Doc# OMA-DLDRM-2005-0166-DLOTAv2-Compond-MOs-and-Multiple-MOs-Support-Proposed-text.doc[image: image1.jpg]
Input Contribution

Doc# OMA-DLDRM-2005-0166-DLOTAv2-Compond-MOs-and-Multiple-MOs-Support-Proposed-text.doc
Input Contribution

Input Contribution

	Title:
	DLOTAv2: Compond MOs and Multiple MOs Support Proposed text
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC DLDRM

	Submission Date:
	05 Jun 2005

	Source:
	Jun Sato, Toshiba Corporation
+81-428-34-4421
junn.sato@toshiba.co.jp

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

OMA-RD_DLOTA_V2_0 requires to support download of multiple compound objects and multiple media objects:
· GR-12 : The DLOTA SHALL allow the download of compound object.

· GR-13 : The DLOTA SHALL allow the download of multiple media objects and multiple compound objects
In order to archive these requirements, a technical solution was proposed and agreed at Frankfurt meeting. (OMA-DLDRM-2005-0011-DLOTAv2--Proposal-of-Compound-MOs-and-Multiple-MOs-support.zip)

This input contribution proposes actual texts for the DLOTAv2.0 technical specification (TS) to support the use cases.

2 Summary of Contribution

The basic ideas of the technical solution would be
· Adopting hierarchical structure of elements in Download Descriptor for compound Media Objects

· Adopting multipart/mixed or multipart/related functionality for multiple Media Objects
3 Detailed Proposal

4
2.2 Normative References

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[RFC2045]
	“Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies”, N. Freed et.al, November 1996, URL:http://www.ietf.org/rfc/rfc2045.txt

	[RFC2046]
	“Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types”, N. Freed et.al, November 1996, URL:http://www.ietf.org/rfc/rfc2046.txt

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[WSP]
	" Wireless Session Protocol ", WAP-230-WSP, WAP Forum,
http://www.openmobilealliance.org/

	
	<< Add/Remove reference rows as needed! >>

5.1.1 Step 1; The Download Descriptor is transferred to the device

The transfer protocol used depends on the where the Download Descriptor is located and on the requirements of the transfer.

The Device hosting the Download Agent MUST at a minimum support either [W-HTTP] or [WSP], and MAY support either [WAPTLS] or [WTLS], as well as other protocols. The Download Descriptor may be retrieved from the download server, or the presentation server, depending on requirements of the deployment.
The device hosting the Download Agent MAY also support reception of the Download Descriptor using a mechanism such as MMS, email or some instant messaging protocol.

The Content-Type parameter of the transport protocol or message container (or equivalent) MUST be used to detect the Download Descriptor media type; a charset parameter MAY also be used to indicate the character set of the Download Descriptor.

For the Media Objects which are not related one another (e.g. multiple Media Objects in [DLREQ]) , then if the device in the capability negotiation indicated that it supports multipart/mixed ([RFC2045], [RFC2046]) or application/vnd.wap.multipart.mixed ([WSP], the server MAY put multiple Download Descriptors into one and the same transport entity (e.g. multipart/mixed). The Download Agent MAY support multipart/mixed functionality.
For the Media Objects which are related each other (e.g. compound Media Objects in [DLREQ]), then the server MAY put enumeration of Media Objects in a single Download Descriptor. The Download Agent SHOULD support this functionality. For details of enumeration of Media Objects in a Download Descriptor, see Section 8.2 XML Schema. In case of the Download Agent does not have this capability, the Download Agent MUST post a “Invalid Descriptor” status report if the Installation Notification is requested in the Download Descriptor.
For details on state management during the transaction see Section 5.6.3 State Management of Download Transactions.

For details related to authentication see Section 5.6.2 Authentication of User.

5.2.4 Step 5; Object retrieval

The retrieval of the media object is typically performed using HTTP (or HTTPS) but always according to the scheme in the ObjectURI attribute of the Download Descriptor. The Download Agent MUST support the HTTP scheme, and MAY support the HTTPS scheme. The Download Agent MUST at a minimum support either [W-HTTP] or [WSP], and MAY support either [WAPTLS] or [WTLS], as well as other optional protocols. For more details on specifics on the use of HTTP see section HTTP Specific Functionality.

The request for the Media Object MUST be for exactly the URI specified in the descriptor, but the request MAY include additional headers created by the Download Agent.
The mechanics of this action is explained more in detail in specifications covering [W-HTTP] and [WSP].
If the Download Descriptor contains plural objectURI attribute, the Download Agent MAY retrieve each Media Object sequentially or in parallel and it is outside the scope of this specification
If the object does not exist then the Download Agent MUST post a “Loader Error” status report.

If the connection with the network is lost during the retrieval of the media object the Download Agent MUST post a “Loss of Service” status report.

If the user aborts the retrieval of the media object then the Download Agent MUST post a “User Cancelled” status report.
If the Download Descriptor contains plural objectURI attribute, and case when the above errors have to be posted happens, the Download Agent MUST discard Media Object(s) which have been downloaded in the session.
Step 6; Sending Download Completion Notification

The purpose of the download completion notification is to provide the download server with an indication that the Media Object has been properly downloaded. In this step, the media object is yet to be available to the user. Since the download completion notification function is optional, this step may be skipped.

This step, the sending of the Download Completion Notification, is valid only in the cases where it has been explicitly requested through the use of the attribute downloadNotifyURI in the Download Descriptor.

If the downloadNotifyURI attribute is present in the Download Descriptor, the Download Agent MAY send the Download Completion Notification (956) status report to the address defined in the downloadNotiryURI attribute. If the Download Descriptor contains plural objectURI attribute, the Download Agent MAY send the Download Completion Notification (956) status report after the completion of retrieving all the Media Objects specified in the Download Descriptor. If the downloadNotiryURI attribute is missing from the Download Descriptor then no Status Report can be sent.

The Download Agent SHOULD NOT send the status codes other than the Download Completion Notification (956) status report. The Download Agent SHOULD use the InstallNotifyURI to send such error status codes.

How to send the Download Completion Notification is the same as sending the install notification as explained in section 5.3.
5.2.6 Step 8; Sending Installation Notification

This step, the sending of the Installation Notification, is valid only in the cases where it has been explicitly requested through the use of the attribute InstallNotifyURI in the Download Descriptor.

The purpose of the Status Report mechanism is to provide the download server with an indication that the Media Object has been properly received and installed. This functionality is available as the success or failure of the installation of a Media Object may be critical to execute certain business models within the content service realm.
This step, the sending of the Instillation Notification, is valid only in the cases where it has been explicitly requested through the use of the attribute InstallNotifyURI in the Download Descriptor.

If the InstallNotifyURI attribute is present in the Download Descriptor, the Instillation Notification status report MUST be sent to the address defined in the InstallNotifyURI attribute. If the Download Descriptor contains plural objectURI attribute, the Instillation Notification status report MUST be sent after the completion of retrieving all the Media Objects specified in the Download Descriptor. If the InstallNotifyURI attribute is missing from the Download Descriptor then no Status Report can be sent.

If the network service is lost during installation, an Error Code “Loss of Service” MUST be used in a Status Report if possible (it may be impossible to deliver the status report due to the network-service outage).
The installation status is reported by the use of the schema defined in the InstallNotifyURI attribute. The Download Agent MUST at a minimum support either [W-HTTP] or [WSP] protocols. If the scheme is HTTP then an HTTP POST request to the defined URL is performed. The HTTP scheme MUST be supported. However, if the transfer of the Media Object has been performed using a different scheme than HTTP then the Download Agent MUST be able to execute also the installation notification using this same scheme.

In case the defined scheme of the Installation Notification is HTTP or HTTPS then the content of the body of the POST request MUST include on the first line a status code and status message. The table “Installation Status Code and Associated Message” in Section 5.2 lists the valid status message codes and messages. The Section 5.3.1 defines the format of the installation notification.

The Media Object MUST NOT be released for use at the device unless the sending of the installation notification succeeds (in case the InstallNotifyURI has been defined in the Download Descriptor).

The sending of the Installation Notification is regarded as successful if the Download Agent receives a reply from the server with any 200-series response code. All other HTTP-response codes (100-, 300-, 400- and 500-series HTTP-response codes) MUST be handled as either temporary or permanent errors. The Download Agent MUST implement the behaviour associated with response codes representing temporary errors (for example “401” and “407”) as defined in [RFC2616].

The exception to the logic defined above is the semantics of a “Well-Intentioned Attempt”. If the well-intentioned Installation Notification attempt brings no response from the server then the Download Agent MUST equal the situation to the reception of a 200-series response code. This may for example occur in the situation when the Download Agent experiences a timeout before the response is received. The time to wait for the HTTP-Reply is implementation specific.
No content body should be returned in the HTTP reply to the device and, if any is sent, the Download Agent MUST ignore the body part. If a request brings no response, the request MAY be retried, but it SHOULD NOT be retried if any response is received (except in case, e.g. “401 unauthorised”, the reply prompts a modified retry).

If no well-intentioned attempt can be made then the device MUST NOT allow for the use of the media object. The device MUST indicate to the user that the download failed and remove the content from the device.

5.2.10 Step 10; Sending Deletion Notification
The purpose of the Deletion Completion Notification is to provide the download server with an indication that the Media Object has been removed from the device.
This step, the sending of the Deletion Completion Notification, is valid only in the cases where it has been explicitly requested through the use of the attribute deleteNotifyURI in the Download Descriptor.

If the deleteNotifyURI attribute is present in the Download Descriptor, then the Download Agent MAY send the Deletion Completion (912) status report to the URI that was designated by the deleteNotifyURI attribute. If the Download Descriptor contains plural objectURI attribute, the Download Agent MAY send the Deletion Completion (912) status report status report after the completion of deleting all the Media Objects specified in the Download Descriptor.
The Download Agent SHOULD NOT send the status codes other than the Deletion Completion (912) status report. The Download Agent SHOULD use the InstallNotifyURI to send such error status codes.

How to send the download completion notification is the same as sending the install notification as explained in section 5.3.

The Download Agent SHOULD allow users to remove media objects. When a media object is to be removed from the device, the user SHOULD be prompted to confirm that the media object may be removed. The Download Agent SHOULD warn the user of any special circumstances that arise during the deletion of the media object. For example, the media object is part of compound objects, and the user SHOULD be made aware that part of the compound objects is being removed.
5.3 Status Report Functionality

The Status Report functionality in OMA Download covers reporting both successful (Installation Notification) as well as failed content download transactions.

The confirmation of a successful download operation (installation notification) is particularly useful in deployments where some kind of pay-per-transaction business model is used. The Status Report can also be used to optimise the allocation of server resources.

However, it should be noted that a server cannot ever fully rely on the reception of a Status Report to indicate a completed transaction. The device may be unable to send the status report. The server thus anyhow needs to have a robust logic to discard hanging transactions.

There are two major usage scenarios with respect to status reports:

· The Download Service wants installation notification as well as error codes if something fails in the transaction. This kind of functionality would typically be deployed in a pay per download environment (= FULL STATUS REPORTS).

· The Download Service wants neither error codes nor installation confirmation, and leverages only the metadata and capability negotiation features of the Download Descriptor (= NO STATUS REPORT).
Even though a number of Download Descriptor is transferred by using multipart/mixed functionality, the status report SHALL be sent in accordance with each Download Descriptor.
6.2.20 mediaobject

	Name
	mediaobject

	Definition
	Container of Media Object specific information to retrieve the Media Object.

	Status
	Download Descriptor: Mandatory. User Agent: Mandatory

	Datatype
	-

	Refinement
	-

	Comment
	This attribute wraps the media object specific information to retrieve the media object. If the Download Descriptor contains.
The Download Agent MUST accept at least one mediaobject attribute in a single Download Descriptor.

8.2 XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema

 targetNamespace="http://www.openmobilealliance.org/xmlns/ddv2"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:dd="http://www.openmobilealliance.org/xmlns/ddv2"
 elementFormDefault="unqualified" >

<xsd:simpleType name="ShortString">
 <xsd:restriction base="xsd:string">

<xsd:maxLength value="40" />

 </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="LongString">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="160" />

 </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="VeryLongString">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="255" />

 </xsd:restriction>

</xsd:simpleType>
<xsd:simpleType name="URI">

 <xsd:restriction base="xsd:anyURI">

 <xsd:maxLength value="128" />

 </xsd:restriction>

</xsd:simpleType>
<xsd:complexType name="environmentType">
 <xsd:sequence>
 <xsd:any namespace="##other"
 processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name=“envtype" type="dd:URI" use="required"/>
</xsd:complexType>
<xsd:complexType name="MediaObjectType">

<xsd:sequence>

<xsd:element ref="dd:objectURI"/>

<xsd:element ref="dd:size"/>

<xsd:element ref="type" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>
<xsd:element name="name" type="dd:ShortString" />

<xsd:element name="DDVersion" type="dd:ShortString" />

<xsd:element name="objectURI" type="dd:URI" />

<xsd:element name="size" type="xsd:positiveInteger" />

<xsd:element name="type" type="dd:ShortString" />

<xsd:element name="vendor" type="dd:ShortString" />

<xsd:element name="description" type="dd:LongString" />

<xsd:element name="installNotifyURI" type="dd:URI" />

<xsd:element name="nextURL" type="dd:URI" />

<xsd:element name="infoURL" type="dd:URI" />

<xsd:element name="iconURI" type="dd:URI" />

<xsd:element name="installParam" type="dd:VeryLongString" />
<xsd:element name="progressiveDownloadFlag" type="dd:boolean" />

<xsd:element name=”mediaobject” type="dd:MediaObjectType"/>
<xsd:element name="media">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="dd:name" minOccurs="0"/>

 <xsd:element ref="dd:DDVersion" minOccurs="0"/>

 <xsd:element ref="dd:vendor" minOccurs="0" />

 <xsd:element ref="dd:description" minOccurs="0" />

 <xsd:element ref="dd:installNotifyURI" minOccurs="0" />

 <xsd:element ref="dd:nextURL" minOccurs="0" />

 <xsd:element ref="dd:infoURL" minOccurs="0" />

 <xsd:element ref="dd:iconURI" minOccurs="0" />

 <xsd:element ref="dd:installParam" minOccurs="0" />
 <xsd:element ref="dd:environment" minOccurs="0" />

 <xsd:element ref="dd:progressiveDownloadFlag" minOccurs="0" />
 <xsd:element ref="dd:mediaobject"
minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>

 </xsd:complexType>

</xsd:element>
<xsd:element name="environment" type="dd:environmentType"/>
</xsd:schema>
5 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

6 Recommendation

It is recommended that the group review this input contribution and include it within an updated version of the DLOTAv2 technical specification.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

