Doc# OMA-DLDRM-2005-0086-Push-binary-Device-Registration-data.doc[image: image7.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-DLDRM-2005-0086-Push-binary-Device-Registration-data.doc
Change Request

Change Request

	Title:
	Push binary Device Registration data
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-DLDRM

	Doc to Change:
	OMA-DRM-XBS-20050315-D

	Submission Date:
	March 30th 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bjorn CW Kaag, bjorn.kaag@philips.com

	Replaces:
	 n/a

1 Reason for Change

This is a first contribution to the subject of pushing Device Registration Data by the RI to a device that is part of the Broadcast Extensions for OMA DRM.

This document describes a new mechanism that can be used by the RI to push registration data to a device in offline situations. That is when there is no interactive connection between the RI and the device. When the interactivity channel is available, the device may use ROAP protocols according to OMA DRM 2.0. But in the case where there is no interactivity channel and only a broadcast channel, the device data must be pushed from the RI to the device over the broadcast channel in another way. This CR describes how.

2 Impact on Backward Compatibility

The intention is to define the broadcast extensions to OMA DRM 2.0 in a way that builds on the key concepts and mechanisms that have been carefully crafted.

The new 1-pass binary Push Device Registration Protocol is intended to be used without interactivity channel, c.q. in a scenario not applicable to standard OMA DRM 2.0. This CR has therefore no impact on backwards compatibility.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

<provide a description of the intended actions to be taken by the group>

6 Detailed Change Proposal

6.1 General context

Since this CR is part of multiple CRs describing the registration for unconnected mode of operation, this general section describes the context of the problem and the focus in this particular CR (as stated at the end of this section)

The notification of device data to the RI is executed in either of two cases:

Case 1: The device has never been registered before and is activated by the Customer.

In case there is no direct communication back channel on the device to contact the RI, the device is called “unconnected”. The unconnected device has two possibilities to report device data to the RI:

· The unconnected device is able to make a connection to a connected device (as specified in [OMA_DRM2] section 14) and uses the backchannel of the connected device to report the device data to the RI. In this case the standard 4-pass ROAP protocol is used, as specified in [OMA_DRM2].

· The unconnected device is not able to make a connection to a connected device. In this case the 1-pass binary device registration protocol is used, as is specified in this document.

Case 2: The device has been registered at the RI before and must be re-registered.

In this case the RI uses the 1-pass binary rights object acquisition protocol to send a message ordering the device to re-register, as is specified in this document.

Following sequence chart explains the registration for unconnected mode of operation.

[image: image1.wmf][1] notify device data

[2] wait

[3] cert. & cap. request

[4]

validate

[5] cert. & cap. data

[6] check

[7] send registration

data

Customer / Device

Service Operator /

RI

ROT / PKI+CRL

Figure 1: registration for unconnected mode of operation with one ROT

N.B.: Notification of device data is performed off-line. Transmission of registration data is performed on-line via the broadcast channel.

Explanation of the protocol:

· Once the RI got the device data from the device [1] via a protocol described in another CR, the RI should contact the ROT [3], while the device is entered into registration mode and waits for the registration data [2].

· The ROT implements a Public Key Infrastructure (a.k.a. PKI). The PKI looks up the certificate and capabilities belonging to the device data in question [4]. The ROT should have a Certificate Revocation List (a.k.a. CRL) implemented. In any case it is the responsibility of the ROT to tell if the requested device data is valid or not and it may pass the requested certificate and capabilities data to the RI or not.

· Assuming the RI got the requested certificate and capabilities from the ROT [5], the RI will perform some last checks [6] and MUST send back a registration data message to the device of the Customer [7].

· The RI uses the 1-pass binary Push Device Registrationdata (a.k.a. PDR) protocol to send the registration data over the network. The PDR protocol is described in section 6.2, together with the registration data (in the format of the device_registration_respons message in section 6.3). The RI MAY decide to send an error status with the message or send send valid registration data containing all data to create the RI context.

· A device listening for device_registration_respons messages will look for messages with the corresponding message_tag. On every message with a matching message_tag the device will check the long_form_udn parameter. If this matches (any of) the devices local UDN(s) the device will process the message and will start trying to decrypt the secret data in it.

· If the device does not receive registration data within a timeout the device leaves the registration mode and stops listening for device_registration_respons messages.

· Subsequent distribution of Right Objects at regular intervals is done with a message send as an inform message using the 1-pass Inform Registered Device protocol.
This CR focuses on the notification of the detailed device data (arrow number [7] in Figure 1).
6.2 Theory of operation

1-pass binary Push Device Registration Protocol

N.B.: This protocol is also known as the “1-pass PDR protocol”, short for Push Device Registration protocol.

[image: image2.wmf][1] send registr. data

Customer / Device

Service Operator /

RI

ROT / PKI+CRL

Figure 2: 1-pass PDR protocol – (first) device registration

N.B.: Transmission of registration data is performed on-line via the broadcast channel. The registration data (device_registration_respons message) is specified in section 6.3

Explanation of the protocol:

· The RI SHALL use the 1-pass binary Push Device Registrationdata (a.k.a. PDR) protocol to send the device-registration_respons message over the network [1].

· A device listening for device_registration_respons messages SHALL look for messages with the corresponding message_tag. On every message with a matching message_tag the device SHALL check the long_form_udn parameter. If this matches (any of) the devices local UDN(s) the device SHALL start to process the message and SHALL start trying to decrypt the secret data in it.

· After a timeout the device SHALL leave the registration mode and stops listening for device_registration_respons messages.

6.3 Registration data – device_registration_response message

6.3.1 Message description

Using the 1-pass PDR protocol the RI MUST send a device_registration_response message with the registration data to the device as specified below:

Table 1: device_registration_respons message (1-pass device registration protocol)

	Device_Registration_Respons()

	Parameter name
	(M)andatory / (O)ptional
	remark

	message_tag
	M
	global, not encrypted

	longform_udn
	M
	global, not encrypted

	version
	M
	global, not encrypted

	ri_certificate_counter
	M
	global, not encrypted

	c_length
	M
	global, not encrypted

	ri_certificate
	M
	global, not encrypted

	ocsp_response_counter
	M
	global, not encrypted

	r_length
	M
	global, not encrypted

	ocsp_response
	M
	global, not encrypted

	local_time_offset_flag
	M
	device specific, not encrypted

	time_stamp_flag
	M
	device specific, not encrypted

	broadcast_group_key_flag
	M
	device specific, not encrypted

	signature_type_flag
	M
	global, not encrypted

	short_udn_flag
	M
	device specific, not encrypted

	surplus_block_flag
	M
	device specific, not encrypted

	keyset_block_length
	M
	device specific, not encrypted

	unique_group_key
	O
	device specific, encrypted

	broadcast_group_key
	O
	device specific, encrypted

	unique_device_key
	O
	device specific, encrypted

	unique_device_filter
	M
	device specific, encrypted

	ri_authentication_key
	M
	device specific, encrypted

	drm_time
	M
	device specific, not encrypted

	local_time_offset_polarity
	O
	device specific, not encrypted

	local_time_offset
	O
	device specific, not encrypted

	registration_timestamp_start
	O
	device specific, not encrypted

	registration_timestamp_end
	O
	device specific, not encrypted

	shortform_udn
	O
	device specific, not encrypted

	status
	M
	device specific, not encrypted

	signature_block
	M
	device specific, not encrypted

message_tag - This parameter identifies the type of the message. Refer to section Error! Reference source not found. for the value of the message_tag.

longform_udn - The long form of the UDN. Refer to section Error! Reference source not found. for details. The number is encoded in BCD format.

version - is a numerical representation of the version of the RI certificate. Using the Version parameter the customer device can decide if it is needed to update the RI certificate (if it was stored before).

Table 2: description of Version parameter

	Parameter Fieldname
	Field Value (b)
	supports

	major_version_number
	0000-1111
	MSB (4 bits)

	minor_version_number
	0000-1111
	LSB (4 bits)

The parameter is divided 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b.

ri_certificate_counter - This parameter indicates the depth of the RI certificate chain.

	number of certificate in chain
	Value (b)
	remark

	0
	000
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	001
	

	2
	010
	

	3
	011
	

	4
	100
	

	5
	101
	

	6
	110
	

	7
	111
	

N.B.: The certificate chain can have a depth of up to 7 RI certificates.

c_length - This parameter indicates the length in bits of the ri_certificate.

ri_certificate - This parameter MUST be present. When present, the value of a ri_certificate parameter shall be a certificate chain including the RI’s certificate. The chain MUST NOT include the root certificate. The RI certificate must come first in the list. Each following certificate must directly certify the one preceding it.

The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data stored in this way MUST uniquely identify the RI certificate and MUST be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to the stored certificate verification data for this RI. If so, the Device need not verify the RI certificate chain again, otherwise the Device MUST verify the RI certificate chain.
 If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Unconnected Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device MUST verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
However, if the Device does store RI certificate verification data in this way it MUST store the expiry period of the RI’s certificate (as indicated by the notAfter field within the certificate) and MUST compare the Device’s current DRM Time with the stored RI certificate expiry time whenever verifying the signature on signed messages from the RI. If the Device’s current DRM Time is after the stored RI certificate expiry time then the Device MUST abandon processing the RI message and MUST initiate the registration protocol.

ocsp_response_counter - This parameter indicates the depth of the OCSP response chain.

	number of responses in chain
	Value (b)
	remark

	0
	000
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	001
	

	2
	010
	

	3
	011
	

	4
	100
	

	5
	101
	

	6
	110
	

	7
	111
	

N.B.: The certificate chain can have a depth of up to 7 OCSP responses.

r_length - This parameter indicates the length in bits of the ocsp_response.

ocsp_response - This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device MUST NOT fail due to the presence of more than one OCSP response element. A Device MUST check that an OCSP response is present in the received message. If no OCSP response is present in the device_registration_respons message, then the Device MUST abort the registration protocol.

local_time_offset_flag - Binary flag to signal presence of the parameter it describes:

	local_time_offset_flag
	Value (b)
	remark

	data absent
	0
	

	data present
	1
	

time_stamp_flag - Binary flag to signal presence of the parameter it describes:

	time_stamp_flag
	Value (b)
	remark

	data absent
	0
	

	data present
	1
	

broadcast_group_key_flag - The flag expresses how many broadcast_group_keys (a.k.a. BGK) are delivered with the registration data. When zero message broadcast is used, a set of 8 keys will support a group size of 256. A set of 9 keys will support a group size of 512. Other values or larger group sizes are not supported. A value larger than zero indicates that the registration data message delivers a set of zero message broadcast_group_key (s) to the device and that the device needs to use zero message broadcast style encryption to deduce the decryption key to decrypt the SEK.

	broadcast_group_key_flag
	Value (b)
	remark

	data absent
	0000
	will signal absence of keyset_block e.g. on error status to save bandwidth.

	reserved
	0001-0111
	not to be used

	set of (8) broadcast_group_key
	1000
	

	set of (9) broadcast_group_key
	1001
	

	reserved
	1010-1111
	not to be used

signature_type_flag - A flag to signal type of signature algorithm used:

	signature_type_flag
	Value (b)
	remark

	RSA 1024
	00
	

	RSA 2048
	01
	CLMA requirement (2004-2007)

	RSA 4096
	10
	

	reserved
	11
	not to be used

short_udn_flag - Binary flag to signal presence of the parameter it describes:

	short_udn_flag
	Value (b)
	remark

	data absent
	0
	

	data present
	1
	

surplus_block_flag - Binary flag to signal the presence of the parameter it describes:

	surplus_block_flag
	Value (b)
	remark

	data absent
	0
	

	data present
	1
	

keyset_block_length - This parameter indicates the length in bits of the total keyset_block. That is the part in the sessionkey_block plus the optional second part from the surplus_block.
unique_group_key - An symmetric AES encryption key to address a unique group. This key is also known as UGK. The keylength MUST be 128 bit.

broadcast_group_key - An (set of) AES symmetric encryption key(s) which are used for the zero message broadcast_group_key deduction of the key needed to decrypt the SEK and/or PEK. These broadcast_group_key is also known as BGK. The keylength MUST be 128 bit.

unique_device_key - An AES symmetric key to address a unique device. This key is also known as UDK. The keylength MUST be 128 bit.

unique_device_filter - A [EUROCRYPT] style addressing scheme used to filter for messages like BROs. A device address consists of 5 bytes and is unique within an operation. The shared address is defined as the 4 most significant bytes of the unique address. The least significant byte (byte 5) defines the position (0….255) in the group that shares an address. This means that each group consists of 256 members. An access mask, in an entitlement, is used to identify individual members. So if for a particular group only member 5 and 100 are allowed to have access to a service then their corresponding bits are set in the access mask. Take the device_id_mask equal to 252 (1111 1100b) then the least significant byte of the device_id is masked and thereby creating a shared address. This adress is also known as UDF.
ri_authentication_key - An AES symmetric key to verify MACs on BCRO and KSM messages. This key is also known as RIAK. The keylength MUST be 128 bit.

drm_time - This parameter defines the time in Universal Time Coordinated (UTC). This 40-bit field contains the current time and date in UTC and MJD. Refer to Appendix A.4 for calculation of the UTC and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit BCD.

EXAMPLE: 93/10/13 12:45:00 is coded as “0xC079124500”.

local_time_offset_polarity - This 1-bit information indicates the polarity of the following local_time_offset. If this bit is set to “0” the polarity is positive and the local time is advanced to UTC. (Usually east direction from Greenwich). If this bit is set to “1” the polarity is negative and the local time is behind UTC.

local_time_offset - This parameter indicates the local time offset from the (UTC) drm_time.This 16-bit field contains the current offset time from UTC in the range between –12 hours and +13 hours at the area which is indicated by the combination of country_code and country_region_id in advance. These 16 bits are coded as 4 digits in 4-bit BCD in the order hour tens, hour, minute tens, and minutes.
registration_timestamp_start - Indicates from what time onwards the registration data is valid. This is an extra mechanism above the expiration date of the RI certificate. (N.B.: please note that this parameter can also be used against replay attacks.)

registration_timestamp_end - Indicates from what time onwards the registration data is expires. This is an extra mechanism above the expiration date of the RI certificate. (N.B.: please note that this parameter can also be used against replay attacks.)

shortform_udn - This parameter allows the RI to give an own defined short number identifying the device. This number can be used as a shorter alternative to the UDN during offline notifications. The shortform_udn is coded in BCD format.

status - This parameter MUST indicate if the registration request was successfully (status = Success) handled or not. In the latter case an error code is sent, as specified in section A.2.

signature_block - The signature MUST enable a single source authenticity check on the message. The algorithm used for the signature is RSA-1024 or RSA-2048 or RSA-4096. The signature will apply to the implementation guidelines of PCKS#1, as outlined in A.3.

N.B. Message result:

The stored RI Context SHALL at a minimum contain:

· RI ID, Unique device filter (UDF).

· following keys:

· UGK, BGK1..n and/or UDK

· RIAK.

· SK (refer to section 6.3.2)

· The RI Context SHALL also contain an RI Context Expiry Time, which is defined to be the timestamp of the registration data if that was send and otherwise the expiration of the RI certificate.

· The RI Context MAY also contain RI certificate validation data.

· For Unconnected Devices that do not support DRM Time, the RI Context is infinite i.e., it does not have an expiry time.

· If the RI Context has expired, the Device MUST NOT execute any other protocol than the 1-pass binary device data registration protocol with the associated RI (context), and upon detection of RI Context expiry the Device SHOULD initiate the offline notification of detailed device data protocol using the RI_ID stored in the RI Context. Depending on the implementation a dialogue will be shown to the user and the offline NDD protocol will be executed.

· Accessing an ESG for purchase is still allowed, as this will require a registration first.

· The device SHALL be rendered inoperable for any purchase protocol or playback of future content. The device MAY use stored BCROs to play old content for which the device obtained ROs, but MUST NOT use these BCROs for new content received after the re-registration request until the device is re-registered with the RI.

Requirements:

· The Device SHALL have at most one RI Context with each RI. An existing RI Context SHALL be replaced with a newly established RI Context after successful re-registration with the same RI.

· The device MUST support at least 6 RI context for broadcast operation.

· The keyset MUST include a valid set of

· UGK, BGK1..n and/or UDK keys

· RIAK key.

· UDF

6.3.2 Protection of the keyset

The device_registration_respons message is split in two parts: device specific (time bound) data and global (not time bound) data.

[image: image3.wmf]Device global data

(in the clear)

Device specific data

Key material

(encrypted)

Other device data

(in the clear)

Longform_udn

signature

Message_tag

Signature over

complete

message

Figure 3: device_registration_respons message

The device global data MUST be in the clear. The device specific data contains the keyset for the device. This key material MUST be encrypted, whereas the rest of the device specific data MUST be in the clear. The key material MUST be protected by encryption. The RI SHALL use the device’s public key to encrypt all key material in the device specific data part of the message.

The RI SHALL use his private key to sign the complete messagedata. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device MUST make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message MUST adhere to the following rules:

1. Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the device_registration_respons message.

2. Concatenate the keyset (UGK, BGK1..n, UDK, RIAK and/or UDF) under rules of [FIPS_197] and the Tag Length Format described in section A.13.

3. Encrypt the keyset using [FIPS_197] with the generated SK. This will produce the keyset_block.

4. Calculate the part of the keyblock that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PCKS#1. If the keyset_block fits into one RSA block continue at step 5. Else continue at step 4.

5. If the SK plus keyset_block including PCKS#1 header, alining, etc did not fit into one RSA block, then keep the remainder part as surplus_block.

6. Encrypt SK plus the (part of the)keyset_block that fits into the RSA block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1]. This will produce the sessionkey_block.

7. Concatenate the (non encrypted) parameters that were not used in the key_block and create the message “header” from this. Refer to 6.3.1 for details. (for reason of completeness: of course the sessionkey_block, the (optional) surplus_block and the signature_block are not part of the message header)

8. Concatenate the message “header” and the sessionkey_block . If the SK plus keyset_block including PCKS#1 header, alining, etc did not fit into one RSA block, then also concatenate surplus_block part. Hash the result under implementation guidelines of [PKCS#1]. Please refer to section A.3. This will produce the signature_input_data.

9. Sign the signature_input_data with RSA (1024 or 2048 or 4096) using the private key of the RI. The signature will apply to the implementation guidelines of PCKS#1, as outlined in A.3. This will produce the signature_block.

10. The device_registration_respons message comprises of the message “header” plus sessionkey_block, optionally the surplus_block and the signature_block.

[image: image4.wmf]surplus_block

(AES encrypted)

Sessionkey_block

(RSA encrypted)

Signature_block

(RSA signature)

SK (plus part of

keyset_block that fits into

RSA block (size)

RSA signature

Message “header”

(in the clear)

All but input for keyblocks

below

(optional) Remainder of

keyset_block that did not fit

into RSA block

Keyset_block

(AES encrypted)

Figure 4: structure of device_registration_respons message.

Concluding: The number of RSA blocks used must be kept to a minimum. The AES surplus_block is present if and when the keyset does not completely fit into the sessionkey_block given the RSA blocksize used. If present the AES surplus_block contains those keys that did not fit into one RSA block (i.c. the sessionkey_block). The complete keyset needed for operation after registration is included in the encrypted keyset_block, which is concatenated from the first part in the sessionkey_block and optionally the surplus_block. Refer to appendix A.1 for calculations on the surplus_block_size.

Decryption of the encrypted message MUST adhere to the following rules:

1. Locate the message via message_tag

2. Verify if the message is intended for this device by comparing the long_form_udn with the UDN stored in the device.

3. Verify the signature_block of the message by using the public key from the RI.

4. Locate the sessionkey_block and decrypt the block with the private key of the local device. Locate the session key (SK) from the header and (eventual) padding (according to PCKS#1). Then locate the keyset_block part from the header and (eventual) padding (according to PCKS#1).

5. (Optionally) If there is a surplus_block concatenate this part to the keyset_block. This will complete the keyset_block.

6. Use the SK to decrypt the keyset_block.

7. Allocate the individual keyset_items from the keyset_block according to [FIPS_197] and the Tag Length Format described in section A.13.

N.B.: The SK MUST be stored into protected storage. The AES encrypted keyset_block MAY be stored as is into unprotected storage and the device may decrypt this upon use. If the keyset_block is not stored but the decrypted keys from that block are stored instead, the device MUST store all key data safely. The keys MUST NOT leak outside the device.

6.3.3 Message syntax

Table 3: message syntax

	fields
	length
	type

	device_registration_respons{
	
	

	message_tag
	5
	bslbf

	unique_device_number
	84
	bslbf

	Status
	4
	bslbf

	Version
	8
	bslbf

	flags {
	
	

	ri_certificate_counter
	3
	bslbf

	ocsp_response_counter
	3
	bslbf

	local_time_offset_flag
	1
	bslbf

	time_stamp_flag
	1
	bslbf

	broadcast_group_key_flag
	4
	bslbf

	short_udn_flag
	1
	bslbf

	signature_type_flag
	2
	bslbf

	surplus_block_flag
	1
	bslbf

	keyset_block_length
	8
	uimsbf

	}
	
	

	for(cnt=0; cnt < ri_certificate_counter ;cnt++){
	
	

	c_length
	16
	uimsbf

	ri_certificate
	c_length
	bslbf

	}
	
	

	for(cnt=0; cnt < ocsp_response_counter ;cnt++){
	
	

	r_length
	16
	uimsbf

	ocsp_response
	r_length
	bslbf

	}
	
	

	drm_time
	40
	mjdutc

	if (local_time_offset_flag == 1) {
	
	

	local_time_offset_polarity
	1
	bslbf

	local_time_offset
	16
	bslbf

	}
	
	

	if (time_stamp_flag == 1) {
	
	

	registration_timestamp_start
	40
	mjdutc

	registration_timestamp_end
	40
	mjdutc

	}
	
	

	if (short_udn_flag == 1) {
	
	

	short_udn
	32
	bslbf

	}
	
	

	if (signature_type_flag == 0){
	
	

	sessionkey_block
	1024
	bslbf

	} else if (signature_type_flag == 1)
	
	

	sessionkey_block
	2048
	bslbf

	} else if (signature_type_flag == 2)
	
	

	sessionkey_block
	4096
	bslbf

	}
	
	

	if (surplus_block_flag == 1){
	
	

	surplus_block
	(*1)
	bslbf

	}
	
	

	if (signature_type_flag == 0){
	
	

	signature_block
	1024
	bslbf

	} else if (signature_type_flag == 1)
	
	

	signature_block
	2048
	bslbf

	} else if (signature_type_flag == 2)
	
	

	signature_block
	4096
	bslbf

	}
	
	

	}
	
	

key:

(*1) for details please refer to section A.2

A.13 Tag Length Format for keyset_block

A.13.1 Syntax definition

A Tag Length Format (TLF) is defined to identify the keyset_items in the keyset_block. A keyset_item is identified by following syntax:

<tag> [optional <position>] <length> <keyset_item>

Following values are defined and SHALL be used:

Table 4: defined tag values

	Keyset_item
	Tag (b)
	remark

	UGK
	000
	

	BGK
	001
	

	UDK
	010
	

	UDF
	011
	

	RIAK
	100
	

If keyset_item == 001 (i.c. BGK) then the optional field “position” SHALL indicate the position of the BGK as a node in the [FIAT NOAR] tree. When m = groupsize, then n = 2 log (m), where n is number of BGKs in tree. Possible positions for the BGKs in the tree are 2(n+1) -1 . Therefore parameter “position” is expressed with 10 bits to express 1023 nodes in a tree. First MSB left will be used as binary indicator to indicate if the BGK position is a node (0, zero) or a leaf (1, one). Bit positions 2..10 (from left to right LSB) are used in binary format as an indicatator of the the node and leaf position. Nodes and leafs SHALL be numbered according to following picture TODO:

[image: image5.wmf]R

NK1

D2

D1

NK2

NK3

D4

D3

NK4

D6

D5

NK5

D8

D7

NK6

NK10

LK4

NK14

LK8

NK13

LK7

NK12

LK6

NK11

LK5

NK9

LK3

NK8

LK2

NK7

LK1

Figure TODO: node and leaf numbering

Key:

The root key R is never numbered. Node keys NK as well as leaf keys LK are numbered per “level” from left to right. For sake of completion the leaf keys in this picture are also indicated as node keys. Although node NK 7 == leaf LK1, in practice a leaf key is always and only numbered as leaf and not as a node !

Table 5: defined length values

	(key)length prescriber
	Length (b)
	remark

	128 bit AES
	00
	

	192 bit AES
	01
	

	256 bit AES
	10
	

	5 byte EuroCrypt
	11
	

A.13.2 Examples

E.g.1: A 5 byte Eurocrypt address implementing the UDF will be coded like:

<011> <11> <UDF>

E.g.2: A 128 but AES key implementing the UGK will be coded like:

<000> <00> <UGK>

E.g.3: A 128 bit AES key implementing the BGK on node position NK5 in figure TODO will be coded like:

<001> <0000000101> <00> <BGK>

E.g.4: A 128 bit AES key implementing the BGK on node position LK1 (i.c.NK7) in figure TODO will be coded like:

<001> <1000000001> <00> <BGK>

A.2 Limits of the surplus_block

upper limit is in following case: RSA-block with largest, most extensive keyset_block:

Max filled keyset_block = 1 UGK, 9 BGK , 1UDK , 1 UDF , 1 RIAK, 1 UDF

Table 6: RSA blocksize 1024

	value
	variable
	key size
	key data
	
	key size
	key data
	
	key size
	key data

	1024
	RSA size
	
	
	
	
	
	
	
	

	1
	UDF
	40
	40
	
	40
	40
	
	40
	40

	1
	UGK
	128
	128
	
	128
	128
	
	128
	128

	9
	BGK
	128
	1152
	
	128
	1152
	
	128
	1152

	1
	UDK
	128
	128
	
	128
	128
	
	128
	128

	1
	RIAK
	128
	128
	
	128
	128
	
	128
	128

	13
	TLF overhead
	5
	155
	
	5
	155
	
	5
	155

	
	keyset_block
	
	1731
	
	
	1731
	
	
	1731

	
	
	
	
	
	
	
	
	
	

	1
	SK
	128
	128
	
	192
	192
	
	256
	256

	
	sessionkey_block
	1024
	
	
	1024
	
	
	1024
	

	
	room in sessionkey_block
	
	896
	
	
	832
	
	
	768

	
	surplus_block
	
	835
	
	
	899
	
	
	963

Table 7: RSA blocksize 2048

	value
	variable
	key size
	key data
	
	key size
	key data
	
	key size
	key data

	2048
	RSA size
	
	
	
	
	
	
	
	

	1
	UDF
	40
	40
	
	40
	40
	
	40
	40

	1
	UGK
	128
	128
	
	128
	128
	
	128
	128

	9
	BGK
	128
	1152
	
	128
	1152
	
	128
	1152

	1
	UDK
	128
	128
	
	128
	128
	
	128
	128

	1
	RIAK
	128
	128
	
	128
	128
	
	128
	128

	13
	TLF overhead
	5
	155
	
	5
	155
	
	5
	155

	
	keyset_block
	
	1731
	
	
	1731
	
	
	1731

	
	
	
	
	
	
	
	
	
	

	1
	SK
	128
	128
	
	192
	192
	
	256
	256

	
	sessionkey_block
	1024
	
	
	1024
	
	
	1024
	

	
	room in sessionkey_block
	
	1920
	
	
	1856
	
	
	1792

	
	surplus_block
	
	no
	
	
	no
	
	
	no

Table 8: RSA blocksize 4096

	value
	variable
	key size
	key data
	
	key size
	key data
	
	key size
	key data

	4096
	RSA size
	
	
	
	
	
	
	
	

	1
	UDF
	40
	40
	
	40
	40
	
	40
	40

	1
	UGK
	128
	128
	
	128
	128
	
	128
	128

	9
	BGK
	128
	1152
	
	128
	1152
	
	128
	1152

	1
	UDK
	128
	128
	
	128
	128
	
	128
	128

	1
	RIAK
	128
	128
	
	128
	128
	
	128
	128

	13
	TLF overhead
	5
	155
	
	5
	155
	
	5
	155

	
	keyset_block
	
	1731
	
	
	1731
	
	
	1731

	
	
	
	
	
	
	
	
	
	

	1
	SK
	128
	128
	
	192
	192
	
	256
	256

	
	sessionkey_block
	1024
	
	
	1024
	
	
	1024
	

	
	room in sessionkey_block
	
	3968
	
	
	3904
	
	
	3840

	
	surplus_block
	
	no
	
	
	no
	
	
	no

TBD: not yet included is the PKCS overhead in the sessionkey_block, so surplus_block could be a little larger.
A.3 RSA signatures under PKCS#1

RSA signatures are made as described by the implementation guidelines of [PKCS #1] v2.1: RSA Cryptography Standard, RSA Laboratories, June 14, 2002.
The scheme is RSA + SHA1. There are two choices described in the [PKCS#1] as they are RSASSA-PSS and RSASSA-PKCS1-V1_5

Since OMA DRM v2 is used for connected operation and uses RSASSA-PSS, this CR will also use RSASSA-PSS to sign the binary messages for unconnected mode of operation.

A.4 Conversion between time and date conventions

(please note: this text has been copied from ETSI EN 300 468 V1.6.1)

The types of conversion which may be required are summarized in Figure 5.

[image: image6.png]MJD +UTC

[N——)

Local offset (see note)
(positive or negative)

¢ﬂdd Tsuhlmc(

Year

Day

Week -
Year

Week
number

NOTE: Offsets are positive for Longitudes East of Greenwich and negative for Longitudes

est of Greenwich.

Figure 5: Conversion routes between Modified Julian Date (MJD) and Co-ordinated Universal Time (UTC)

The conversion between MJD + UTC and the "local" MJD + local time is simply a matter of adding or subtracting the

local offset. This process may, of course, involve a "carry" or "borrow" from the UTC affecting the MJD. The other five

conversion routes shown on the diagram are detailed in the formulas below:

Symbols used:

D

Day of month from 1 to 31

int

Integer part, ignoring remainder

K, L ,M', W, Y'
Intermediate variables

M

Month from January (= 1) to December (= 12)

MJD

Modified Julian Date

MN

Week number according to ISO 2015 [21]

mod 7

Remainder (0-6) after dividing integer by 7

UTC

Universal Time, Co-ordinated

WD

Day of week from Monday (= 1) to Sunday (= 7)

WY

"Week number" Year from 1900

x

Multiplication

Y

Year from 1900 (e.g. for 2003, Y = 103)

a) To find Y, M, D from MJD

Y' = int [(MJD - 15 078,2) / 365,25]

M' = int { [MJD - 14 956,1 - int (Y' × 365,25)] / 30,6001 }

D = MJD - 14 956 - int (Y' × 365,25) - int (M' × 30,6001)

If M' = 14 or M' = 15, then K = 1; else K = 0

Y = Y' + K

M = M' - 1 - K × 12

b) To find MJD from Y, M, D

If M = 1 or M = 2, then L = 1; else L = 0

MJD = 14 956 + D + int [(Y - L) × 365,25] + int [(M + 1 + L × 12) × 30,6001]

c) To find WD from MJD

WD = [(MJD + 2) mod 7] + 1

d) To find MJD from WY, WN, WD

MJD = 15 012 + WD + 7 × { WN + int [(WY × 1 461 / 28) + 0,41] }

e) To find WY, WN from MJD

W = int [(MJD / 7) - 2 144,64]

WY = int [(W × 28 / 1 461) - 0,0079]

WN = W - int [(WY × 1 461 / 28) + 0,41]

EXAMPLE: MJD = 45 218 W = 4 315

Y = (19)82 WY = (19)82

M = 9 (September) N = 36

D = 6 WD = 1 (Monday)

NOTE: These formulas are applicable between the inclusive dates 1900 March 1 to 2100 February 28.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 16)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 16 (of 16)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

_1171277650.vsd
[1] notify device data�

[2] wait�

[3] cert. & cap. request�

[4] validate�

[5] cert. & cap. data�

[6] check�

[7] send registration data�

Customer / Device�

Service Operator / RI�

ROT / PKI+CRL�

_1171444797.vsd
surplus_block
(AES encrypted)�

Sessionkey_block
(RSA encrypted)�

Signature_block
(RSA signature)�

(optional) Remainder of keyset_block that did not fit into RSA block�

SK (plus part of keyset_block that fits into RSA block (size)�

RSA signature�

Message �header�
(in the clear)�

All but input for keyblocks below�

Keyset_block
(AES encrypted)�

_1173009739.vsd
text�

�

�

�

�

�

�

NK14
LK8�

NK13
LK7�

NK12
LK6�

�

NK11
LK5�

NK10
LK4�

NK9
LK3�

�

�

D4�

D3�

NK4�

NK8
LK2�

R�

�

NK1�

NK7
LK1�

D2�

D1�

NK2�

NK3�

�

�

D6�

D5�

NK5�

�

�

�

D8�

D7�

NK6�

_1171282375.vsd
[1] send registr. data�

Customer / Device�

Service Operator / RI�

ROT / PKI+CRL�

_1170257600.vsd
Device global data
(in the clear)�

Device specific data
�

�

Key material (encrypted)�

Other device data (in the clear)�

Longform_udn�

signature�

Message_tag�

Signature over complete message�

