquire a new BCRO. It does not specifies when the keys in the BCRO expire. This field is a hint to a receiver to acquire a new BCRO for the content listed in the BCRO before the keys in the BCRO expires. The encoding is similar to that of the bcro_timestamp field.

extended_rights_object_id_flag: 1-bit flag that when set to 1 indicates that an extended rights_object_id of 30 bit is used to identify this rights object. If the flag is set to 0 the rights_object_id has a size of 14 bit. The rights_object_id is only valid within one Rights Issuer context and rights_object_ids can wrap around.

rights_object_id: 14-bit or 30-bit field specifying the ID of this rights object. [TBD: Is the size of the id ok?]
number_of_assets: This field specifies the number of assets (see below) in this BCRO. Each asset listed in this BCRO has an internal id which is equal to the index of the asset in this BCRO. In other words the first asset listed in this BCRO has the internal asset id (index) of 0, the second of 1 etc. This internal id or index is used by permissions objects (see below) to identify the assets it addresses.

number_of_permissions:This field specifies the number of permissions (see below) in this BCRO.

future_extensions_length:If the version is set to 1 then the future extensions can be listed following this field. The future_extensions_length field specifies the length of the extensions in bytes. Receivers only supporting version 0 SHOULD skip the future extensions.

MAC: This is the authentication code calculated over all bytes before this field with the exception of the first two bytes in the BCRO using AES-XCBC-MAC-96. AES-XCBC-MAC-96 operates on blocks of 128 bit. To calculate the MAC the MAC protected part of the BCRO is divided into 128-bit blocks. If the MAC protected block is smaller then an integer multiple of 128 then the rest of the last block is padded with zeros. The MAC is calculated over all 128-bit blocks. Note that the padding is not transmitted nor part of the BCRO.

The MAC is used to authenticate and check the integrity of the BCRO. The key used to create the MAC is the BCRO authentication key that is provided to the device at registration time. [The registration process for broadcast is to include this authentication key. This will be clarified in a later contribution.]

stored_rights_issuer_id: This field is only present if the locally_changed_flag is set to 1. BCROs received directly from the Broadcast channel will not contain this field. The field is used to retain the relation between RI and BCRO when stored or forwarded.

local_length: This field specifies the number of locally added bytes following this field. This field and the local_bytes are not present in the original BCRO received from a broadcast channel.

5.2.1.1 Format of the OMADRMAsset class

class OMADRMAsset

{

int i;

bit(96)
BCI;

bit(1)
key_flag;

bit(4)
reserved_for_future_use;

bit(1)
inherit_flag;

bit(2)
asset_type;

if (inherit_flag)

{

bit(1)
extended_parent_rights_objects_id_flag;

bit(1)
reserved;

if (extended_parent_rights_object_id_flag == 0)

{

bit(14)

parent_rights_object_id;

}

else

{

bit(30)

parent_rights_object_id;

}

}

if (key_flag == 1)

{

if (asset_type == 0x0)

{

bit(320)
wrapped_encryption_authentication_key;

}

else

if (asset_type == 0x1)

{

bit(192)
wrapped_encryption_key;

}

}

}

BCI: This 96-bit field is the Binary Content ID. [The encoding of this field might be the SHA1-96 hash of the Content ID in ‘cid’ URI form.]
key_flag:1-bit flag indicating that the asset does contain key material.

inherit_flag: 1-bit flag indicating whether inheritance is used. If set to 1 the asset inherits the rights setting from a parent rights object.

asset_type: 2-bit flag indicating the asset type as defined in the table below. If the asset_type is set to 0 the asset MAY contain a wrapped encryption key and authentication key. If the asset_type is set to 0x1 then the asset MAY contain a wrapped content encryption key.

	Field: asset_type
	Description

	0x0
	Broadcast stream protected IPSec or SRTP as defined in this specification

	0x1
	downloaded file content as defined by OMA

	0x2-0x3
	reserved

extended_parent_rights_object_id_flag: 1-bit flag that when set to 1 indicates that an extended rights_object_id of 30 bit is used to identify the parent rights object. If the flag is set to 0 the parent_rights_object_id has a size of 14 bit. The parent_rights_object_id is only valid within one Rights Issuer context and the parent_rights_object_ids can wrap around.

parent_rights_object_id: 14-bit or 30-bit field specifying the ID of the parent rights object.

wrapped_encryption_authentication_key: If key_type is set to 0 than this field contains a wrapped concatenated encryption key and authentication key. The field itself is protected using AESWrap. In case of where the BCRO is a domain RO, the domain key is used as the wrapping key. In case of a subscription group BCRO, the key to use depends on the addressing mode of the BCRO.

	Field: address_mode
	Keys used

	0x0 (subscription group addressing / whole group)
	UGK (Unique Group Key)

	0x1 or 0x2 (subscription group addressing / derived keys)
	Deduced decryption key (based on bit_access_mask and subscription group keys)

	0x3 (subscription group addressing / unique device)
	UDK (Unique device key)

wrapped_encryption_key: This field contains a wrapped encryption key (without authentication key). The field is protected using AESWrap. In case of where the BCRO is a domain RO, the domain key is used as the wrapping key. In case of a subscription group BCRO, the key to use depends on the addressing mode of the BCRO.

	Field: address_mode
	Key(s) used to decrypt field

	0x0 (unique group)
	UGK (Unique Group Key)

	0x1 or 0x2 (Subscription group)
	Deduced decryption key (based on bit_access_mask and subscription group keys)

	0x3 (unique device)
	UDK (Unique device key)

5.2.1.2 Format of the OMADRMPermission class

class OMADRMPermission

{

int i;

bit(6)
number_of_assets;

bit(1)
constraint_flag;

bit(1)
actions_flag;

for (i=0; i<number_of_assets; i++)

{

bit(8)
asset_index;

}

if (constraint_flag == 1)

{

OMADRMConstraint
constraint;

}

if (actions_flag == 1)

{

bit(8)
number_of_actions;

for (i=0; i<number_of_actions; i++)

{

OMADRMAction
action[i];

}

}

}

number_of_assets: The number of assets this permission object links to. Assets linked to by this permission object are bound by this permission object.

constraint_flag: 1-bit flag which indicates when set to 1 that a constraint object is present in this permissions object. The constraint object applies to all action listed in this permission object.

action_flag: 1-bit flag. When set to 1, 1 or more actions are contained in this permission object.

asset_index: A list of number_of_assets links to assets in this BCRO. Assets are linked to by using the internal asset id (the index of the asset in this BCRO).

number_of_actions: Field specifying the number of actions (see below) contained in this permission object

5.2.1.3 Format of the OMADRMAction class

class OMADRMAction

{

bit(7)
action_type;

bit(1)
constraint_flag;

if (constraint_flag)

{

OMADRMConstraint constraint;

}

}

action_type: 7-bit field specifying the type of action as listed in table below:

	Field: action_type
	Description

	0x00
	PLAY_ACTION

	0x01
	DISPLAY_ACTION

	0x02
	EXECUTE_ACTION

	0x03
	PRINT_ACTION

	0x04
	EXPORT_ACTION

	0x05
	ACCESS_ACTION

	0x06-0x7F
	reserved for future use

constraint_flag: 1-bit flag which indicates when set to 1 that a constraint object is present in this action object. The constraint object only applies to the action it is in.

5.2.1.4 Format of the OMADRMConstraint class

abstract class OMADRMConstraintDescriptor : bit(8) constraint_id = 0

{

bit(8) length;

}

class OMADRMConstraint

{

int i;

int j;

bit(4)
number_of_constraints;

bit(12)
constraint_descriptor_length;

for (i=0; i<number_of_constraint; i++)

{

OMADRMConstraintDescriptor constraint[i];

}

}

number_of_constraints: 4-bit number specifying the number of constraint descriptors (see below)

constraints_descriptor_length: length of all constraint descriptors in bytes which follow this field.

constraint_tag: Tag identifying the specific constraint_descriptor as listed below:

	Field: constraint_tag
	Description

	0x00
	count constraint

	0x01
	timed-count constraint

	0x02
	date time constraint

	0x03
	interval constraint

	0x04
	accumulated constraint

	0x05
	individual constraint

	0x06
	system constraint

	0x07-0xFF
	reserved for future use

5.2.1.4.1 Count constraint descriptor

class OMADRMCountConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x00

{

bit(8*length)

count;

}

length: The number of bytes used for the count field. Length SHALL NOT exceed 4, hence the maximum size of the count field can be 32 bits.

count: The number of times the content can be played. The field can be of size 8, 16, 24 and 32 bits.
5.2.1.4.2 Timed count constraint descriptor

class OMADRMTimedCountConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x01

{

bit(16)

timer;

bit(8*(length-2))
count;

}

length: The number of bytes following this field. The count field is length-2 bytes long and SHOULD NOT exceed 32 bits.

timer: Specifies the number of seconds after which the count state is reduced starting from beginning to render the content.

count: The number of times the content can be played. The field can be of size 8, 16, 24 and 32 bits.
5.2.1.4.3 Date-time constraint descriptor

class OMADRMDateTimeConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x02

{

bit(1)

start_flag;

bit(1)

end_flag;

bit(6)

reserved;

if (start_flag)

{

bit(40)

start_date;

}

if (end_flag)

{

bit(40)

end_date;

}

}

length: The number of bytes of the descriptor immediately following this field.

start_flag: 1-bit field. When set the descriptor contains a start time.

end_flag: 1-bit field. When set the descriptor contains a end time.

start_time: Time field with the semantics of ‘not before’ time for a permission. The start_time must be before the end_time if present.

end_time: Time field with the semantics of ‘not after’ time for a permission. The end_time must be after the start_time if present.

5.2.1.4.4 Interval constraint descriptor

class OMADRMIntervalConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x03

{

bit(8*length)

time_interval;

}

length: The number of bytes following this field. Length specifies the size of the time_interval field.

time_interval: Specifies the number of seconds starting from first receiving this BCRO that the permission is valid. The length of the field is given by the length field and SHOULD NOT exceed 32 bit.

5.2.1.4.5 Accumulated constraint descriptor

The accumulated_constraint_descriptor specifies the maximum period of metered usage time during which the rights can be exercised over the DRM content.

class OMADRMAccumulatedConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x04

{

bit(8*length)

accumulated_time;

}

length: The number of bytes following this field. Length specifies the size of the accumulated_time field.

accumulated_time: Specifies the maximum period of metered usage time during which the rights can be excercised. The period is given in seconds. The length of the field is given by the length field and SHOULD NOT exceed 32 bit.

5.2.1.4.6 Individual constraint descriptor

Constraint used to bind content to individuals. If the content should be bound to more than one individual multiple individual_constraint_descriptor(s) can be carried in one constraint object.

class OMADRMIndividualConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x05

{

bit(4)

reserved;

bit(4)

id_type;

bit(8*(length-1))
individual_id;

}

length: The number of bytes following this field. Length-1 specifies the size of the individual_id field.

id_type: Tag identifying format of the individual_id as listed below:

	Field: id_type
	Description

	0x0
	The individual_id field contains the IMSI number coded as 16 digit 4-bit BCD. The first digit SHALL be 0 and SHALL be ignored. The length of the individual_id field is 64 bit.

	0x1
	The individual_id field contains the PKC id of the WIM to which the content is bound.

	0x2-0xF
	reserved for future use

individual_id: Individual ID. The format and length of this field is identified by the identifier_type and length field see the table above.

5.2.1.4.7 System constraint descriptor

Constraint used identify systems to which the content and rights objects are allowed to be exported to.

class OMADRMSystemConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x06

{

bit(8)

constraint_tag;

bit(8)

length;

bit(64)

system_id;

}

length: The number of bytes following this field.

system_id: The system id of the system the content and RO can be exported to. This is the SHA1-64 encoded hash of the system name as registered with OMNA. [The values are registered with OMNA (currently only strings), we either use SHA1-64 to hash the strings or OMNA registers numbers for that as well]

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

