Doc# OMA-DLDRM-2006-0474-INP_Consolidated_Move_Framework_AKA_Protocol.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-DLDRM-2006-0474-INP_Consolidated_Move_Framework_AKA_Protocol R5.doc
Input Contribution

Input Contribution

	Title:
	Consolidated Move Framework AKA Protocol
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-DLDRM

	Submission Date:
	04 Dec 2006

	Source:
	Hagai Bar-El, Discretix Technologies, hbarel@discretix.com

Aram Perez, QUALCOMM, Inc., aramp@qualcomm.com
David Kravitz, Motorola, david.kravitz@motorola.com
Renzhou Zhang, Huawei Technologies, zhangrenzhou@huawei.com
Avraham Poupko, NDS, APoupko@nds.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

This contribution consists of the agreed protocol for authentication and key agreement for the move framework. The proposed protocol is suggested to be used as part of the SRM and SCE mechanisms for content mobility in OMA DRM.

This joint contribution consolidates the various flavours of AKA protocols that were suggested in previous input contributions and that were discussed throughout the meetings. Specifically, it is a combination of the protocols presented by Aram Perez from Qualcomm and by Hagai Bar-El from Discretix and an email from David Kravitz from Motorola.

This document, informally ratified by the Move Framework Task Force, is hereby presented to OMA-BAC-DLDRM as the conclusion of the discussion and efforts on this topic. It is expected that the group accepts this protocol into the technical specification.
2 Summary of Contribution

The protocol presented in Chapter 3 is designed to securely establish the identity of two parties with each other and to allow both parties to agree on a shared key. The key, not being known to passive or active attackers along the link, is subsequently used by the SRM and SCE protocols to secure the traffic between the Devices. The negotiated key material is trust-model-specific to allow Rights from different trust models to be securely sent following successful authentication that was based on credentials that are trusted by the relevant trust models.

3 Detailed Proposal

Overview

The concept that is the basis of the Move Framework tunnelling is that the connection is done in clear-text other than when Rights are being transferred. The reason for this behaviour is that the establishment of the secure association must be done using keys that are deemed trusted by the same trust model that was used to provision the Rights that are transferred. This prevents the establishment of a single tunnel at the beginning of a session on which Rights from different trust models are delivered. When the transfer is carried out, both parties SHALL ensure that the Rights involved are of the same relevant trust model that was used to generate the key material that protects the secure channel.

Multiple Rights transfers, either from the same or from different trust models, can be carried out within the same session (association of Devices or of Device and SRM). Each single Rights transfer starts with the initiator sending one of two possible first messages, depending on the existence of context information for the trust model of the Rights to be sent/received.

The AKA protocol is initiated by the initiating party only if that is the first time since the connection started in which Rights of the particular trust model are to be sent. Following this AKA execution, a context that includes key material and that is specific to the trust model is created and cached by both Devices. If other Rights of the same trust model are to be sent over same session, the initiating party will initiate another, shorter, protocol, merely indicating its desire to use an existing context. Contexts are cached until the end of the lifetime of the session between the Devices.

AKA Protocol Messages

Following are the messages that are sent between Devices A and B, to carry out the authentication and key exchange. The purpose of the protocol is to securely negotiate context information for a particular trust model. The context information will be used to protect the delivery of Rights and will be cached to protect other Rights of the same trust model, that may be transferred during the connection.

Message #1 (A to B):
CertChainA, ControlOptions
Message #2 (B to A):
CertChainB, E(PubA, RandB|ControlOptions|ChosenOptions)
Message #3 (A to B):
E(PubB, RandA|RandB)
Message #4 (B to A):
H(RandA|RandB)
Notations

A

A Device

B

Another Device or SRM

x|y

Concatenation of x and y

E(K,M)

The result of encrypting message M using key K
H(x)

The result of computing a hash on x
ControlOptions

A string consisting of supported versions and ciphersuites

ChosenOptions

A string consisting of the selected version and ciphersuite

RandA

(Pseudo) random value chosen by A
RandB

(Pseudo) random value chosen by B
CertChainA
The certificate chain of A under the particular trust model subject to the AKA execution. It consists of A’s certificate, followed by any intermediate CA certificates up to (but not including) the trust model’s root certificate.

CertChainB
The certificate chain of B under the particular trust model subject to the AKA execution. It consists of B’s certificate, followed by any intermediate CA certificates up to (but not including) the trust model’s root certificate.

PubA

The public key of A, taken directly from CertChainA
PubB

The public key of B, taken directly from CertChainB
Control Options and Chosen Options

The ControlOptions structure publishes the acceptable protocol configuration options that the initiator (A) supports. This structure consist of two lists of elements:

· A list of supported protocol versions, in a (major.minor) notation. The current (and only, for now) protocol version is (1.0).

· A list of supported ciphersuites. Each ciphersuite is a series of the following elements:

· Algorithm (currently supported: AES128)

· Mode of operation (currently supported: CBC, CTR)

Future versions may support additional parameters.

The ChosenOptions structure consists of one element of each list described above. This structure signals the newest supported version of B and the ciphersuite B prefers to use. One of every list of options in ControlOptions must appear in the ChosenOptions structure.

If none of the suggested options in a certain category is acceptable, B shall terminate the connection and complain accordingly.
Certificate Chains and Trust Models

Certificate chains must include the public key of their sender, and certificates that form a chain between this public key and the root public key of the relevant trust model (where the hash of the root public key is used as the identifier of the trust model).

The relevant trust model is the trust model that applies to the Rights that are to be used in the transfer. This trust model is actually the identity (represented by a hash of the public key) of the root CA that vouched for the RI that issued the particular Rights. The AKA protocol runs for one trust model at a time and generates context information for one trust model.

When the parties send their certificate chains, they assure that they send chains that root properly according to the relevant trust model.

When processing Message #1 above, if B does not support the trust model of A's certificate chain, then B will send an empty certificate chain in Message #2. This indicates to A to cancel the AKA protocol since B does not support the trust model (as indicated in Message #1).

When the transfer is carried out, both parties SHALL ensure that the Rights involved are of the same relevant trust model that was used to generate the key material that protects the exchange.

Public Keys

The public keys, PubA and PubB are public keys of A and B, respectively, as they appear in the end entity certificates of the chains.

The public keys are not sent explicitly but are extracted from the chains following their validation. Needless to say, both A and B MUST validate each others chains before making any use of PubA or PubB. Chain validation MUST occur at some time before the AKA protocol is concluded.

Key Material Generation
The key material (KM) for the particular trust model for which AKA is done is computed using the KDF function defined in section 7.1.2 of the DRM specification (OMA-TS-DRM-DRM-V2_0-20060303-A). When using the KDF, Z = RandA|RandB and otherInfo = ControlOptions|ChosenOptions. The KDF output is a pseudo-random (for someone who does not know at least one of the inputs) bit string of 384 bits. The resulting key material is applicable only for the transport protection of Rights of the trust model for which the AKA was executed.

The key material is entered into a context structure that is cached and updated by both Devices, or by Device and SRM, for as long as the connection is open. Context cache is done per trust-model (hash of root CA public key). For each trust-model, up to one context structure is kept. Whenever Rights need to be transferred and a cached context is available, this context data will be used and no new AKA execution will take place. Following each such use, the context data is updated.

From KM, the following values are derived and placed into the context structure:

	Size (bits)
	Description
	Nomenclature

	160
	The HMAC-SHA-1 key
	MK

	128
	The AES session key
	SK

	96
	The most significant bits for the counter (only if AES-CTR is chosen)
	CtrA

Message Counter

Both entities must be able to store a 16 bit message counter, called Ctr. Ctr is initialized to 1 just after the AKA process concludes. It is used as follows:

· The sender puts its Ctr value in the message as CtrS. After the message is sent, the sender increments its Ctr value by 1.

· When a message is received, the receiver checks the CtrS value against its Ctr value. If CtrS is not equal to Ctr, the receiver aborts the protocol and thus requires a new AKA process. (Note: The integrity of the message can be performed after this check. It MUST be performed before further processing, in particular, before any decryption is performed.) Otherwise, the receiver processes the message. If the protocol is not aborted, then the receiver sets Ctr = CtrS + 1.

· In all cases, when Ctr rolls over to 0, a new AKA process SHALL be performed. This allows 65535 messages to be exchanged. Note, a trust authority may set a lower limit value to cause the AKA process to take place earlier.

Encryption Method

This chapter defines how the key material is used to protect the transported Rights.

The protected object (hereafter called “message”) is practically an octet string. This string (“message”) is part of a real message that is sent according to the SRM/SCE specification. It is up to the SRM/SCE specification to define what parts of what messages call for handing by this protection scheme. For example, it is obvious that an object containing Rights shall be processed by this method. The “message” (in this document), for this case, is the octet string representing the object containing the Rights. This document specifies how it is protected by being transformed into another octet string. The resulting octet string should be processed by the SRM/SCE protocol instead of the original one.
Counter Mode (CTR)
When using AES-CTR mode, the counter used is made up of CtrA|CtrS|CtrB, where CtrA is from the KDF, CtrS is the message counter and CtrB is a 16 bit block counter. CtrB is set to 0 and incremented for each block (16 bytes) of the message being encrypted. The limitation of 216 messages per session and 216 blocks per message does not seem to be bothering.

Following the transfer, the context data shall be updated with the new value of CtrS. If a subsequent transfer is initiated using the same context object, the first message uses CtrS+1 as its index. (CtrS is the index of the last message sent.)

CBC Mode

When using AES-CBC mode, the IV is generated by encrypting CtrS with the SK. The padding is performed as specified in RFC-2680, section 6.3.

Syntax

The syntax for an encrypted message is as follows:

EncryptedMessage(){

 length
16
uimsbf

 for(i=0; i < length; i++){

 byte
8
uimsbf

 }

}
Integrity Protection
The HMAC provides integrity protection and doesn’t allow a new entity to substitute as either the sender or receiver because it will not know the MK. Since CtrS is protected by the HMAC, it protects against replay attacks within the session. The freshness of MK prevents replay attacks between different sessions.

All encrypted messages exchanged are integrity protected with HMAC-SHA1 using the MK key. The syntax for these messages is as follows:

HmacMessage(){

 CtrAndMessage()

 //HMAC-SHA-1 over CtrAndMessage()

 hmacValue
160
bslbf

}

CtrAndMessage(){

 ctrS
16
uimsbf

 //EncryptedMessage is defined later

 EncryptedMessage()

}

Reuse Context Protocol Messages
The following messages form the protocol that the initiator initiates when it wishes to send or receive Rights that belongs to a trust model for which AKA was already carried out on the current session.

Message #1 (A to B):
TMID
Message #2 (B to A):
ACK / NACK
The TMID is the hash of the root public key of the trust model to which the Rights belong. This value is used as an index for the trust model.

Following the first message, the second party either acknowledges the reuse of the context that was once set for this trust model, or not. The second party is likely to reject the reuse request if it no longer caches the context data of the trust model in question. In this case, the initiator is likely to remove the context information from its own cache as well, and trigger the AKA protocol to generate a new context.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

It is expected that the BAC-DLDRM group agrees on the presented protocol and incorporates it into the relevant chapters of the SRM and SCE technical specifications.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 6 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

