Doc# OMA-BAC-DLDRM-DDoS-20062104-I.doc[image: image1.jpg]
Input Contribution

Doc# OMA-BAC-DLDRM-DDoS-20062104-I.doc
Input Contribution

Input Contribution

	Title:
	Defending DRM Server against DDoS attack
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-DLDRM

	Submission Date:
	02 Jun 2006

	Source:
	Mithun Nayak, Samsung, mithun@samsung.com
Dr.Hee Jean Kim, Samsung, heejean.kim@samsung.com
Perumal Raj.S, Samsung, perumal@samsung.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

DRM Servers process ROAP request messages received by DRM Agents and generate appropriate ROAP response messages. This process involves considerable amount of CPU time. This can be misused by malicious attackers to bring down DRM Server causing denial of service to legitimate users. In this paper we discuss about how such resource consumption attacks can be mounted against DRM Servers using weakness in DRM protocol and proposes possible solution for the same. DDoS which exploits vulnerability in protocol is very important to address since it can easily bring DRM Server down thus causing immediate negative impact on business, which in worst case may lead to complete halt of business operations for sustained period of time.

2 Summary of Contribution

The input paper describes method for mitigation of resource consumption attack that could be mounted against DRM Server using weakness in DRM protocol.
3 Detailed Proposal

Problem description:

Denial of service attacks aim at denying or degrading legitimate user’s access to a service or network resource, or at bringing down the servers offering such services.

In DRM Server, ROAP and Domain messages exchanged require considerable processing power in processing the requests and generating responses. A malicious attacker can exploit this feature to mount resource consumption attack against a DRM Server.

For example, attacker may sniff and store all RO-Requests, Join-Domain requests and replay them after some time. Processing a RO-Request consists of following critical operations:

1. Verify device certificate chain

2. Verify signature in RO Request

3. Verify OCSP status of client certificate (which may include a OCSP request signing, OCSP response verification operation and verification of OCSP responders certificate)

Once this is done, generation of RO-Response consists of following critical operations like:

4. Obtaining OCSP response for server certificate

5. Signing RO Response message

6. Generation of Signature for protectedRO region for domain ROs.

Step 1 shall not be performed every time if server caches device certificate chain.

Signature verification is performed before checking OCSP status of device certificate in-order to verify integrity of message, i.e. if adversary replays message with some values of concern changed, performing OCSP status check for client certificate (step 3) would just consume more resources since message is already tampered.

All the operations from 1 to 6 are CPU intensive.

When attacker replays the sniffed packets, DRM Server will end up performing operations from 1-6 (which are computational intensive) since the packets are valid. When the attack is severe, it may lock CPU resources available in server thus causing denial of service for legitimate user connecting to system at that time.

Solution description:
This input paper proposes to include new parameter called replay identifier to enable DRM Server to detect packets intended to cause malicious resource consumption attack that can be mounted against DRM Server. Underlying sections discuss about usage and management of REPLAYID in server and agent.

Replay identifier (REPLAYID):

ROAP messages shall carry a REPLAYID as a part of request (RO-Request, Join-Domain and Leave-Domain requests) which shall be monotonically increasing number (starting from say 1). DRM Server shall check if the number is being used for first time and then go for the intensive operations like certificate verification, signature verification etc. If attacker has changed replay identifier then signature verification will fail and server will not perform operations from 3-6 in problem description section above. Thus resources are used effectively. Upper limit of number shall be fixed to 0xffffffff (This would be sufficient for a century even if one ROAP operation is happening per second). REPLAYID and relevant information shall be stored in RI context in DRM Agent and device context in DRM Server.

REPLAYID MAY start with low value (say below 100) for the above ROAP operations. REPLAYID shall not be exchanged for ROAP registration operations.
Registration does not require REPLAYID exchange, since possibility of replaying registration messages are low since server generates session id and nonce in RI Hello which will be unique and external entities do not have control over it.

Recovery of lost replay identifier in agent:
It may so happen that device may lose the REPLAYID and in that case DRM Server may remind REPLAYID to Agent.

If DRM Agent loses REPLAYID alone, DRM Server shall remind it to DRM Agent as described below.

1. Agent starts ROAP operation with REPLAYID 0 or a small value random number.

2. If REPLAYID is valid (greater than the value stored in the Device Context or within the range decided during negotiation and unique See next Section), than server shall proceed with normal course of operation. Server upon detecting invalid REPLAYID, shall respond to agent with the last REPLAYID used for ROAP operation with status as “InvalidREPLAYID”.

3. If status is InvalidREPLAYID, Agent shall use the REPLAYID sent by server and proceed with further transaction.
If Agent loses all information in RI context, it shall go for registration thus enabling REPLAYID to start from 1 for subsequent ROAP operations. Also mechanism shall be provided in registration where-in server shall indicate REPLAYID from where DRM Agent should start using for further ROAP operations.

Negotiation of replay identifier range:
It may so happen that device starts multiple ROAP operations like more than one RO acquisition simultaneously. In that case server should be able to serve all RO acquisition operations successfully.

For example, first RO-Request is sent with REPLAYID 10 and next RO-Request is sent with REPLAYID 11 to same server.

Suppose in server, RO-Request with 11 is processed first, it will be served successfully and when it processes RO-Request with REPLAYID 10, it will consider it as invalid and respond with error status.

This issue shall be resolved as follows:

1. During registration operation, Agent proposes the number of REPLAYIDs that should be remembered in transaction history.

2. Server shall respond with number of REPLAYIDs that it can remember along with the minimum and maximum values of REPLAYID. It shall be less than or equal to number proposed by agent.

3. Agent and server must use the value responded by server as the final number REPLAYIDs that shall be remembered.

Agent shall store REPLAYID values in RI context and Server shall store REPLAYID values in device context.

For any ROAP transaction, DRM Agent shall use REPLAYID which is

a. Greater than maximum REPLAYID in the RI context.

b. A value which is greater than minimum REPLAYID and less than maximum REPLAYID in RI context and which is not there in the REPLAYID list of RI context.

New REPLAYID generated in DRM Agent is stored in REPLAYID list of RI Context and new REPLAYID list received in DRM Server is stored in REPLAYID list of device context.

Removal of REPLAYID from list:

When new REPLAYID needs to be inserted in the REPLAYID list on DRM Server or DRM Agent and the REPLAYID list is full, REPLAYID with minimal value is removed from the REPLAYID list on DRM Agent or DRM Server.

Summary:
1. During registration operation, DRM Agent and DRM Server negotiate and finalize
· The number of REPLAYID values that should be remembered by agent and server.
· Maximum and minimum values of REPLAYID suggested by server.
2. For further ROAP transactions, REPLAYID values are exchanged and they are unique. REPLAYID exchanged shall be monotonically increasing number.

3. In order to accommodate new REPLAYID, REPLAYID with minimal value is removed from the REPLAYID list. This procedure is followed by both DRM Server and DRM Agent.

4. DRM Agent at given point of time, shall perform simultaneous ROAP transactions not exceeding maximum number of REPLAYIDs that is agreed upon during registration.

Other alternatives:

Using trigger nonce:

If ROAP operations start as a consequence of ROAP triggers containing nonce, it will be used in subsequent requests. Since nonce is unique and controlled by DRM Server, replayed message can be identified and discarded by server.

But consider the following cases

· Domain update can occur without join domain trigger – with and without time

· RO request replayed within particular duration.
· ROAP operation may start without trigger.

Issue with usage of tiggerNonce:

· If ROAP operation is initiated without trigger, then triggerNonce can not go with RO-Request.

Usage of secure channel:

All ROAP operations shall happen over secure transport channel like SSL/TLS. Since messages are secure it can not be replayed.

Issue with using secure transport channel:

· Since there is level of security at DRM message, using one more layer may make transactions slower.

Device nonce:

If 'device nonce' is used for protecting server from DDOS, server should check if device nonce matches with any previously sent device nonce and send reply if there is no match. This would lead to server storing all previously sent device nonce for comparison. This would lead to server storing large number of device nonce increasing the complexity in managing storage and increasing complexity of comparison for every RO Request and Join Domain Request.
However, if this nonce is modified as described in the previous sections (monotonically increasing number) then it could be used in place of the REPLAYID.

Request time:

'Request time' need not be sent by device all the time. According to specification if unconnected device does not support 'Request time' it shall send "Undefined"(sections 5.4.2.3.1, 5.4.4.1.1, 5.4.4.3.1 Request time of specification OMA-TS-DRM-DRM-V2_0-20060303-A).

Even if device sends invalid 'Request time' server has to perform many operations RORequest/ Join-Domain Request signature verification, device certificate chain verification, OCSP status verification for client certificate) before sending 'device time error' to client.(section 6 in specification OMA-TS-DRM-DRM-V2_0-20060303-A). If method proposed in input paper is applied, server will not progress beyond RORequest/ Join-Domain Request signature verification.

Conclusion:

The method proposed enables DRM Server to effectively identify denial of service attack mounted by adversary at a very early stage of the protocol.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

It is recommended that BAC-DLDRM working group investigate further for including this solution for preventing denial of service attack on DRM Servers.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

