Doc# OMA-DRM-2007-0251R01-CR_SCE_TS_ROAP_MoveRights.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-DRM-2007-0251R01-CR_SCE_TS_ROAP_MoveRights.doc
Change Request

Change Request

	Title:
	2-pass ROAP Move Rights Protocol
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DRM

	Doc to Change:
	OMA-TS-SCE_DRM-V1_0-20070423-D

	Submission Date:
	17 Aug 2007

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Seung-Jae Lee, LG Electronics, seungjae@LGE.COM

	Replaces:
	OMA-DRM-2007-0251

1 Reason for Change

This CR contains the initial draft for 2-pass ROAP Move Rights Protocol.
The author of this document tries to specify the followings:

· Structure change in the section 5

· Add <recipientDeviceInfo> element in the trigger.

· ROAP-MoveRights Protocol Message Specification
· Processing Rule for ROAP-MoveRights Protocol

· Adding new section for the necessary key management scheme

2 Impact on Backward Compatibility

none
3 Impact on Other Specifications

none
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

DRM WG members to review and agree the proposal
6 Detailed Change Proposal

Change 1: Re-order the section 5.3
Re-order the section 5.3 as below.
5.3 ROAP Messages

5.3.6 Registration

5.4 RO Acquisition

5.5 Domain Management

5.6 Move Rights Protocol
5.7 RO Upgrade
5.7.6.1 RO Upgrade Request
TBD

5.7.6.2 RO Upgrade Response
TBD
5.8
Change 2: Modify the section 5.2 ROAP Trigger,
Modify the schema as following:
<element name=”trgMoveRights”>

<complexType>
<sequence>

<element name=”recipientDeviceInfo” type=”string” minOccurs=”0” />

</sequence>
<attribute name="roRequested" type="boolean" default="true" />
</complexType>
</element>

Add a paragraph as following:

The XML representation of the move Rights trigger is defined by re-using the ExtendedRoapTrigger type and assigning the fixed value “moveRights” for the type attribute. It SHALL be signalled as an <extendedTrigger> element which carries a <trgMoveRights> element as a child element. Consequently, if the <roapTrigger> element carries an <extendedTrigger> element as defined above with the type attribute set to ”moveRights”, the DRM Agent SHALL initiate a ROAP-MoveRightsRequest PDU with the following exceptions.
In the case that a DRM Agent receives a ROAP Trigger where the <roapTrigger> element carries a <moveRights> element, the DRM Agent SHALL obtain user’s consent and initiate ROAP-MoveRights protocol with the following exceptions. If the DRM Agent has invalid RI Context for the specified <riID> in the trigger, the DRM Agent MUST initiate the 4-pass ROAP-Registration protocol by using <roapURL> element in the trigger.
If the User of Source Device has designated the Recipient Device in the Rights Issuer portal, the Rights Issuer MUST add <recipientDeviceInfo> element in the <trgMoveRights> element. The value of <recipientDeviceInfo> element SHOULD be the string which is identifiable by user and it can be e.g. phone number, user name.
Depending on the Rights Issuer policy, Rights Issuer may record Rights Objects while those were issued. In such case, the Rights Issuer doesn’t have to retrieve all information about Rights Object. If the Rights Issuer already recorded the issued Rights Object, the Rights Issuer MUST set roRequested attribute as ‘false’ value in the trigger. If the Rights Issuer didn’t record the Rights Object, the Rights Issuer MUST set roRequested attribute as ‘true’ value or omit roRequested attribute in the trigger.

TBD: Add MAC or signature over ROAP-MoveRights Trigger message.
Change 3: Add following sections under the section 5.3.4
5.8.6 Move Rights Protocol
The ROAP Move Rights Protocol enables a DRM Agent to move its remaining Rights to other DRM Agent through the interaction with Rights Issuer. Since it extends existing ROAP protocol, the physical distance between two DRM Agents does not matter.
While DRM 2.1 RO Upload Protocol transfers Rights which had been issued from RI to the requesting DRM Agent, the ROAP Move Rights Protocol transfers Rights which came from not only RI but also other DRM Agents.

5.3.4.1 Move Rights Request
The ROAP-MoveRightsRequest message is sent from the Device to the Rights Issuer for transferring Rights.
5.3.4.1.1 Message description

	Parameter
	ROAP-MoveRightsRequest

	Device ID
	M

	RI ID
	M

	Device Nonce
	M

	Request Time
	M

	Rights Info
	M

	Certificate Chain
	O

	Extensions
	O

	Signature
	M

Table x: MoveRightsRequest Message Parameters

Device ID identifies the requesting Device. The value MUST equal to the stored Device ID as specified in DRM V2.0.

RI ID identifies the authorizing RI. The value MUST equal to the stored RI ID as specified in [DRMDRM20].

Device Nonce is a nonce chosen by the Device. The nonce is generated and used in this message as specified in [DRMDRM20].

Request Time is the current DRM Time, as seen by the Device

Rights Info contains information about Rights being transferred to Rights Issuer.
Certificate Chain: This parameter is sent unless it is indicated in the RI Context that the RI has stored necessary Device certificate information. When present, the parameter value SHALL be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Extensions: The following extensions are defined for the ROAP-MoveRightsRequest message:

Peer Key Identifier: An identifier for an RI public key stored in the Device. If the identifier matches the stored RI ID, it means the Device has already stored the RI ID and the corresponding RI certificate chain, and the RI need not send down its certificate chain in its response message.

No OCSP Response: Presence of this extension indicates to the RI that there is no need to send any OCSP responses since the Device has cached a complete set of valid OCSP responses for this RI.

OCSP Responder Key Identifier: This extension identifies an OCSP responder key stored in the Device. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

The Device MUST send the Peer Key Identifier extension if, and only if, it has stored the RI public key corresponding to the stored RI ID. The Device MUST send the No OCSP Response extension if, and only if, it has a complete set of valid OCSP responses for the RI’s certificate chain. The Device MUST send the OCSP Responder Key Identifier extension if, and only if, it has stored an OCSP Responder key for this RI.

Signature is a digital signature on this message (besides the Signature element itself). The signature method conforms to [DRMDRM20].
5.3.4.1.2 Message syntax

The <moveRightsRequest> element specifies the ROAP-MoveRightsRequest message. It has complex type roap:MoveRightsRequest, which extends the basic roap:Request type.

<!--MoveRightsRequest -->

 <element name="moveRightsRequest" type="roap:MoveRightsRequest" />

 <complexType name="MoveRightsRequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request move remaining rights.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier" />

 <element name="riID" type="roap:Identifier" />

 <element name="nonce" type="roap:Nonce" />
<element name="time" type="dateTime" />

 <element name="rightsInfo" maxOccurs="unbounded" type="roap:RightsInfo" />

 <element name="certificateChain" type="roap:CertificateChain" minOccurs="0" />

 <element name="extensions" type="roap:Extensions" minOccurs="0" />

 <element name="signature" type="base64Binary" />

 </sequence>

 </extension>

 </complexContent>

 </complexType>
The RightsInfo type represents remaining Rights for the specific Rights Object installed in the DRM Agent. All SCE ROAP request transfers Rights to Rights Issuer uses this type. E.g. ROAP-MoveRightsRequest

<complexType name="RightsInfo">

<element name="roID" type="ID" />
<element name="rights" type="o-ex:rightsType" minOccurs="0" />
<element name="signature" type="ds:SignatureType" minOccurs="0" />
<element name="stateInfo" type="o-ex:constraintType" minOccurs="0" maxOccurs="unbounded" />
<element name="recipientDeviceID" type="roap:Identifier" minOccurs="0" />

<element name="encKey" type="xenc:EncryptedKeyType" />
<element name="mac" type="base64Binary" />
</complexType>

The <rightsInfo> element SHALL include <roID>, <encKey> and <mac> elements. If the Rights Object is stateful, the <rightsInfo> element SHALL additionally include <stateInfo> element that represents current state information. If there was preceding ROAP-MoveRights Trigger and its roRequested attribute value was ‘true’, or the request message is sent without preceding ROAP-MoveRights Trigger, The <rightsInfo> element SHALL additionally include <rights> and <signature> elements. If there was no preceding ROAP-MoveRights Trigger or the trigger don’t include <recipientDeviceInfo> element, the <rightsInfo> element SHALL additionally include <recipientDeviceID> elements.

The <encKey> element under the <rightsInfo> element is of type xenc:EncryptedKeyType from [XML-Enc]. It contains a wrapped concatenation of a MAC key, KMAC and a RO Encryption Key, KREK. The Id attribute of this element SHALL be present and SHALL have the same value as the value of the URI attribute of the <ds:RetrievalMethod> element in the <ds:KeyInfo> element inside the <rights> element. The <ds:KeyInfo> child element of the <encKey> element SHALL identify the wrapping key. The <ds:KeyInfo> element SHALL be the <roap:X509SPKIHash> element, identifying the RIs Public Key through the (SHA-1) hash of the DER-encoded subjectPublicKeyInfo value in the RI’s certificate

The <mac> element provides key-confirmation through a MAC on the canonical version conforming to [DRMDRM20] of the <rightsInfo> element (excluding the <mac> elements) using the MAC key, KMAC wrapped in the <encKey> element, the MAC algorithm SHALL be the same algorithm that was negotiated as part of the registration with the RI i.e. the MAC algorithm stored in the RI Context.
5.3.4.2 MoveRightsResponse

The ROAP-MoveRightsResponse message is sent from the the Rights Issuer to the Device as a response against ROAP-MoveRightsRequest message. This message expresses if RI assures received Rights Object will be successfully stored.
5.3.4.2.1 Message description

	Parameter
	ROAP-MoveRightsResponse

	
	Status = Success
	Status ≠ Success

	Status
	M
	M

	Device ID
	M
	M

	RI ID
	M
	M

	Device Nonce
	M
	M

	Certificate Chain
	O
	-

	OCSP Response
	O
	-

	Extensions
	O
	-

	Signature
	M
	M

Table x: MoveRightsResponse Message Parameters

Status: It is the status of the processing the ROAP-MoveRightsRequest message by Rights Issuer. If it is success, the value is ‘success’. On failure, the Rights Issuer can choose one of the status messages from the DRM 2.0 error messages.

Device ID identifies the Device which receives message. The value MUST be identical to the value of Device ID parameter in the preceding ROAP-MoveRequest message.

RI ID identifies the sending RI.
Device Nonce: This parameter MUST have the same value as the corresponding parameter value in the preceding MoveRightsRequest message. If the Device Nonce is incorrect, the MoveRightsResponse message processing will fail and the Device MUST discard the received ROAP-MoveRightsResponse message.
Certificate Chain: This parameter MUST be present unless a preceding ROAP-MoveRightsRequest message contained the Peer Key Identifier extension, the extension was not ignored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message

The Device SHOULD check if the RI certificate chain received in this parameter corresponds to stored certificate verification data for this RI. If so, the Device need not verify the RI certificate chain again, otherwise the Device MUST verify the RI certificate chain and MUST compare the hash of the complete DER-encoded subjectPublicKeyInfo component in the received RI certificate with the RI ID from the request. If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good, then the Device MUST verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.

OCSP Response: This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device MUST NOT fail due to the presence of more than one OCSP response element. This parameter will not be sent if the Device sent the Extension No OCSP Response in a preceding ROAP-RORequest (and the RI did not ignore that extension). For the processing of this parameter, see [DRMDRM].

Extensions: No extension is defined for ROAP-MoveRightsResponse message.
Signature is a digital signature on this message (besides the Signature element itself). The signature method conforms to [DRMDRM20].

5.3.4.2.2 Message syntax

The <moveRightsResponse> element specifies the ROAP-MoveRightsResponse message. It has complex type roap:MoveRightsResponse, which extends the roap:Response type.

<!--MoveRightsResponse -->

 <element name="moveRightsResponse" type="roap:MoveRightsResponse" />
 <complexType name="MoveRightsResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a MoveRightsRequest message.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier" />

 <element name="riID" type="roap:Identifier" />

 <element name="nonce" type="roap:Nonce" minOccurs="0" />
 <element name="certificateChain" type="roap:CertificateChain" minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0" maxOccurs="unbounded"/>

 <element name="signature" type="base64Binary" />

 <element name="extensions" type="roap:Extensions" />

 </sequence>

 </extension>

 </complexContent>

 </complexType>
Change 4: Add the new section “Moving Rights via Rights Issuer”
6 Moving Rights via Rights Issuer
All Connected Devices SHALL support Moving Rights via Rights Issuer. The protocol implementation is required only for the Source Device, and the Recipient Device simply uses existing RO Acquisition Protocol in [DRMDRM20]. Moving Domain Rights Object and Parent Rights Object is beyond the scope of this protocol.

5.9 Installation of Movable Rights Object

A Rights Issuer can specify if the Rights Object can be moved via the Rights Issuer. Such Rights Object MUST include “move” permission in the <rights> element as specified in [DRMREL-SCE], and MUST include digital signature, <signature> element, which is calculated over the <rights> element inside.

During installation of the Rights Object, if “move” permission is present in <rights> element, DRM Agent SHOULD store the <ro> element and RO Encryption Key, KREK into secure storage. The DRM Agent MUST be able to restore <rights>, <signature> elements and RO Encryption Key. It is RECOMMENDED for the DRM Agent to store a binary equivalent of the <roap:protectedRO> element into the Rights Object container box of the corresponding (P)DCF.

5.10 Sending MoveRightsRequest

MoveRights Protocol can be initiated either by receiving ROAP-MoveRightsTrigger or by user interaction with Device e.g. the user of the Source Device can select Rights to move using built-in menu in the phone.

For sending ROAP-MoveRightsRequest message, the DRM Agent MUST:

· Make the corresponding Rights Object disabled state.

· Construct <rightsInfo> element.

· Add <roID> element under <rightsInfo> element. The value of the <roID> element must be same with original RO.

· If ‘roRequested’ attribute in the trigger has “true” value, or the user initiates the protocol, then the DRM Agent MUST additionally add <rights>, <signature> elements under <rightsInfo> element. The <rights> and <signature> elements must be identical to the element stored at the installation time.

· If the Rights Object to be transferred is stateful, add <stateInfo> element, according to the section [].
· Add <encKey> element in the <rightsInfo> element, calculate MAC value for the <rightsInfo> element and attach <mac> element inside the <rightsInfo> element. For the detail, see the section 6.2.1.

· Construct the request message using the <rightsInfo> element, and attach <signature> element which is generated according to [DRMDRM20].

If any error occurred during sending the request message, the DRM Agent MAY resend the message in best effort manner. How many times the DRM Agent retries is left to implementation. In case of final failure, the DRM Agent must set the Rights Object enabled state.

If any error occurred during sending the request message, the DRM Agent MUST make the Rights Object enabled state and MAY resend the message in best effort manner.
5.10.6 Encryption of RO Encryption Key
To encrypt a RO Encryption Key, KREK the DRM Agent MUST:

· Prepare the RO Encryption Key, KREK which is from original RO.
· Randomly generate a 128-bit long MAC Key, KMAC.

· Encrypt the RO Encryption Key, KREK and MAC Key, KMAC using the RI’s Public Key (see section 10.1.1).
· Package the encrypted the RO Encryption Key, KREK and MAC Key, KMAC into the <encKey> element.
· Calculate a MAC on the canonical version of the <rightsInfo> element (excluding the <mac> element) using the MAC key KMAC. using MAC algorithm from the RI Context.
· Set the value of the <mac> element of the <rightsInfo> element equal to the calculated value.
5.11 Processing MoveRightsRequest

If the RI receives a MoveRightsRequest message, the RI MUST process the request message and respond with an appropriate MoveRightsResponse message. To process the MoveRightsRequest message, the RI MUST:

· Check if it has valid Device Context with the Device sending the request message by checking the value of <deviceID> element of the ROAP-MoveRightsRequest message. If the Device Context is unavailable or invalid e.g. expired, the RI MUST respond with NotRegistered error.

· Verify the <signature> element in the request message. The signature verification conforms to [DRMDRM20]. If the verification is not successful, the RI MUST respond with appropriate error i.e. SignatureError, NoCertificateChain, InvalidCertificateChain or TrustedRootCertificateNotPresent.

· Check the value of <time> element in the request message. Processing of the value of <time> element conforms to [DRMDRM20]. If the DRM Agent has invalid DRM Time, the RI MUST respond with DeviceTimeError error.

· Verify the <rightsInfo> element in the request message.
· If the request message does not contain <rights> element and any ROID in the request message that cannot be found from the Rights Issuer’s issue history, the RI responds with response message containing error status.

· If the request message contains <rights> and <signature> element, verify signature and check if the signature has been generated by this Rights Issuer. If the signature verification is failed or the signature was not generated by this Rights Issuer, the RI responds with response message containing error status
· Decrypt RO Encryption Key and verify MAC in the <rightsInfo> element. For detail, see the section 6.3.1.
· Do AES-UNWRAP of Content Encryption Key using the decrypted RO Encryption Key. If any error occurred during AES-UNWRAP of Content Encryption Key, the RI regards the requesting DRM Agent didn’t package REK properly and send error message to the requesting DRM Agent.
· If all above steps were successful, respond with a MoveRightsResponse message that contains the <status> element that has “success” value.
· Issue Rights Object(s) cryptographically bound to the Recipient Device, using ROAP-ROAcquisition Protocol.
When the RI issues the Rights Object(s) for the recipient Device, the RI SHALL modify constraints value from the received Rights Object, with incorporating state information in the request message. If the Rights Object has “count” constraint under “move” permission, the RI SHALL decrease the value of the <o-dd:count> element under “move” permission by 1. After modifying constraint values in the <rights> element in the received Rights Object, the RI MUST add a <signature> element which contains signature value over the <rights> element.

5.11.6 Decryption of RO Encryption Key
In order to decrypt the RO Encryption Key, KREK the RI MUST:

· Unwrap the RO Encryption Key, KREK and MAC Key, KMAC (see section 0).

· Calculate a MAC on the canonical version of the <rightsInfo> element (excluding the <mac> element) using the MAC key KMAC. The MAC algorithm to use is defined in the Device Context.
· Check the calculated value against the <mac> element of the <rightsInfo> element.
· If the calculated value is not equal to value of the <mac> element of the <rightsInfo> element the RI MUST respond with a response message with error status.
5.12 Processing MoveRightsResponse

When a DRM Agent receives a MoveRightsResponse message, the DRM Agent MUST:

· Check if <deviceID>, <riID>, <nonce> elements are same with previous request message. If any of these does not match, the DRM Agent regards error condition is met.

· Verify <signature> element in the message. If the verification is failed, the DRM Agent regards error condition is met.

If the status in the response message is success, the DRM Agent MUST:

· Remove corresponding Rights Objects and its State Informaion which were identified in the request message.

If the status in the response message is error or underlying transport protocol has error, the DRM Agent MUST:

· Make the corresponding Rights Objects enabled state.

· Handle error according to [DRMDRM20], in case where the status in the response message is error.
Change 5: Add new section “Key Management”
10 Key Management
10.1 Key Transport Mechanisms

10.1.1 Distributing KMAC and KREK under a RI Public Key

This section applies when encrypt RO Encryption Key and MAC Key.

KMAC and KREK are each 128-bit long keys generated randomly by the sender. KREK ("Rights Object Encryption Key") is the wrapping key for the content-encryption key KCEK in Rights Objects. KMAC is used for key confirmation of the message carrying KREK.

The asymmetric encryption scheme RSAES-KEM-KWS shall be used with the AES-WRAP symmetric-key wrapping scheme to securely transmit KMAC and KREK to a recipient RI using the RI's RSA public key. An independent random value Z shall be chosen for each encryption operation. For the AES-WRAP scheme, KMAC and KREK are concatenated to form K, i.e.:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

C2 = AES-WRAP(KEK, KMAC | KREK)

C1 = I2OSP(RSA.ENCRYPT(PubKeyRI, Z), mLen)

C = C1 | C2
where kekLen shall be set to 16 (128 bits) and mLen is the length of the modulus of the RI’s RSA public key in octets. In this way, AES-WRAP is used to wrap 256 bits of key data (KMAC | KREK) with a 128-bit key-encryption key (KEK).

After receiving C, the RI splits it into C1 and C2 and decrypts C1 using its private key (consisting of a private exponent d and the modulus m), yielding Z:

C1 | C2 = C

c1 = OS2IP(C1, mLen)

Z = RSA.DECRYPT(PrivKeyRI, c1) = c1d mod m
where OS2IP converts an octet string to a nonnegative integer and is defined in [PKCS-1].

Using Z, the RI can derive KEK, and from KEK unwrap C2 to yield KMAC and KREK.:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

KMAC | KREK = AES-UNWRAP(KEK, C2)

The following URI shall be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsaes-kem-kdf2-kw-aes128

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 10 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

