Doc# OMA-DRM-2007-0564R03-CR_SCE_LRM_Message_Details_of_Some_Import_Protocols.doc[image: image6.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-DRM-2007-0564R03-CR_SCE_LRM_Message_Details_of_Some_Import_Protocols.doc
Change Request

Change Request

	Title:
	LRM Message Details of Some Import Protocols
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA DRM

	Doc to Change:
	OMA-TS-SCE_LRM-V1_0-20080204-D

	Submission Date:
	10 Feb 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Hosame Abu-Amara, Motorola, Hosame.Abu-Amara@motorola.com
David Kravitz, Motorola, David.Kravitz@motorola.com

	Replaces:
	n/a

1 Reason for Change

The CR provides message details and formats for several Import protocols: Device Registration Protocol, Service Keys for Devices, Import Protocol, and dmpPair-Protocol. These protocols are already in the Doc to Change. To describe these details and formats, we describe a common generic header for all messages and attribute formats and use.
R01 of the CR contains added and modified text based on comments received on the original version of the CR. Some of the changes introduced by R01 are highlighted with a green color.
R02 of the CR contains further clarifications that are based on comments during the OMA DRM group conference call on 24 Jan 2008. Some of the changes introduced by R01 are highlighted with a turquoise color.
R03 of the CR makes several changes:

· Changed the format of the messages from TLV to Binary
· Added details of the processing to generate the messages

· Added details of the processing when the messages are received

· Added details on error codes, error messages and the conditions that cause errors to occur
· Specified codes and identifiers where appropriate
2 Impact on Backward Compatibility

none
3 Impact on Other Specifications

none
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

OMA DRM is requested to agree document
6 Detailed Change Proposal

Change 1: Change to Section 6.0 (LRM AND DEA PROTOCOLS)

6.1 Generic Message Format for Protocols
All messages have the following syntax:
Message() {
msgTye

 8
uimsbf
Pvno()
stid

32
uimsbf
dtid

32
uimsbf
 retryCount

 8
uimsbf
 Attributes()
 AttributeStructures()
 Signature()
}

Pvno(){
 major
4
bslbf
 minor
4
bslbf
}

Attributes(){
 nbrOfAttrs 8 uimsbf
 for(i=0; i<nbrOfAttrs; i++){
 Attribute()
 }
}

Attribute(){
 type 16 uimsbf
 OctetString16()
}

AttributeStructures(){
 nbrOfAttrStrs 8 uimsbf
 for(i=0; i<nbrOfAttrStrs; i++){
 AttributeStructure()
 }
}

AttributeStructure(){
 typeStr 16 uimsbf
 lengthStr

16
uimsbf

 for(i = 0; i < lengthStr; i++){

 Attribute()
 }

}
Signature(){
 sigAlgorithm 8 uimsbf
 OctetString16()
}
OctetString16(){

 length

16
uimsbf

 for(i = 0; i < length; i++){

 octet

8
uimsbf

 }

}

The fields are defined as follows:

· msgType – This field defines the type of messages being communicated. This is defined in Table 1.
· Pvno – This field is the Protocol Version Number. The version number is a <major.minor> representation of the highest protocol version number supported by the sender of the message. The <major> portion of the version number is encoded in the most significant 4 bits of the field. The <minor> portion the version number is encoded in the least significant 4 bits of the field. For this version of the protocol, Pvno SHALL be set to TBD.

· stid – This field contains a Source Transaction ID. This is a random value that uniquely identifies this key management transaction on the source’s side. The value must be non-zero if the sender expects a reply to this message. Otherwise, the value must be set to 0.
· dtid – This field contains a Destination Transaction ID. This is a random value that uniquely identifies this key management transaction on the destination’s side. The value must be set to the stid from the preceding message in this key management transaction.
· retryCount – This field contains the number of times that this key management transaction was restarted due to time outs. The initial value must be set to 0, then 1 for the first retry, etc.
· Attributes – This data structure contains a list of attributes as specified in Section ‎6.1.2 and the number of these attributes.
· nbrOfAttrs – This field contains the number of attributes.
· Attribute – This data structure specifies the parameters used in messages. It consists of a field and an octet string of variable length. The field specifies the type of the attribute, and the octet string specifies the value of the attribute. A DRM Agent that does not understand an Attribute type SHALL ignore the Attribute.
· type – This field encodes the attribute type, as specified in Table 2.

· length – This field encodes the length in bytes of the attribute.
· AttributeStructures – This data structure contains a list of attribute data structures as specified in Section TBD and the number of these attribute data structures.
· nbrOfAttrStrs – This field contains the number of attributes in an Attribute data structure.
· AttributeStructure – This data structure specifies a logical grouping of parameters used as a logical unit in messages. It consists of two fields and a list of attributes. The first field specifies the type of the attribute data structure, and the second field encodes the number of the attributes. A DRM Agent that does not understand an Attribute data structure type SHALL ignore the Attribute data structure.
· typeStr – This field encodes the attribute data structure type, as specified in Table 2.

· lengthStr – This field encodes the number of attributes in an attribute data structure.
· Signature – This data structure specifies either the digital signature or keyed checksum of a message. It consists of a field and an octet string of variable length. The field specifies the type of the algorithm used to generate the signature or keyed checksum, and the octet string specifies the value of the signature or checksum.
6.1.1 Message Types

The message types are listed in Table 1 in decimal for each message supported. The possible attributes of the messages are listed in Table 2.
Table 1: Message Types

	msgType
	Message

	3
	Service Key Request

	4
	Service Key Response

	5
	Ticket Request

	6
	Ticket Response

	8
	SAC Key Request

	9
	SAC Key Response

	11
	Error Message

	12
	Device Registration Request

	13
	Device Registration Response

	24
	Agent Ticket Request

	25
	Agent Ticket Response

In Table 1, the assignment of the msgType values is somewhat arbitrary. The final values are TBD.
6.1.2 Attributes

Table 2 summarizes the attributes defined in this specification. A description of each attribute follows the table.
Table 2: Attribute Types

	Type
	Attributes

	1
	ClientDomainBaseID

	2
	ClientIdentifier

	3
	ServerDomainBaseID

	4
	ServerIdentifier

	6
	EncTypeSet

	7
	CsumTypeSet

	9
	Signature

	11
	Ticket

	14
	EncryptedData

	17
	CertificateValue

	18
	GroupSubkeyId

	20
	TktVnum

	22
	AuthTime

	23
	EndTime

	24
	SkeyVnum

	25
	KeyType

	26
	KeyValue

	28
	SigType

	29
	SigValue

	30
	KeyAgreementAlgorithm

	31
	DEACertificateType

	32
	KeyInfo

	33
	CipherText

	34
	PrivateTicketPart

	35
	AuthData

	36
	EncType

	37
	ErrCode

	40
	KeyAgreementInfo

	41
	DOI_ID

	42
	ReturnAuthData

	43
	CipherSuiteSet

	44
	CipherSuiteType

	51
	DEAPubKeyHash

	55
	CertificateChain

	56
	RequestCRLs

	57
	DEAPubKeyIdentifier

	59
	ClientDRMtimeSeconds

	60
	ClientDRMtimeMicroSeconds

	64
	PubKeyClientAuthenticator

	65
	PubKeyDEAAuthenticator

	66
	IPv4Address

	70
	IsGroupSubkey

	71
	NewPrincipalFlag

	78
	CRLList

	80
	CRLValue

	81
	IssuerValue

	85
	ContentFormatID

	86
	CipherSuiteID

	88
	DeviceRegistrationTypeResponse

	89
	DASignedData

	90
	ImportedRights

	94
	AgentTicket

	95
	CsumType

	96
	ClientName

	97
	ServerName

In Table 2, the assignment of the Type values is somewhat arbitrary. The final values are TBD.
6.1.2.1 AuthData
This attribute contains private authorization data associated with the Source client. This data is inserted into a ticket by the DEA. (Tickets are discussed in Section TBD.) The contents of this field are application specific. This attribute is used to place limits on the Source client authorized rights. The fields for the attribute are defined as follows:

· type – This field has the value 35.
· length – This field encodes a variable length dependent on the length of the data.

6.1.2.2 AuthTime
This attribute indicates the time of initial authentication for the Destination client. This timestamp is kept by the DEA. It is UTC time and is represented as seconds since 01 Jan 1970 00:00:00. The fields for the attribute are defined as follows:

· type – This field has the value 22.
· length – This field encodes the value 64 (bits).

6.1.2.3 CertificateValue

This attribute specifies an X.509 certificate. The attribute specifies the DER-encoding of the X.509 certificate. The fields for the attribute are defined as follows:

· type – This field has the value 17.
· length – This field encodes the length of the DER-encoding of the X.509 certificate.

6.1.2.4 CipherSuiteID
This attribute specifies the identifier of an algorithm used to encrypt the content. The supported formats and their identifiers are described in Table 3.

Table 3: Supported Content Encryption Algorithms and Their Identifiers
	Content Encryption Algorithm
	Identifier

	NULL
	0

	AES_128_CBC
	1

	AES_128_CTR
	2

The fields for the attribute are defined as follows:

· type – This field has the value 86.
· length – This field encodes the value 8 (bits).

6.1.2.5 CipherText

This attribute represents the encrypted data part present in some of the messages. The actual data encrypted is based on the context of messages and is described later. The fields for the attribute are defined as follows:

· type – This field has the value 33.
· length – This field is variable and encodes the length of the encrypted data.

6.1.2.6 ClientDomainBaseID
This attribute specifies the identifier of the User Domain in which the Source client is registered and in which initial authentication took place. The fields for the attribute are defined as follows:

· type – This field has the value 1.
· length – This field encodes a variable length dependent on the length of the identifier of the User Domain.

6.1.2.7 ClientIdentifier
This attribute specifies the identifier of the Source client. The value of the attribute is a 20 byte hash of the client’s public key. The fields for the attribute are defined as follows:
· type – This field has the value 2.
· length – This field encodes the value 160 (bits).
6.1.2.8 ClientName

This attribute specifies a string that encodes a user-friendly name for the Source client. The fields for the attribute are defined as follows:
· type – This field has the value 96.
· length – This field encodes a variable length value dependent on the length of the user-friendly name string.
6.1.2.9 ClientDRMtimeSeconds

This attribute specifies the current time in seconds on the host of the Source client. The attribute specifies the Source client UTC time in seconds since 01 Jan 1970 00:00:00. The fields for the attribute are defined as follows:
· type – This field has the value 59.
· length – This field encodes the value 64 (bits).

6.1.2.10 ClientDRMtimeMicroSeconds

This attribute specifies the microseconds component of the current time on the host of the Source client. The microseconds allow the receiver of a Source client message to distinguish between the retries of the same message when the Source client retries several times per second. The fields for the attribute are defined as follows:
· type – This field has the value 60.
· length – This field encodes the value 32 (bits).

6.1.2.11 ContentFormatID
This attribute specifies the identifier of a format of the content. The supported formats and their identifiers are described in Table 4.

Table 4: Supported Content Formats and Their Identifiers
	Content Format
	Identifier

	DCF
	1

	PDCF
	2

	MDCF
	3

The fields for the attribute are defined as follows:

· type – This field has the value 85.
· length – This field encodes the value 8 (bits).

6.1.2.12 CRLValue

This attribute specifies the DER-encoded X.509 Certificate Revocation List (CRL). The fields for the attribute are defined as follows:

· type – This field has the value 80.
· length – This field encodes a variable length dependent on the length of the DER-encoded X.509 CRL.

6.1.2.13 CsumType

This attribute specifies the identifier of a checksum algorithm supported by the Source client. Supported checksum algorithms and their identifiers are specified in Table 5.

Table 5: Supported Checksum Algorithms and Their Identifiers
	Encryption Algorithm
	Mandatory/Optional
	Identifier

	Elliptic Curve Digital Signature Algorithm (ECDSA) Signature using curve secp256r1 over SHA-1 hash.
	O
	4

	RSA signature algorithm formatted according to PKCS#1 v1.5 over a SHA-1 hash.
	M
	9

The fields for the attribute are defined as follows:

· type – This field has the value 95.
· length – This field encodes the value 8 (bits).

6.1.2.14 CsumTypeSet
This attribute specifies the identifiers of the checksum algorithms supported by the Source client. The Destination client can use one of those algorithms to authenticate a reply. The value of the attribute is a sequence of one or more checksum algorithm identifiers as specified in Table 5 in preference order. The value encoded in the length field is equal to the number of bits to specify the sequence of identifiers. The fields for the attribute are defined as follows:
· type – This field has the value 7.
· length – This field encodes a variable length dependent on the number of checksum algorithm identifiers in preference order.

6.1.2.15 DASignedData
The format of this attribute is TBD. The value of the Type field is 89.

6.1.2.16 DEACertificateType
This attribute specifies the type of a DEA certificate supported by the client. Its value SHALL be 1 for certificates of type X.509. The fields for the attribute are defined as follows:

· type – This field has the value 31.
· length – This field encodes the value 8 (bits).

6.1.2.17 DEAPubKeyHash
This attribute specifies a 20 byte hash of the DEA’s public key by using one of the checksum algorithms specified in Table 5. The fields for the attribute are defined as follows:

· type – This field has the value 51.
· length – This field encodes the value 160 (bits).

6.1.2.18 DeviceRegistrationTypeResponse

This attribute indicates whether a Device is a “User Domain Device” or “Not Registered” with a DEA. This is a Boolean with the possible values of 0 (Not Registered) and 1 (User Domain Device). Details of when a DEA registers a Device as a “User Domain Device” are discussed in Section ‎7.2.1.1. The fields for the attribute are defined as follows:
· type – This field has the value 88.
· length – This field encodes the value 8 (bits).

6.1.2.19 DOI_ID
This attribute is used to identify the ImportedRights attribute as containing <rights> elements defined by the OMA SCE REL document [Reference TBD]. The value of the attribute SHALL be 2. The fields for the attribute are defined as follows:

· type – This field has the value 41.
· length – This field encodes the value 8 (bits).

6.1.2.20 EncType
This attribute specifies the encryption algorithm used in encrypting data. Supported encryption algorithms and their identifiers are specified in Table 6.
Table 6: Supported Encryption Algorithms and Their Identifiers
	Encryption Algorithm
	Identifier

	Null Encryption
	0

	AES (128-bit block size)
	1

For this specification, support of all encryption algorithms in Table 6 is mandatory.

The fields for the attribute are defined as follows:
· type – This field has the value 36.
· length – This field encodes the value 8 (bits).

6.1.2.21 EncTypeSet
This attribute specifies the identifiers of the encryption algorithms supported by the Source client or encryption type used by the Destination client. The value of the attribute is a sequence of one or more encryption algorithm identifiers as specified in Table 6 in preference order. The value encoded in the length field is equal to the number of bits to specify the sequence of identifiers.

The fields for the attribute are defined as follows:

· type – This field has the value 6.
· length – This field encodes a variable length dependent on the number of encryption algorithm identifiers in preference order.

6.1.2.22 EndTime
This attribute indicates the expiration UTC time of a ticket, after which it is no longer valid. It is represented as seconds since 01 Jan 1970 00:00:00. (Tickets are discussed in Section ‎6.1.3.14.) The fields for the attribute are defined as follows:

· type – This field has the value 23.
· length – This field encodes the value 64 (bits).

6.1.2.23 ErrCode
This attribute specifies the error code generated by a DEA or Destination client as part of an error message. Error messages are described in Section ‎6.1.4. The error codes are shown in Table 10. The fields for the attribute are defined as follows:

· type – This field has the value 37.
· length – This field encodes the value 8 (bits).

6.1.2.24 GroupSubkeyId
This attribute specifies an identifier for a group key that was requested in a key request with the IsGroupSubkey attribute set to TRUE. This attribute can be used in the case of a secure IP Multicast. The fields for the attribute are defined as follows:

· type – This field has the value 18.
· length – This field encodes a variable length dependent on the length of the identifier.

6.1.2.25 ImportedRights
This attribute contains Imported-RO <rights> element and <signature> element of the LRM that created the Imported-Rights-Object. The fields for the attribute are defined as follows:

· type – This field has the value 90.
· length – This field encodes a variable length.

6.1.2.26 IPv4Address
This attribute is used inside a Ticket attribute (described in Section ‎6.1.3.14). It was an IPv4 address of a Source client at the time that the DEA issued a ticket for a Destination client in response to a request from the Source client. Destination clients can use the IPv4 address as part of the Source client verification, e.g. to verify the IP address in a raw IP packet header. A Destination client can also use this address in determining the local access network on which the Source client resides and possibly applying authorization criteria specific to the Source client’s access network. The format of this field is a 4-byte binary string, where each byte represents a component of the IP address. The fields for the attribute are defined as follows:
· type – This field has the value 66.
· length – This field encodes the value 32 (bits).

6.1.2.27 IsGroupSubkey
This attribute specifies a Boolean flag that, when set to TRUE (1), indicates that a key to be returned in a key reply message is associated with a group, e.g. for secure IP Multicast. Otherwise, the flag is FALSE (0). The fields for the attribute are defined as follows:
· type – This field has the value 70.
· length – This field encodes the value 8 (bits).

6.1.2.28 IssuerValue

This attribute specifies the DER-encoded X.500 distinguished name of a certificate issuer. The fields for the attribute are defined as follows:

· type – This field has the value 81.
· length – This field encodes a variable length dependent on the length of the DER-encoded X.500 distinguished name of the certificate issuer.

6.1.2.29 KeyAgreementAlgorithm
This attribute specifies the identifier for a key agreement cryptographic algorithm. The possible values of the attribute and the corresponding algorithms are described in Table 7.

Table 7: Supported Key Agreement Algorithms and Their Identifiers
	Encryption Algorithm
	Mandatory/Optional
	Identifier

	ECDH (Elliptical Curve Diffie-Hellman) – curve secp256r1.
	O
	3

	Diffie-Hellman group #1 with 1024-bit prime.
	M
	6

The fields for the attribute are defined as follows:

· type – This field has the value 30.
· length – This field encodes the value 8 (bits).

6.1.2.30 KeyType
This field specifies the type of a cryptographic key. It corresponds to either an encryption algorithm or a key agreement algorithm. The possible values of the attribute and the corresponding key types are described in Table 8.

Table 8: Supported Key Types and Their Identifiers
	Encryption Algorithm
	Identifier

	AES Encryption Key (128-bit key size)
	1

	Key Derivation Key
	2

	Elliptic Curve Public Key - curve secp256r1. Uncompressed key format must be used, which is the X-coordinate and Y-coordinate concatenated together.
	5

	HMAC SHA-1 Key (160-bit key size).
	6

	Diffie-Hellman public key
	11

	RSA public key. This key type refers to the value of the RSA modulus. RSA public exponent is assumed to be always 0x010001 (65537).
	12

The fields for the attribute are defined as follows:

· type – This field has the value 25.
· length – This field encodes the value 8 (bits).

6.1.2.31 KeyValue

This attribute contains a key encoded as an octet string. The fields for the attribute are defined as follows:

· type – This field has the value 26.
· length – This field is variable and encodes the length of the key.

6.1.2.32 NewPrincipalFlag
This attribute specifies a Boolean flag that a client uses to request the DEA to create a new record in the DEA storage for the specified client name. The value of the attribute is either 1, which indicates that the client wishes to create a new record, or 0, which indicates that the client wants to update an existing record. The fields for the attribute are defined as follows:
· type – This field has the value 71.
· length – This field encodes the value 8 (bits).

6.1.2.33 ReturnAuthData
This attribute specifies a Boolean flag that is used in a Ticket Request message (see Section ‎7.2.1.3.1) that indicates if the Source client wishes its own copy of authorization data in a subsequent Ticket Response message (see Section ‎7.2.1.3.2). The value of the attribute is either 1, which indicates that the client wishes to get its own copy of the authorization data, or 0, which indicates that the client is not interested in receiving its own copy of the authorization data. The fields for the attribute are defined as follows:
· type – This field has the value 42.
· length – This field encodes the value 8 (bits).

6.1.2.34 ServerDomainBaseID
This attribute specifies the identifier of the User Domain in which the Destination client is registered. The fields for the attribute are defined as follows:

· type – This field has the value 3.
· length – This field encodes a variable length dependent on the length of the identifier of the User Domain.

6.1.2.35 ServerIdentifier
This attribute specifies the identifier of the Destination client. The value of the attribute is a 20 byte hash of the client’s public key. The fields for the attribute are defined as follows:
· type – This field has the value 4.
· length – This field encodes a variable length value that consists of the sum of 160 and string length.
6.1.2.36 ServerName

This attribute specifies a string that encodes a user-friendly name for the Destination client. The fields for the attribute are defined as follows:
· type – This field has the value 97.
· length – This field encodes a variable length value dependent on the length of the user-friendly name string.
	
	

	
	

	
	

6.1.2.37 SigType

This attribute specifies the identifier of a signature algorithm supported by the Source client. Supported signature algorithms and their identifiers are specified in Table 9.

Table 9: Supported Signature Algorithms and Their Identifiers
	Encryption Algorithm
	Mandatory/Optional
	Identifier

	Elliptic Curve Digital Signature Algorithm (ECDSA) Signature using curve secp256r1 over SHA-1 hash.
	O
	4

	RSA signature algorithm formatted according to PKCS#1 v1.5 over a SHA-1 hash.
	M
	9

The fields for the attribute are defined as follows:

· type – This field has the value 28.
· length – This field encodes the value 8 (bits).

6.1.2.38 SigValue

This attribute specifies the result of a signature or a checksum operation. The fields for the attribute are defined as follows:

· type – This field has the value 29.
· length – This field encodes a variable length dependent on the length of the result of the signature or checksum operation.

6.1.2.39 SkeyVnum
This attribute specifies an identifier for a Service Key for a client. The default value for a Service Key lifetime is recommended to be changed periodically. When a Service Key is renewed, the value field in the SkeyVnum attribute associated with the Service Key is incremented by one. The fields for the attribute are defined as follows:

· type – This field has the value 24.
· length – This field encodes the value 16 (bits).

6.1.2.40 TktVnum
This attribute specifies the version number for the Ticket format. The version number is a <major.minor> representation. The <major> portion of the version number is encoded in the most significant 4 bits of the field. The <minor> portion the version number is encoded in the least significant 4 bits of the field. For this version of the protocol, TktVnum SHALL be set to 2.0. The fields for the attribute are defined as follows:

· type – This field has the value 20.
· length – This field encodes the value 8 (bits).

	

	

	

	

	

	

6.1.3 Attribute Data Structures
i. The following data structures specify logical groupings of parameters used as logical units in messages.
6.1.3.1 CertificateChain
This attribute data structure is a chain of one or more digital certificates used to verify a signature. The Device certificate must come first in the list. Each following certificate must directly certify the one preceding it. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 55.
· lengthStr – This field encodes a variable length dependent on the number of certificates in the certificate chain.
· Attributes – The attributes contained in this data structure are concatenations of CertificateValue attributes.
6.1.3.2 CipherSuiteType
This attribute data structure specifies the format of the content and the algorithms used to encrypt the content. The data structure has two attributes: ContentFormatID and CipherSuiteID. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 44.
· lengthStr – This field encodes the value 2.
· Attributes – The attributes contained in this data structure are ContentFormatID and CipherSuiteID.
6.1.3.3 CipherSuiteSet

This attribute data structure specifies a sequence of CipherSuiteType values in preference order. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 43.
· lengthStr – This field encodes a variable even number dependent on the number of ContentFormatID and CipherSuiteID pairs.
· Attributes – The attributes contained in this data structure is a sequence of (ContentFormatID and CipherSuiteID) pairs.
6.1.3.4 CRLList
This attribute data structure is used in the PubKeyDEAAuthenticator attribute data structure to provide an up-to-date list of CRLs. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 78.
· lengthStr – This field encodes a variable number dependent on the number CRLValue attributes.
· Attributes –This data structure contains one or more CRLValue attributes.
6.1.3.5 DEAPubKeyIdentifier
This attribute data structure specifies a checksum identifier and a corresponding 20 byte hash of the DEA’s public key. The data structure has two attributes: CsumType and DEAPubKeyHash. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 57.
· lengthStr – This field encodes the value 2.
· Attributes – The attributes contained in this data structure are CsumType and DEAPubKeyHash.
6.1.3.6 EncryptedData
This attribute data structure represents the encrypted data part present in some of the attribute data structures. The actual data encrypted is based on the context of attribute data structures and messages. The data structure has two attributes: EncType and CipherText. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 14.
· lengthStr – This field encodes the value 2.
· Attributes – The attributes contained in this data structure are EncType and CipherText.
6.1.3.7 KeyAgreementInfo

This field is describes a public key agreement algorithm between a Source Client and a Destination Client and the corresponding public key value. The data structure has three attributes: KeyAgreementAlgorithm, and two attributes of the KeyInfo data structure. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 40.
· lengthStr – This field encodes the value 3.
· Attributes – The attributes contained in this data structure are KeyAgreementAlgorithm, KeyType and KeyValue.
6.1.3.8 KeyInfo
This attribute data structure specifies a key type and a corresponding key. The data structure has two attributes: KeyType and KeyValue. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 32.
· lengthStr – This field encodes the value 2.
· Attributes – The attributes contained in this data structure are KeyType and KeyValue.
6.1.3.9 PrivateTicketPart
This attribute data structure specifies the private part of a ticket – stored in encrypted form inside a Ticket data structure. (A Ticket data structure is discussed in Section ‎6.1.3.14.) The data structure has 6 attributes: two attributes of the KeyInfo data structure, ClientDomainBaseID, ClientName, IPv4Address, and AuthData. KeyInfo contains a 21-Byte Session Key in the KeyValue. The Session Key is not directly used to encrypt or authenticate data. Instead, encryption and authentication keys are derived from this Session Key. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 34.
· lengthStr – This field encodes the value 6.
· Attributes – The attributes contained in this data structure are KeyType and KeyValue, ClientDomainBaseID, ClientName, IPv4Address, and AuthData.
6.1.3.10 PubKeyClientAuthenticator
This attribute data structure is used to authenticate a Source client to the DEA. The data structure has several attributes: ClientName, ClientDomainBaseID, ClientDRMtimeSeconds, ClientDRMtimeMicroSeconds, attributes of the RequestCRLs data structure, and two attributes of the DEAPubKeyIdentifier data structure. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 64.
· lengthStr – This field encodes a variable number dependent on the number of IssuerValue attributes.
· Attributes – The attributes contained in this data structure are ClientName, ClientDomainBaseID, ClientDRMtimeSeconds, ClientDRMtimeMicroSeconds, a variable number of IssuerValue attributes, CsumType and DEAPubKeyHash.
The use of the RequestCRLs attribute data structure is optional. If the PubKeyClientAuthenticator data structure does not contain any IssuerValue attributes, then the RequestCRLs attribute data structure is not present.

6.1.3.11 PubKeyDEAAuthenticator
This attribute data structure is used to authenticate the DEA to a Source client. The data structure has several attributes: attributes of the CertificateChain data structure, and the attributes of the CRLList data structure. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 65.
· lengthStr – This field encodes a variable number dependent on the number of CerificateValue and CRLValue attributes.
· Attributes – The attributes contained in this data structure are a variable number of CertificateValue and CRLValue attributes.
The use of the CertificateChain attribute data structure is optional. If the PubKeyDEAAuthenticator data structure does not contain any CertificateValue attributes, then the CertificateChain attribute data structure is not present.

If the CertificateChain attribute is not present, then the list of CRLValue attributes is for the requested certificate issuers specified by the client inside a prior PubKeyClientAuthenticator attribute data structure. On the other hand, if the CertificateChain attribute data structure is present, then the list of CRLValue attributes corresponds to the issuers for the certificate chain.

If the DEA is unable to obtain some of the CRLs, those CRLValue attributes will be omitted from the PubKeyDEAAuthenticator attribute data structure. If the DEA is unable to obtain any of the CRLs, then no CRLValue attribute will be present.

6.1.3.12 RequestCRLs
This attribute data structure is used in the PubKeyClientAuthenticator attribute data structure (described in Section ‎6.1.3.10) to indicate that in a subsequent response message, the DEA is to include an up-to-date list of CRLs inside the PubKeyDEAAuthenticator attribute data structure. The fields for the attribute data structure are defined as follows:
· typeStr – This field has the value 56.
· lengthStr – This field encodes a variable number dependent on the number IssuerValue attributes.
· Attributes –This data structure contains one or more IssuerValue attributes.
6.1.3.13 Signature

This attribute data structure specifies either the digital signature or keyed checksum of a message. The data structure has two attributes: (SigType or CsumType) and SigValue. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 9.
· lengthStr – This field encodes the value 2.
· Attributes – The attributes contained in this data structure are (SigType or CsumType) and SigValue.
Note that in typical usage of the Signature attribute, the signature is computed over the entire message, including the message header fields specified in Section ‎6.1.1 but excluding the Signature attribute itself. During checksum calculation, the length of compound attributes is adjusted to reflect the missing Signature attribute.
6.1.3.14 Ticket
A Ticket is a record that helps a Source client authenticate to a Destination client. It contains the Source client’s identity, an initial session key, timestamp and other information encrypted by using the Destination client’s Service Key. The data structure has 17 attributes: TktVnum, ServerDomainBaseID, ServerName, AuthTime, EndTime, EncTyep, six attributes of the PrivateTicketPart data structure, SkeyVnum, EncTypeSet, CsumTypeSet, and two attributes of the Signature data structure. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 11.
· lengthStr – This field encodes the value 17.
· Attributes – The attributes contained in this data structure are TktVnum, ServerDomainBaseID, ServerName, AuthTime, EndTime, EncType, KeyType, KeyValue, ClientDomainBaseID, ClientName, IPv4Address, AuthData, SkeyVnum, EncTypeSet, CsumTypeSet, CsumType and SigValue.
6.1.3.15 AgentTicket
This is an attribute data structure that is generated by a DEA to a Source client for a Destination client. The data structure has 18 attributes: 17 attributes of the Ticket data structure, and DeviceRegistrationTypeResponse attribute. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 94.
· lengthStr – This field encodes the value 18.
· Attributes – The attributes contained in this data structure are TktVnum, ServerDomainBaseID, ServerName, AuthTime, EndTime, EncType, KeyType, KeyValue, ClientDomainBaseID, ClientName, IPv4Address, AuthData, SkeyVnum, EncTypeSet, CsumTypeSet, CsumType, SigValue, and DeviceRegistrationTypeResponse.
6.1.4 Error Message

An error message is generated when there is an error processing one of the messages. Error messages MUST always be authenticated either with a digital signature or with a keyed checksum. When this is not possible, a DEA or an LRM silently drops the request message that generated the error, and an error message is not returned. Note that client Devices do not send error messages back to a DEA or an LRM.
An Error message has the syntax described in Section ‎6.1. The fields of the message are as follows:

· msgType – This field contains the value 11.
· Pvno – This field contains the value TBD.

· stid – This field has the same value as the stid field in the message that caused the error.
· dtid – This field is set to 0.
· retryCount – This field has the same value as the retryCount field in the message that caused the error.
· Attributes – This data structure contains the following attributes: ClientDRMtimeSeconds, ClientDRMtimeMicroSeconds, ServerDomainBaseID, ServerName, ClientDomainBaseID, ClientName, and ErrCode
· nbrOfAttrs – This field contains the value 7.
· AttributeStructures – This data structure contains an optional CertificateChain attribute data structure.
nbrOfAttrStrs – This field contains the value 1 if the CertificateChain attribute data structure; otherwise, the value is 0.
Signature – This attribute data structure specifies a digital signature or checksum of the message.
The values of the ClientDRMtimeSeconds, ClientDRMtimeMicroSeconds, ServerDomainBaseID, ServerName, ClientDomainBaseID, and ClientName attributes in an error message are the same as the attributes of the message that generated the error. The values of the ErrCode are shown in Table 10. The conditions that cause errors and error messages to occur are described in detail in this specification. A DEA MAY include a CertificateChain attribute data structure in an error message when the signature for the error message is generated using a digital certificate and the DEA public key identifier that the client specified in the request message that caused the error is not recognized by the DEA.
Table 10: Error Codes
	Error Label
	Error Code

	ERR_BAD_INTEGRITY
	24

	ERR_BADKEYVER
	16

	ERR_BADIPADDR
	81

	ESB_ERR_CIPHERSUITE_NOSUPP
	45

	ESB_ERR_DOI_ID_NOT_RECOGNIZED
	51

	ERR_INAPP_CKSUM
	26

	ERR_NOT_US
	20

	ERR_REPEAT
	14

	ERR_SKEW
	15

	ERR_TICKET
	21

	ERR_TICKET_VERSION
	22

	ERR_TKT_EXPIRED
	13

	ERR_TKT_INAPP_CKSUM
	59

	ERR_TKT_NYV
	23

	ERR_PRIV_TKT_PART
	25

	ERR_REPEAT
	14

	ERR_TICKET
	21

	ERR_TICKET_VERSION
	22

	DEA_ERR_BAD_PVNO
	1

	DEA_ERR_C_PRINCIPAL_UNKNOWN
	2

	DEA_ERR_S_PRINCIPAL_UNKNOWN
	3

	DEA_ERR_CERTTYPE_NOSUPP
	46

	DEA_ERR_CLIENT_REVOKED
	10

	DEA_ERR_DUP_HOSTID
	50

	DEA_ERR_ETYPE_NOSUPP
	7

	DEA_ERR_HOSTID_CHANGE_PROHIBITED
	77

	DEA_ERR_KEYAGR_KEY_TOO_WEAK
	75

	DEA_ERR_OTHER_PRINCIPAL_ALREADY_EXISTS
	57

	DEA_ERR_OTHER_PRINCIPAL_NOT_FOUND
	49

	DEA_ERR_PUBKEY_NOT_FOUND
	76

	DEA_ERR_SUMTYPE_NOSUPP
	8

	DEA_ERROR_KDC_NOT_TRUSTED
	34

	DEA_ERROR_INVALID_SIG
	35

6.2 SCE-4-LRMP

…
Change 2: Change to Section 7.2 (Key Transport Mechanisms)
7.2.1 Overview of Device Registration and Pairing Protocols

One of the functions of a DEA is to keep track of all the provisioned Devices in a system and the cryptographic data associated with them. Additionally, the DEA authenticates client Devices and issues Tickets for those client Devices to use as trusted tokens during communications with other Devices. The DEA assigns expiration time to Tickets, thus requiring Devices with Tickets to periodically renew them. By allowing Devices to cache these Tickets, the system eliminates the need for Devices to request Pairings when the Tickets have not expired.

If a Device registers with a DEA, then the Device SHALL register with the DEA by using a Device’s digital certificate. The DEA SHALL store the client Device’s unique identity and public key. Once this is done, Devices can obtain Tickets directly from the DEA.

It is anticipated that each Device’s unique cryptographic identity is loaded to the client device in the factory during manufacturing.

Once a first Device registers with a DEA and receives a Ticket for a second Device, the first Device MAY request content to be sent or streamed from the second Device, or vice-versa. A secure key request message (discussed below) is sent from the first Device to the second Device by using the Ticket to authenticate itself and to establish a secure session. Once the second Device has authenticated the first Device and has verified the Rights associated with the requested content, the second Device sends the content decryption key and associated Rights to the first Device in a secure manner such that only the first Device can verify the integrity of the message and decrypt the cryptographic data.

7.2.1.1 Device Registration Protocol

This section discusses the Device Registration messages for a Device that interacts with a DEA to Import content from an LRM associated with the DEA. The protocol messages are depicted in Figure 1. In general, it is expected a Device needs to register with a DEA only once, unless, for example, the Device needs to re-register because of an expired digital certificate. A Device MAY register more than once with a DEA, in which case a new registration replaces a previous registration. A Device MAY register with more than one DEA. To start the registration process, the Device SHALL send to the DEA a Device Registration Request message that includes the client signature and certificate. The Device Registration Request message is specified in Section ‎7.2.1.1.1.
[image: image1.wmf]Device

DEA

Device Registration Request

Device Registration Response

Device

DEA

Device Registration Request

Device Registration Response

Figure 1: Device Registration Protocol
After receiving the Device Registration Request message, the DEA validates the request and verifies that the Device is authorized, so that, e.g., the certificate of the Device is not revoked. If the validation succeeds, then the DEA proceeds as follows.

The DEA MAY prompt a User to check if the User accepts the new Device with the given identifier to be registered in the DEA. This is used, for example, to prevent someone in a parking lot registering over a wireless or WiFi network and getting access to this User’s content without permission. A user can disable this feature and then any Device can register into the DEA seamlessly without any User interaction.
If the limit for concurrently registered Devices for the DEA has been reached, then the DEA does not register the Device and informs the Device of this fact. Otherwise, the DEA registers the Device as a “User Domain Device”.

Next, the DEA SHALL store the Device public key extracted from the certificate of the Device. Next, the DEA SHALL send a Device Registration Response message that includes an acknowledgement from the DEA, the type of registration (i.e. “User Domain Device” or “Not Registered”), the DEA certificate, DA-signed data that proves that the DEA is authorized to register the Device, and a DEA digital signature. Note that DA-signed data does not include Guest Device identities, and the DA is not made aware of Guest Device identities. The Device Registration Response message is specified in Section ‎‎7.2.1.1.2.
After a Device receives and validates Device Registration Response message, the Device SHALL save the DEA certificate until the DEA certificate expires or until the Device becomes aware that the certificate has been revoked. The Device can use the DEA certificate for validation of future DEA responses.
Device Registration Request Message Details
The Device Registration Request message has the syntax described in Section ‎6.1. The fields of the message are as follows:

· msgType – This field contains the value 12.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section ‎7.2.1.1.1.1.
· dtid – This field is set as discussed in Section ‎7.2.1.1.1.1.
· retryCount – This field is set as discussed in Section ‎7.2.1.1.1.1.
· Attributes – This data structure contains the NewPrincipalFlag attribute.
· nbrOfAttrs – This field contains the value 1.
· AttributeStructures – This data structure contains the PubKeyClientAuthenticator attribute data structure and the CertificateChain attribute data structure.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – This attribute data structure specifies a digital signature of the message.
7.2.1.1.1 Generating Device Registration Request Message

The Device MUST follow the following steps to generate a Device Registration Request message:

2. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding Device Registration Request messages. Continue repeating this step until a unique value is generated.
3. Set the dtid header field of the message to 0.
4. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

5. Fill in the value of the NewPrincipalFlag – depending on whether the intent is to create a new record in the DEA storage or to update an existing one.

6. Generate the PubKeyClientAuthenticator attribute data structure to authenticate this request as per Section ‎7.2.1.1.1.2.
7. Generate the CertificateChain attribute data structure.
8. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Device private key to compute the signature.
After the Device sends out the Device Registration Request message, it MUST save the value of the stid header field in order to later validate the matching Device Registration Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Device Registration Response message and must retry and increment the retryCount value.
7.2.1.1.1.1. Generating PubKeyClientAuthenticator
The PubKeyClientAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a client to the DEA. The generation steps are:

1. Generate ClientName attribute and ClientDomainBaseID attribute. A client MAY set the length field value of ClientDomainBaseID to 0 and not specify a value for ClientDomainBaseID.
2. Fill in the ClientDRMtimeSeconds attribute and the ClientDRMtimeMicroSeconds attribute.

3. Add the DEAPubKeyIdentifier attribute data structure.

4. If the Device previously saved a DEA certificate chain, check if any of the corresponding CRLs are expired. If so, add a RequestCRLs attribute to the PubKeyClientAuthenticator, listing the issuers of the expired CRLs. The DEA will be required to reply with the corresponding up-to-date CRLs.
7.2.1.1.1.2. Processing Device Registration Request Message

The DEA MUST perform the following steps to verify the Device Registration Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.
4. Validate the client certificate chain and extract the client’s public key. Compute the ClientIdentifier from the certificate.

5. Process the PubKeyClientAuthenticator attribute data structure as specified in Section ‎7.2.1.1.1.4.
6. If the value in the NewPrincipalFlag attribute equals 0, and the value of the ClientName in the PubKeyClientAuthenticator attribute data structure already exists in the DEA storage, then the DEA MUST verify that the corresponding ClientIdentifier in the DEA storage has the same value as that extracted from the client certificate chain present in the Device Registration Request message. If the values are different, then the DEA returns an error message with error code DEA_ERR_HOSTID_CHANGE_PROHIBITED. This prevents a new client intentionally registering with an existing ClientName so as to take advantage of the ClientName’s authorizations.
Note that the only reasons a Device sends Device Registration Request message with the value in the NewPrincipalFlag attribute equal to 0 is if the Device updates its certificate, if the Device wishes to add a new value for the ClientName to the ClientIdentifier record in the DEA storage, or if the Device wants to add a new value for the ClientDomainBaseID to the ClientIdentifier record in the DEA storage.
7. If no errors are generated during the processing of this message, then the DEA does one of the following depending on the value of the NewPrincipalFlag attribute:
If the value is 0, then the DEA adds the value of ClientName to the corresponding ClientIdentifier value record (if the value of ClientName is new), adds the value of ClientDomainBaseID to the corresponding ClientIdentifier value record (if the value of ClientDomainBaseID is new), updates in the record the certificate identifying information needed to later check for revocation, and updates the values of EncTypeSet and CsumTypeSet associated with the client record. If the ClientDomainBaseID has length 0 in the message, then the DEA SHOULD add a default ClientDomainBaseID value to the corresponding ClientIdentifier value record (if the record does not have this default value already).
If the value is 1, then the DEA creates a new record in the DEA storage. The record includes the value of ClientIdentifier, ClientName, ClientDomainBaseID, DeviceRegistrationTypeResponse, Device public key, certificate identifying information needed to later check for revocation, the values of EncTypeSet and CsumTypeSet for the client, and the value of ClientDRMtimeSeconds. If the ClientDomainBaseID has length 0 in the message, then the DEA SHOULD set the value of ClientDomainBaseID to a default value. Regardless of the ClientDomainBaseID value, the DEA verifies that the limit for concurrently registered Devices for the DEA has been not been reached. If the limit has been reached, then the DEA sets the value of the DeviceRegistrationTypeResponse attribute to 0, i.e. “Not Registered” and proceeds to Step ‎8 below. If the limit has not been reached, then the DEA checks the DA-signed data. If the DA-signed data is Device-specific, and the value of ClientIdentifier is not in the DA-signed data, then sets the value of the DeviceRegistrationTypeResponse attribute to 0, i.e. “Not Registered” and proceeds to Step ‎8 below. In all other cases, the DEA sets the value of the DeviceRegistrationTypeResponse attribute to 1, i.e. “User Domain Device”.
8. The DEA generates the Device Registration Response message.
7.2.1.1.1.3. Processing PubKeyClientAuthenticator
The DEA MUST verify the PubKeyClientAuthenticator attribute data structure by using the following procedure:

1. Verify the value of the NewPrincipalFlag attribute as follows. If the value is 0, then the Device Registration Request message is an update message. So, the ClientIdentifier of the Device must already exist in the DEA storage. If the ClientIdentifier does not exist in the DEA storage, then the DEA sends an error message with the error code DEA_ERR_OTHER_PRINCIPAL_NOT_FOUND.
If the value of the NewPrincipalFlag attribute is 1, then the values of the ClientName and the ClientIdentifier attributes in the PubKeyClientAuthenticator attribute data structure must not yet exist in the DEA storage. If the value of the ClientIdentifier does exist in the DEA storage, then the DEA sends an error message with the error code DEA_ERR_DUP_HOSTID. If the value of ClientName does exist in the DEA storage, then the DEA sends an error message with the error code DEA_ERR_OTHER_PRINCIPAL_ALREADY_EXISTS. There is one scenario where the presence of the ClientName or ClientIdentifier values in the DEA storage does not result in an error, however:

a) The Device sends a Device Registration Request message to create a new record in the DEA
b) The DEA processes the request, creates the new record and sends back a reply message.

c) The Device times out before getting the reply message and resends the same Device Registration Request message. The request is to create a new record, but the DEA storage record was just created in Step b above. However, since this is a retry, it should not result in an error.

In order to address this scenario, the DEA MUST save the values of the ClientDRMtimeSeconds attribute and the ClientDRMtimeMicroSeconds attribute contained in the PubKeyClientAuthenticator attribute data structure. If the RetryCount field in the Device Registration Request message header is greater than 0, and the DEA finds a record in its storage matching the ClientIdentifier value, ClientDomainBaseID value, and the Ctime value, then the DEA treats the request as an update and not as n error.
2. If the ClientIdentifier has been marked as being revoked in the DEA, then an error message with the error code DEA_ERR_CLIENT_REVOKED is returned.

3. Verify the Signature attribute data structure. If the attribute data structure contains a CsumType attribute, then an error message with the error code ERR_INAPP_CKSUM is generated. If the value of the SigType in the Signature attribute data structure is not supported by the DEA, then the DEA generates a DEA_ERR_SUMTYPE_NOSUPP
 error message. If the signature value that the DEA computes for the Device Registration Request message does not match the value contained in the SigValue attribute contained in the Signature attribute data structure, then an error message with DEA_ERROR_INVALID_SIG is returned.

4. Check the value contained in the ClientDRMtimeSeconds attribute. If the value is outside of an acceptable time window (typically +/- 5 minutes), then the DEA rejects the Device Registration Request message and returns the ERR_SKEW error message.

5. Otherwise, the DEA computes a SHA-1 hash of the full Device Registration Request message and checks if there is already a record for this particular message type (i.e. msgType value 12) with this hash value in a DEA Replay Cache. Each Replay Cache record contains a hash value indexed by a msgType and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes, are kept in the Replay Cache. If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and the ERR_REPEAT error message is returned. If no such entries are found, the processing continues as specified below.

6. The DEA updates the Replay Cache with a record corresponding to this Device Registration Request message. The record contains a SHA-1 message hash and the value of the ClientDRMtimeSeconds attribute.

7. Make sure that the value contained in the DEAPubKeyHash attribute in the PubKeyClientAuthenticator attribute data structure matches one of the DEA public keys. If the value does not match any of the public keys possessed by the DEA, then the Device Registration Request message MUST be rejected with the error code DEA_ERR_PUBKEY_NOT_FOUND logged into a local file, and the DEA MUST NOT send back an error message (since the Device will be unable to verify it).
7.2.1.1.2 Device Registration Response Message Details

The Device Registration Response message has the syntax described in Section ‎6.1. The fields of the message are as follows:

· msgType – This field contains the value 13.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section ‎7.2.1.1.2.1.
· dtid – This field is set as discussed in Section ‎7.2.1.1.2.1.
· retryCount – This field is set as discussed in Section ‎7.2.1.1.2.1.
· Attributes – This data structure contains the DASignedData attribute and the DeviceRegistrationTypeResponse attribute.
· nbrOfAttrs – This field contains the value 2.
· AttributeStructures – This data structure contains the PubKeyDEAAuthenticator attribute data structure.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This attribute data structure specifies a digital signature of the message.
7.2.1.1.2.1. Generating Device Registration Response Message

The DEA MUST follow the following steps to generate a Device Registration Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Device Registration Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Device Registration Request message is copied to the retryCount in this message.

4. Populate the DASignedData attribute and the DeviceRegistrationTypeResponse attribute.

5. Generate the PubKeyDEAAuthenticator attribute data structure to authenticate this request as per Section ‎7.2.1.1.2.2.
6. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the DEA private key to compute the signature.
7.2.1.1.2.2. Generating PubKeyDEAAuthenticator
The PubKeyDEAAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a DEA to a client. The generation steps are:

1. Find the DEA public key whose hash equals the value in the DEAPubKeyHash attribute present in the PubKeyClientAuthenticator attribute data structure in the preceding Device Registration Request message.

2. In the event that the DEA does not find that public key, the DEA SHOULD choose another public key and include the certificate of that public key in the PubKeyKDCAuthenticator.

3. If the client requested some updated CRLs (in the PubKeyClientAuthenticator), and the DEA is not including a new certificate in the Device Registration Response message, then the DEA SHOULD include the CRLList attribute data structure with a list of requested CRLs. If for whatever reason the DEA is unable to obtain some of the requested CRLs, it should leave them out of the CRLList but MUST NOT return an error. If the DEA was unable to obtain any of the requested CRLs, it MUST omit the CRLList attribute data structure. (It is up to the client policy to decide if it can accept a DEA signature when some of the CRLs are missing.)

4. If the client requested some updated CRLs (in the PubKeyClientAuthenticator), and the DEA included a new certificate in the Device Registration Response message, then the DEA SHOULD include the CRLList attribute data structure with a list of CRLs that correspond to each of the issuers in the DEA certificate chain. If for whatever reason the DEA is unable to obtain some of the CRLs, it should leave them out of the CRLList but MUST NOT return an error. If the DEA was unable to obtain any of the CRLs, it MUST omit the CRLList attribute data structure. (It is up to the client policy to decide if it can accept a DEA signature and a new DEA certificate when some of the CRLs are missing.)
7.2.1.1.2.3. Processing Device Registration Response Message

The client MUST follow the following procedure to process the Device Registration Response message. Note that the client does not send an error message back to the DEA. In some cases, the client will retry with another Device Registration Request message:

1. Parse the message header. If the header parsing fails, pretend that the Device Registration Response message were never received, i.e. continue waiting for a reply to the initial Device Registration Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Device Registration Request message whose stid value matches the dtid header field in the Device Registration Response message. If there is no match, the client proceeds as if the Device Registration Response message were never received.

4. Verify that the retryCount in the preceding Device Registration Request message matches the retryCount in the Device Registration Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Device Registration Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the signature (by using the DEA public key). If the checksum does not verify, this message is dropped and the client proceeds as if the message were never received.
7. Verify that the value of the DASignedData attribute shows that the DEA is authorized by the DA to register the Device. For example, if the DA-signed data is Device-specific, then the value of the DASignedData attribute must include the value of the ClientIdentifier. If the verification fails, then the client MUST abort processing of the message and log the error code DEA_ERROR_KDC_NOT_TRUSTED.
8. Process PubKeyDEAAuthenticator as specified in Section ‎7.2.1.1.2.4.
9. Store the value of the DeviceRegistrationTypeResponse attribute.
7.2.1.1.2.4. Processing PubKeyDEAAuthenticator

The client MUST verify the PubKeyDEAAuthenticator attribute data structure by using the following procedure:
1. The client verifies the digital signature contained in the Signature attribute data structure by using the pre-provisioned DEA public key if the DEA did not include a DEA certificate in PubKeyDEAAuthenticator. If the DEA included a DEA certificate in PubKeyDEAAuthenticator, then the client verifies the signature by using the public key in the certificate. If the signature does not verify, then the Device Registration Response message is dropped and the client proceeds as if the message were never received.

2. In the case that a DEA certificate chain was included in PubKeyKDCAuthenticator but the client does not support this particular certificate type or does not support parsing of DEA certificates altogether, the client MUST abort processing of the message and log the error code DEA_ERR_CERTTYPE_NOSUPP.

3. If the DEA certificate was included in the Device Registration Response message, the client MUST save the new DEA public key for verifying all future reply messages that contain PubKeyKDCAuthenticator.
Change 3: Change to Section 7.2 (Key Transport Mechanisms)

7. Service Keys for Devices

The DEA SHALL assign a unique symmetric service key to each Device. The symmetric service keys provide faster authentication to the DEA in subsequent ticket requests than authentication with public/private keys. The assignment of the service keys is described below and is shown in Figure 2:

[image: image3.emf]Device

DEA

Service Key Request

Service Key Response

Figure 2: Assignment of Service Keys
To obtain a Service Key, a Device SHALL send to the DEA a Service Key Request message that is authenticated by using the private key of the Device. The message SHALL contain the identity of the Device, the identity of the DEA, and a list of symmetric encryption algorithms that are supported by the Device. To check against replays, this message SHALL also contain a NONCE. The Service Key Request message is specified in Section ‎‎7.2.1.2.1.
In response, the DEA SHALL randomly generate a symmetric Service Key, store it, and then send a copy of it in a Service Key Response message to the Device, as specified next. The Service Key Response message SHALL include the Service Key in a DEA-Ticket that has both a clear and an encrypted part. The clear part of the DEA-Ticket SHALL include the identity of the DEA, a Ticket validity period, and a list of symmetric encryption algorithms that are supported by the DEA. The encrypted part of the DEA-Ticket SHALL contain the identity of the Device and information pertaining to the symmetric Service Key. The encrypted part of the DEA-Ticket SHALL be encrypted by using a secret key that is kept private by the DEA. The DEA-Ticket SHALL be integrity protected by a keyed hash that uses a secret key that is kept private by the DEA. The Service Key SHALL be communicated from the DEA to the Device in an encrypted form by using a session key that is derived based on a key agreement algorithm TBD. Note that the key agreement algorithm uses digital signatures for bi-directional proof-of-origin, so that key confirmation is therefore unnecessary. The entire Service Key Response message SHALL be signed by the DEA private key. The Service Key Response message is specified in Section ‎7.2.1.2.2.
Each Device that has a Service Key SHALL periodically update its Service Key based on an expiration time returned in the Service Key Response message. Each Service Key update is performed by repeating the Service Key Request/Response exchange. The default value for the Service Key lifetime is RECOMMENDED to be 30 days. When a Service Key is renewed, the value field in the SkeyVnum attribute associated with the Service Key is incremented by one.
7.2.1.2.1 Service Key Request Message Details

The Service Key Request message has the syntax described in Section ‎6.1. The fields of the message are as follows:

· msgType – This field contains the value 3.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section ‎7.2.1.2.1.1.
· dtid – This field is set as discussed in Section ‎7.2.1.2.1.1.
· retryCount – This field is set as discussed in Section ‎7.2.1.2.1.1.
· Attributes – This data structure contains the following attributes: EncTypeSet, CsumTypeSet, and ReturnAuthData.
· nbrOfAttrs – This field contains the value 3.
· AttributeStructures – This data structure contains the following attribute data structures: KeyAgreementInfo, PubKeyClientAuthenticator, and CertificateChain. The CertificateChain attribute data structure is optional.
· nbrOfAttrStrs – This field contains the value 3 if the CertificateChain attribute data structure is present; else the value is 2.
· Signature – This attribute data structure specifies a digital signature of the message.
7.2.1.2.1.1. Generating Service Key Request Message

The Device MUST follow the following steps to generate a Service Key Request message:

1. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding Service Key Request messages. Continue repeating this step until a unique value is generated.
2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in list of encryption types supported by the client (EncTypeSet).
5. Fill in list of checksum types supported by the client (CsumTypeSet).
6. Fill in the value of the ReturnAuthData – depending on whether the Device wants a copy of the value of the AuthData attribute returned in the reply message.

7. Generate key agreement parameters. The public part of those parameters is added to the message in the KeyAgreementInfo attribute data structure, while the private part is saved in order to decrypt a portion of the subsequent Service Key Response message.
8. Generate the PubKeyClientAuthenticator attribute data structure to authenticate this request as per Section ‎7.2.1.1.1.2.
9. Generate the CertificateChain attribute data structure if the client is not registered with the DEA, or if the client is registered with the DEA and wants to update the client’s certificate chain in the DEA.
10. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Device private key to compute the signature.
After the Device sends out the Service Key Request message, it MUST save the value of the stid header field in order to later validate the matching Service Key Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Service Key Response message and must retry and increment the retryCount value.

7.2.1.2.1.2. Generating PubKeyClientAuthenticator
The PubKeyClientAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a client to the DEA. The generation steps are:

1. Generate ClientName attribute and ClientDomainBaseID attribute. A client MAY set the length field value of ClientDomainBaseID to 0 and not specify a value for ClientDomainBaseID.
2. Fill in the ClientDRMtimeSeconds attribute and the ClientDRMtimeMicroSeconds attribute.

3. Add the DEAPubKeyIdentifier attribute data structure.

4. If the Device previously saved a DEA certificate chain, check if any of the corresponding CRLs are expired. If so, add a RequestCRLs attribute to the PubKeyClientAuthenticator, listing the issuers of the expired CRLs. The DEA will be required to reply with the corresponding up-to-date CRLs.

7.2.1.2.1.3. Processing Service Key Request Message

The DEA MUST perform the following steps to verify the Service Key Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.
4. If the CertificateChain attribute data structure is present in the message, then validate the client certificate chain, extract the client’s public key, and compute the ClientIdentifier from the certificate.

5. Process the PubKeyClientAuthenticator attribute data structure as specified in Section ‎7.2.1.2.1.4.
6. If the key agreement public key in KeyAgreementInfo specified by the client is of insufficient strength (due to the key size or algorithm used) as determined by DEA policy, then the DEA returns an error message with the error code DEA_ERR_KEYAGR_KEY_TOO_WEAK.

7. If the DEA cannot accommodate the requested encryption type, then the DEA returns an error message with the error code DEA_ERR_ETYPE_NOSUPP.
8. If the DEA cannot accommodate the requested checksum type, then the DEA returns an error message with the error code DEA_ERR_SUMTYPE_NOSUPP.
9. If no errors are generated during the processing of this message, then the DEA does one of the following depending on the value of the NewPrincipalFlag attribute:

If the DEA storage has a record that matches the value of the ClientName attribute present in PubKeyClientAuthenticator, and the CertificateChain attribute is not present in the Service Key Request message, then the DEA proceeds to Step ‎10.

Else, if the DEA storage has a record that matches the value of the ClientName attribute present in PubKeyClientAuthenticator, and the CertificateChain attribute is present in the Service Key Request message, then the DEA updates in the record the certificate identifying information needed to later check for revocation, updates the values of EncTypeSet and CsumTypeSet associated with the client, and proceeds to Step ‎10.
Else, if the DEA storage has no record that matches the value of the ClientName attribute present in PubKeyClientAuthenticator, then the DEA creates a new record in the DEA storage. The record includes the value of ClientIdentifier, ClientName, ClientDomainBaseID, DeviceRegistrationTypeResponse, Device public key, certificate identifying information needed to later check for revocation, the values of EncTypeSet and CsumTypeSet for the client, and the value of ClientDRMtimeSeconds. The DEA sets the value of the DeviceRegistrationTypeResponse attribute to 0, i.e. “Not Registered”. If the ClientDomainBaseID has length 0 in the message, then the DEA SHOULD set the ClientDomainBaseID value to a default value.
10. The DEA adds the IPv4Address of the client to the DEA storage record for the client.

11. The DEA generates the Service Key Response message.
7.2.1.2.1.4. Processing PubKeyClientAuthenticator
The DEA MUST verify the PubKeyClientAuthenticator attribute data structure by using the following procedure:

1. Search the DEA storage for a record that matches the value of the ClientName attribute present in PubKeyClientAuthenticator. If a record exists, and the CertificateChain attribute is present in the Service Key Request message, then verify that the ClientIdentifier value present in the record matches the ClientIdentifier value extracted from the CertificateChain. If the values do not match, then the DEA sends an error message with the error code DEA_ERR_HOSTID_CHANGE_PROHIBITED. This prevents a new client intentionally registering with an existing ClientName so as to take advantage of the ClientName’s authorizations.
Else, if a record does not exist in the DEA storage, and the CertificateChain attribute is not present in the Service Key Request message, then the DEA sends an error message with the error code DEA_ERR_OTHER_PRINCIPAL_NOT_FOUND.

2. If the ClientIdentifier has been marked as being revoked in the DEA, then an error message with the error code DEA_ERR_CLIENT_REVOKED is returned.

3. Verify the Signature attribute data structure. If the attribute data structure contains a CsumType attribute, then an error message with the error code ERR_INAPP_CKSUM is generated. If the value of the SigType in the Signature attribute data structure is not supported by the DEA, then the DEA generates a DEA_ERR_SUMTYPE_NOSUPP
 error message. If the signature value that the DEA computes for the Service Key Request message does not match the value contained in the SigValue attribute contained in the Signature attribute data structure, then an error message with DEA_ERROR_INVALID_SIG is returned.

4. Check the value contained in the ClientDRMtimeSeconds attribute. If the value is outside of an acceptable time window (typically +/- 5 minutes), then the DEA rejects the Service Key Request message and returns the ERR_SKEW error message.

5. Otherwise, the DEA computes a SHA-1 hash of the full Service Key Request message and checks if there is already a record for this particular message type (i.e. msgType value 3) with this hash value in a DEA Replay Cache. Each Replay Cache record contains a hash value indexed by a msgType and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes, are kept in the Replay Cache. If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and the ERR_REPEAT error message is returned. If no such entries are found, the processing continues as specified below.

6. The DEA updates the Replay Cache with a record corresponding to this Service Key Request message. The record contains a SHA-1 message hash and the value of the ClientDRMtimeSeconds attribute.

7. Make sure that the value contained in the DEAPubKeyHash attribute in the PubKeyClientAuthenticator attribute data structure matches one of the DEA public keys. If the value does not match any of the public keys possessed by the DEA, then the Service Key Request message MUST be rejected with the error code DEA_ERR_PUBKEY_NOT_FOUND logged into a local file, and the DEA MUST NOT send back an error message (since the Device will be unable to verify it).

7.2.1.2.2 Service Key Response Message Details

The Service Key Response message has the syntax described in Section ‎6.1. The fields of the message are as follows:

· msgType – This field contains the value 4.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section ‎7.2.1.2.2.1.
· dtid – This field is set as discussed in Section ‎7.2.1.2.2.1.
· retryCount – This field is set as discussed in Section ‎7.2.1.2.2.1.
· Attributes – This data structure contains no attributes.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains the following attribute data structures: Ticket, EncryptedData, KeyAgreementInfo, and PubKeyDEAAuthenticator.
· nbrOfAttrStrs – This field contains the value 4.
· Signature – This attribute data structure specifies a digital signature of the message.
7.2.1.2.2.1. Generating Service Key Response Message

The DEA MUST follow the following steps to generate a Service Key Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Service Key Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Service Key Request message is copied to the retryCount in this message.

4. The DEA randomly generates a Session Key.
5. The DEA generates a Ticket, as per Section ‎7.2.1.2.2.2.
6. The DEA chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Service Key Request message with the list of encryption algorithms supported by the DEA. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in EncryptedData.

7. Generate key agreement parameters. The public part of those parameters is added to the message as KeyAgreementInfo, while the private part is used (together with the client’s public part from the Service Key Request message) in the key agreement algorithm to generate a symmetric Service Key.
8. The DEA populates the EncryptedData attribute data structure. The EncType contains the identifier of the encryption algorithm that the DEA chose. The CipherText contains the Session Key type in a KeyType attribute and the Session Key in a KeyValue attribute. The CipherText also contains the Service Key version number (SkeyVnum) attribute for the Service Key. If this is the first Service Key created for the client, then the version number is 1. If this is not the first Service Key created for the client, then a Service Key number already is associated with the record for the client in the DEA storage. So, the Service Key number is incremented by one. In addition, if the client set the RetrunAuthData attribute in the preceding Service Key Request message to 1, then the CipherText also includes the AuthData attribute that is included in the Ticket. The value of the CipherText attribute is encrypted by using the symmetric Service Key.
9. The DEA adds the Service Key and the Service Key version number to the record for the client in the DEA storage. It is RECOMMENDED that the DEA keeps at least two generations of Service Keys for clients in the DEA storage. The DEA SHOULD save the old secret keys of a client for at least the maximum duration of Tickets issued by the DEA for this client.
10. Generate the PubKeyDEAAuthenticator attribute data structure to authenticate this request as per Section ‎7.2.1.2.2.3.
11. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the DEA private key to compute the signature.
7.2.1.2.2.2. Generating Ticket

The DEA generates a Ticket attribute data structure as follows:

1. Fill in the TktVnum with the value 2.0.

2. Fill in the ServerDomainBaseID and ServerName values corresponding to the DEA.

3. Fill in the ClientDomainBaseID and ClientName values corresponding to the client.

4. Fill in the AuthTime attribute value. This is the value of ClientDRMtimeSeconds in the record of the client in the DEA storage.

5. Fill in the EndTime attribute value. This is the expiration time for the Ticket and MAY be set according to a policy communicated to the DEA. The format of this policy and the method to communicate the policy to the DEA are outside the scope of these specifications.

6. Fill in the EncType attribute value. This is the identifier of the algorithm the DEA uses to encrypt PrivateTicketPart.
7. Generate the PrivateTicketPart attribute data structure. This data structure contains the Session Key type in a KeyType attribute, the Session Key in a KeyValue attribute, the ClientDomainBaseID attribute, the ClientName attribute, the IPv4 address of the client in the IPv4Address attribute, and authorization data in the AuthData attribute. PrivateTicketPart is encrypted by using a secret key known only to the DEA. This DEA secret key MAY be generated by the DEA or MAY be communicated to the DEA from some entity outside the scope of these specifications.

8. Fill in the Service Key version number in the SkeyVnum attribute. This version number is for the secret key known only to the DEA.
9. Fill in the values of EncTypeSet and CsumTypeSet for the DEA.
10. Compute the checksum for the Ticket and populate the Signature attribute data structure. Specifically, the DEA chooses a checksum algorithm based on the intersection of the list of algorithms specified in the CsumTypeSet attribute in the preceding Service Key Request message with the list of checksum algorithms supported by the DEA. The DEA then specifies the chosen checksum algorithm identifier in the CsumType attribute. The DEA then computes a checksum over the entire Ticket except for the CsumType and SigValue attributes and populates SigValue with the computed checksum. (During the checksum calculation, the value of the lengthStr field is adjusted to reflect the missing CsumType and SigValue attributes.) The DEA uses the secret key known only to the DEA to compute the checksum for the Ticket.
7.2.1.2.2.3. Generating PubKeyDEAAuthenticator
The PubKeyDEAAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a DEA to a client. The generation steps are:

1. Find the DEA public key whose hash equals the value in the DEAPubKeyHash attribute present in the PubKeyClientAuthenticator attribute data structure in the preceding Service Key Request message.

2. In the event that the DEA does not find that public key, the DEA SHOULD choose another public key and include the certificate of that public key in the PubKeyKDCAuthenticator.

3. If the client requested some updated CRLs (in the PubKeyClientAuthenticator), and the DEA is not including a new certificate in the Service Key Response message, then the DEA SHOULD include the CRLList attribute data structure with a list of requested CRLs. If for whatever reason the DEA is unable to obtain some of the requested CRLs, it should leave them out of the CRLList but MUST NOT return an error. If the DEA was unable to obtain any of the requested CRLs, it MUST omit the CRLList attribute data structure. (It is up to the client policy to decide if it can accept a DEA signature when some of the CRLs are missing.)

4. If the client requested some updated CRLs (in the PubKeyClientAuthenticator), and the DEA included a new certificate in the Service Key Response message, then the DEA SHOULD include the CRLList attribute data structure with a list of CRLs that correspond to each of the issuers in the DEA certificate chain. If for whatever reason the DEA is unable to obtain some of the CRLs, it should leave them out of the CRLList but MUST NOT return an error. If the DEA was unable to obtain any of the CRLs, it MUST omit the CRLList attribute data structure. (It is up to the client policy to decide if it can accept a DEA signature and a new DEA certificate when some of the CRLs are missing.)

7.2.1.2.2.4. Processing Service Key Response Message

The client MUST follow the following procedure to process the Service Key Response message. Note that the client does not send an error message back to the DEA. In some cases, the client will retry with another Service Key Request message:

1. Parse the message header. If the header parsing fails, pretend that the Service Key Response message were never received, i.e. continue waiting for a reply to the initial Service Key Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Service Key Request message whose stid value matches the dtid header field in the Service Key Response message. If there is no match, the client proceeds as if the Service Key Response message were never received.

4. Verify that the retryCount in the preceding Service Key Request message matches the retryCount in the Service Key Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Service Key Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the signature (by using the DEA public key). If the checksum does not verify, this message is dropped and the client proceeds as if the message were never received.
7. Compute the symmetric Service Key by using the content of KeyAgreementInfo with the private part of the key agreement parameters that the client stored when the client sent the preceding Service Key Request message.
8. The client decrypts the value of the Ciphertext attribute in EncryptedData in the reply message by using the Service Key. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a Session Key with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
9. The client processes the Ticket by using the procedure described in Section ‎7.2.1.2.2.5. If there is an error in the Ticket, then a fatal error is reported to the user, and the client MUST NOT retry.
10. Process PubKeyDEAAuthenticator as specified in Section ‎7.2.1.2.2.6.
11. If no errors in the Service Key Response message were detected, the client MUST save the full Ticket in a new entry in its ticket cache until the Ticket expires. Also, the client stores the value of the DeviceRegistrationTypeResponse attribute.
7.2.1.2.2.5. Ticket Processing by Client
A client is normally unable to verify the integrity of a Ticket. Still, a client MUST perform some verification on the received Ticket, as specified below. If the verification below fails at any step, the client application reports it as a fatal error to the user, and the client MUST NOT retry:
1. Parse the Ticket. If the general ticket format does not fit the specification, then verification fails.

2. If the ServerName and ServerDomainBaseID in the Ticket does not match what the client was expecting from the DEA, then verification fails.

3. If the end of the Ticket validity period (End Time) is in the past by more than the clock skew period (usually 5 minutes), then verification fails.

7.2.1.2.2.6. Processing PubKeyDEAAuthenticator

The client MUST verify the PubKeyDEAAuthenticator attribute data structure by using the following procedure:
1. The client verifies the digital signature contained in the Signature attribute data structure by using the pre-provisioned DEA public key if the DEA did not include a DEA certificate in PubKeyDEAAuthenticator. If the DEA included a DEA certificate in PubKeyDEAAuthenticator, then the client verifies the signature by using the public key in the certificate. If the signature does not verify, then the Service Key Response message is dropped and the client proceeds as if the message were never received.

2. In the case that a DEA certificate chain was included in PubKeyKDCAuthenticator but the client does not support this particular certificate type or does not support parsing of DEA certificates altogether, the client MUST abort processing of the message and log the error code DEA_ERR_CERTTYPE_NOSUPP.

3. If the DEA certificate was included in the Service Key Response message, the client MUST save the new DEA public key for verifying all future reply messages that contain PubKeyKDCAuthenticator.
Change 4: Change to Section 7.2 (Key Transport Mechanisms)

7.2.1.3 Import Protocol

Any DRM Agent can Import from any LRM, and an LRM also can import directly to any DRM Agent under the paring mechanism. A DRM Agent that gets an Imported-RO from an LRM MUST be registered with the DEA associated with the LRM. This registration is proved by a Ticket that the DRM Agent uses to obtain an Imported-Rights-Object for the desired Imported-Content.

Figure 3 depicts the messages used in Import. When a DRM Agent wants an Import from an LRM, and the DRM Agent does not have a valid Ticket for the LRM, then the DRM Agent SHALL obtain a Ticket for the LRM before the DRM Agent sends a SAC Key Request message to the LRM. The SAC Key Request message SHALL include an LRM-Ticket, and the LRM-Ticket SHALL be integrity protected by a keyed hash that uses the Session Key obtained from the DEA. There are situations where a DRM Agent with a valid Ticket requests a new Ticket. For example, the DRM Agent may want to renew the expiry date of the Ticket before it actually expires. If the DRM Agent wants an Import from an LRM, and the DRM Agent already has a valid Ticket for the LRM, then the DRM Agent MAY obtain a new Ticket for the LRM, in which case the DRM Agent SHALL discard the old Ticket. A DRM Agent SHALL use a Ticket Request message to request from a DEA associated with an LRM a Ticket for the LRM. The Ticket Request message is specified in Section ‎7.2.1.3.1.
When an LRM has not setup a connection with a DRM Agent and wants to initiate the Import transaction, the LRM sends Import Initiation message to DRM Agent. The Import Initiation message SHALL contain the IDs of ROs to be imported and the identities of the LRM and DRM Agent. If the DRM Agent does not have a valid Ticket for the LRM, then the DRM Agent SHALL obtain a Ticket for the LRM before the DRM Agent sends a SAC Key Request message to the LRM. The SAC Key Request message SHALL include the LRM-Ticket, and the LRM-Ticket SHALL be integrity protected by a keyed hash that uses the Session Key obtained from the DEA. If the DRM Agent already has a valid Ticket for the LRM, then the DRM Agent MAY obtain a new Ticket for the LRM, in which case the DRM Agent SHALL discard the old Ticket. A DRM Agent SHALL use a Ticket Request message to request from a DEA associated with an LRM a Ticket for the LRM.

[image: image4.emf]

DRM Agent

SAC Key Request

SAC Key Response

Imported - RO Request

Imported - RO Response

DR M Agent

DEA

Ticket Request

Ticket Response

SAC Key Request

SAC Key Response

LRM

Imported - RO Request

Imported - RO Response

Import I nitiation Request

Figure 3: Messages used in Import
The Import Initiation Request is to initiate the Import transaction with the DRM Agent, and the Import Initiation Request message SHALL contain the ID of ROs that could be imported and the identities of the LRM and the DRM Agent. To check against replays, this message SHALL also contain a NONCE. If the DRM Agent does not have a valid Ticket for the LRM, then the DRM Agent SHALL obtain a Ticket for the LRM before the DRM Agent sends a SAC Key Request message to the LRM.
The Ticket Request message SHALL contain the identity of the LRM and contain the DEA-Ticket. To check against replays, this message SHALL also contain a NONCE. The DRM Agent SHALL authenticate the message by using a keyed hash that uses the Service Key of the Device that contains the DRM Agent.

Once the DEA validates the Ticket Request message from the DRM Agent, the DEA randomly generates a symmetric Session Key, and then sends a copy of the Session Key in a Ticket Response message to the DRM Agent. The Ticket Response message includes an LRM-Ticket that has both a clear and an encrypted part. The clear part of the LRM-Ticket includes the identity of the LRM and a Ticket validity period. The encrypted part of the LRM-Ticket contains the identity of the DRM Agent and information pertaining to the symmetric Session Key. The encrypted part of the LRM-Ticket is encrypted by using the Service Key of the LRM. The LRM-Ticket SHALL be integrity protected by a keyed hash that uses the Service Key of the LRM. Note that the LRM-Ticket is integrity protected to prevent the DRM Agent from tampering with the content of the LRM-Ticket.
The DEA includes in the Ticket Response message a version of the Session Key encrypted with the Service Key of the Device that contains the DRM Agent. The DEA then authenticates the message by using a keyed hash that uses the Service Key of the Device that contains the DRM Agent.

Once the DRM Agent validates the Ticket Response message from the DEA, the DRM Agent sends a SAC Key Request message to the LRM. The SAC Key Request message includes the LRM-Ticket. The SAC Key Request message is integrity protected by a keyed hash that uses the Session Key obtained from the DEA. The SAC Key Request message is specified in Section ‎7.2.1.3.3.
Once the LRM validates the SAC Key Request message from the DRM Agent, the LRM and DRM Agent SHALL use the Session Key (details TBD) to establish a SAC if a valid SAC does not exist between the DRM Agent and the LRM. If a SAC does exist between them, then the LRM and the DRM Agent SHALL use the SAC (details TBD) for transport of Imported Rights-Objects. The SAC Key Response message is specified in Section ‎7.2.1.3.4.
As long as the DRM Agent has a valid LRM-Ticket and a valid SAC, then the DRM Agent SHALL request Imported Rights-Objects by using Imported-RO Request messages. The Imported-RO Request message is specified in Section ‎7.2.1.3.5. The LRM then SHALL transmit Imported Rights-Objects by using Imported-RO Response messages. The Imported Rights-Objects SHALL contain a <rights> element that is signed by an LRM <signature> element. Details are TBD. The Imported-RO Response message is specified in Section ‎7.2.1.3.6.
7.2.1.3.1 Ticket Request Message Details

The Ticket Request message has the syntax described in Section ‎6.1. The fields of the message are as follows:

· msgType – This field contains the value 5.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section ‎7.2.1.3.1.1.
· dtid – This field is set as discussed in Section ‎7.2.1.3.1.1.
· retryCount – This field is set as discussed in Section ‎7.2.1.3.1.1.
· Attributes – This data structure contains the following attributes: ServerName, ReturnAuthData, EncTypeSet, CsumTypeSet, ClientDRMtimeSeconds, and ClientDRMtimeMicroSeconds.
· nbrOfAttrs – This field contains the value 6.
· AttributeStructures – This data structure contains a Ticket attribute data structures.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This attribute data structure specifies a digital signature of the message.
7.2.1.3.1.1. Generating Ticket Request Message

The Device MUST follow the following steps to generate a Ticket Request message:

1. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding Ticket Request messages. Continue repeating this step until a unique value is generated.
2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ServerName for the LRM.
5. Fill in the value of the ReturnAuthData – depending on whether the Device wants a copy of the value of the AuthData attribute returned in the reply message.

6. Fill in list of encryption types supported by the client (EncTypeSet).

7. Fill in list of checksum types supported by the client (CsumTypeSet).
8. Fill in the ClientDRMtimeSeconds attribute and the ClientDRMtimeMicroSeconds attribute
9. Insert the Ticket attribute data structure received from the DEA, i.e. the DEA Ticket.
10. Generate the Signature attribute data structure. The data structure consists of a CsumType attribute and a SigValue attribute. The value in CsumType is the same as the value of the checksum on the DEA Ticket. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Key contained in the DEA Ticket to compute the checksum.
After the Device sends out the Ticket Request message, it MUST save the value of the stid header field in order to later validate the matching Ticket Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Ticket Response message and must retry and increment the retryCount value.

7.2.1.3.1.2. Processing Ticket Request Message

The DEA MUST perform the following steps to verify the Ticket Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.
4. Verify the DEA Ticket as specified in Section ‎7.2.1.3.1.3. If the DEA Ticket verification fails with a Recoverable error code, save the error code and proceed to the next step without returning an error message yet. If the DEA Ticket verification fails with a Non-Recoverable error code, drop the message and do not return an error.
5. If the DEA cannot accommodate one of the requested encryption types, then the DEA returns an error message with the error code DEA_ERR_ETYPE_NOSUPP.

6. If the DEA cannot accommodate one of the requested checksum types, then the DEA returns an error message with the error code DEA_ERR_SUMTYPE_NOSUPP.

7. Verify the signature attribute. If verification fails for any reason, drop the message and do not return an error. If the DEA Ticket verification earlier resulted in a Recoverable error code, then the DEA must possess the DEA secret key and can use it to extract the DEA Session Key for verifying the signature. (In the case of the ERR_BADKEYVER error code during DEA Ticket verification, the secret key needed to verify the signature may be an old secret key.)

8. If the DEA Ticket verification earlier resulted in a Recoverable error code, at this time return the corresponding error message. The same Session Key that was used to verify the signature in Step ‎7 above MUST now be used to generate a keyed checksum for the error message.

9. Check the ClientDRMtimeSeconds attribute in the Ticket Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

10. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the Ticket Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the Ticket Request message continues as specified below.

11. At this point, the DEA MUST update the Replay Cache with the record corresponding to this Ticket Request message (containing message hash and value of ClientDRMtimeSeconds).

12. The DEA can now retrieve the client record for ClientName from its storage to get the up-todate status and other information for this client. If the ClientName value in the request is not found in the storage then an error message with a DEA_ERR_C_PRINCIPAL_UNKNOWN code is returned. If the credentials of the client have been revoked then an error message DEA_ERR_CLIENT_REVOKED is returned.

13. If the ServerName value is not in the storage, or the DEA is not authorized by the DA to issue tickets for the ServerName, then an error message DEA_ERR_S_PRINCIPAL_UNKNOWN is returned.
14. If the ServerName cannot accommodate one of the requested encryption type, an error message with code DEA_ERR_ETYPE_NOSUPP is returned.
15. If the ServerName cannot accommodate one of the requested checksum type, an error message with code DEA_ERR_SUMTYPE_NOSUPP is returned.
16. If no errors are generated during the processing of the Ticket Request message, then a Ticket Response message is generated.
7.2.1.3.1.3. Verifying DEA Ticket
The DEA MUST verify the DEA Ticket attribute data structure by using the following procedure:

1. Parse the Ticket. If the general ticket format does not fit the specification, then verification fails with the error code ERR_TICKET.

2. If the DEA does not support the ticket version number, then verification fails with the error code ERR_TICKET_VERSION.

3. If the ServerName and ServerDomainBaseID values in the Ticket do not match that of the DEA, then verification fails with the error code ERR_NOT_US.

4. If the version number of the DEA secret key (used to encrypt the PrivateTicketPart) is not the current version used by the DEA, then the DEA does the following:
• If the DEA still possesses the secret key with the version number specified in the DEA Ticket, the DEA MUST use it to authenticate the DEA Ticket (Step ‎5 below) and to decrypt the private ticket part and to extract the Session Key (Step ‎6 below). At this point, an ERR_BADKEYVER error code is generated and saved but the processing of the DEA Ticket continues with the next step. The DEA SHOULD save the old secret keys of the DEA for at least the maximum duration of the DEA Tickets.

• Otherwise, DEA Ticket verification fails immediately with the error code ERR_BADKEYVER.
5. Verify the keyed checksum over the DEA Ticket by using the version of the DEA secret key that is specified in the DEA Ticket. If the DEA no longer supports the checksum type, then verification fails with the error code ERR_TKT_INAPP_CKSUM. If the checksum verification fails, then the overall DEA Ticket verification fails with the error code ERR_BAD_INTEGRITY.

6. Decrypt the private part of the DEA Ticket and then parse the decrypted data. If decryption fails or if parsing fails, then the overall DEA Ticket verification fails with the error code ERR_PRIV_TKT_PART.
7. If the IPv4Address does not match the IP v4 address in of the request message, then the overall DEA Ticket verification fails with the error code ERR_BADIPADDR.
8. If Step ‎4 above previously recorded error code ERR_BADKEYVER, now fail the ticket verification with this error code.

9. If the start of the ticket validity period is in the future by more than the acceptable clock skew (usually configured to be 5 minutes), then verification fails with the error code ERR_TKT_NYV.

10. If the end time of the ticket validity period is passed by more than the acceptable clock skew, then the verification fails with the error code ERR_TKT_EXPIRED.

When an error is detected in Steps 1 through 6 above, the corresponding error code must be considered as Non-Recoverable: the error code MUST NOT be returned by the DEA in an error message. Unless Step 6 succeeds with no errors, the Session Key was not successfully extracted from the DEA Ticket, and, therefore, the DEA cannot authenticate an error message.

When an error is detected after Step 6, the corresponding error code MUST be considered as Recoverable: an error message can be authenticated with a checksum that is keyed with the Session Key.
7.2.1.3.2 Ticket Response Message Details

The Ticket Response message has the syntax described in Section ‎6.1. The fields of the message are as follows:

· msgType – This field contains the value 6.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section ‎7.2.1.3.2.1.
· dtid – This field is set as discussed in Section ‎7.2.1.3.2.1.
· retryCount – This field is set as discussed in Section ‎7.2.1.3.2.1.
· Attributes – This data structure contains the DASignedData attributes.
· nbrOfAttrs – This field contains the value 1.
· AttributeStructures – This data structure contains the following attribute data structures: Ticket, and EncryptedData.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – This attribute data structure specifies a digital signature of the message.
7.2.1.3.2.1. Generating Ticket Response Message

The DEA MUST follow the following steps to generate a Ticket Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Ticket Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Ticket Request message is copied to the retryCount in this message.

4. The DEA randomly generates a Session Key. The DEA MUST assign the type of Session Key based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Ticket Request message with the list of encryption algorithms supported by the ServerName. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in PrivateTicketPart.
5. The DEA generates an LRM Ticket, as per Section ‎7.2.1.3.2.2.
6. The DEA chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Ticket Request message with the list of encryption algorithms supported by the DEA. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in EncryptedData.

7. The DEA populates the EncryptedData attribute data structure. The EncType contains the identifier of the encryption algorithm that the DEA chose. The CipherText contains the Session Key type in a KeyType attribute and the Session Key in a KeyValue attribute. In addition, if the client set the RetrunAuthData attribute in the preceding Ticket Request message to 1, then the CipherText also includes the AuthData attribute that is included in the Ticket. The value of the CipherText attribute is encrypted by using the Session Key contained in the DEA Ticket.
8. Populate the DASignedData attribute.
9. Generate the Signature attribute data structure. Specifically, the DEA chooses a checksum algorithm based on the intersection of the list of algorithms specified in the CsumTypeSet attribute in the preceding Ticket Request message with the list of checksum algorithms supported by the DEA. The data structure consists of a CsumType attribute and a SigValue attribute. The DEA then specifies the chosen checksum algorithm identifier in the CsumType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Key contained in the DEA Ticket to compute the checksum.

7.2.1.3.2.2. Generating LRM Ticket

The DEA generates a Ticket attribute data structure as follows:

1. Fill in the TktVnum with the value 2.0.

2. Fill in the ServerDomainBaseID and ServerName values. The ServerDomainID is the same as the ClientDomainID. The ServerName is copied from the preceding Ticket Request message.
3. Fill in the ClientDomainBaseID and ClientName values corresponding to the client.

4. Fill in the AuthTime attribute value. This is the value of ClientDRMtimeSeconds in the record of the ClientName in the DEA storage.

5. Fill in the EndTime attribute value. This is the expiration time for the Ticket and MAY be set according to a policy communicated to the DEA. The format of this policy and the method to communicate the policy to the DEA are outside the scope of these specifications.
6. Fill in the EncType attribute value. This is the identifier of the algorithm the DEA uses to encrypt PrivateTicketPart.
7. Generate the PrivateTicketPart attribute data structure. This data structure contains the Session Key type in a KeyType attribute, the Session Key in a KeyValue attribute, the ClientDomainBaseID attribute, the ClientName attribute, the IPv4 address of the client in the IPv4Address attribute, and authorization data in the AuthData attribute. PrivateTicketPart is encrypted by using the Service Key for the ServerName.

8. Fill in the Service Key version number in the SkeyVnum attribute. This version number is for the Service Key for the ServerName.
9. Fill in the values of EncTypeSet and CsumTypeSet for the ServerName.
10. Compute the checksum for the LRM Ticket and populate the Signature attribute data structure. Specifically, the DEA chooses a checksum algorithm based on the intersection of the list CsumTypeSet of algorithms in the ServerName record with the list of checksum algorithms supported by the DEA. If this intersection contains more than one checksum algorithm, the DEA MUST select the strongest one. The DEA then specifies the chosen checksum algorithm identifier in the CsumType attribute. The DEA then computes a checksum over the entire Ticket except for the CsumType and SigValue attributes and populates SigValue with the computed checksum. (During the checksum calculation, the value of the lengthStr field is adjusted to reflect the missing CsumType and SigValue attributes.) The DEA uses the Service Key of the ServerName to compute the checksum for the Ticket.

7.2.1.3.2.3. Processing Ticket Response Message

The client MUST follow the following procedure to process the Ticket Response message. Note that the client does not send an error message back to the DEA. In some cases, the client will retry with another Ticket Request message:

1. Parse the message header. If the header parsing fails, pretend that the Ticket Response message were never received, i.e. continue waiting for a reply to the initial Ticket Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Ticket Request message whose stid value matches the dtid header field in the Ticket Response message. If there is no match, the client proceeds as if the Ticket Response message were never received.

4. Verify that the retryCount in the preceding Ticket Request message matches the retryCount in the Ticket Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Ticket Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the keyed checksum (by using the shared session key). If the checksum does not verify, this message is dropped and the client proceeds as if the message were never received.
7. The client decrypts the value of the Ciphertext attribute in EncryptedData in the reply message using the Session Key contained in the DEA Ticket. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a Session Key with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
8. The client processes the LRM Ticket by using the procedure described in Section ‎7.2.1.3.2.4. If there is an error in the LRM Ticket, then a fatal error is reported to the user, and the client MUST NOT retry.
9. Verify that the value of the DASignedData attribute shows that the DEA is authorized by the DA to issue Tickets to the Device, and that the LRM is associated with the DEA. For example, if the DA-signed data is Device-specific, then the value of the DASignedData attribute must include the value of the ClientIdentifier. If the verification fails, then the client MUST abort processing of the message and log the error code DEA_ERROR_KDC_NOT_TRUSTED.
10. If no errors in the Ticket Response message were detected, the client MUST save the full LRM Ticket in a new entry in its ticket cache until the LRM Ticket expires.
7.2.1.3.2.4. LRM Ticket Processing by Client
A client is normally unable to verify the integrity of a Ticket. Still, a client MUST perform some verification on the received Ticket, as specified below. If the verification below fails at any step, the client application reports it as a fatal error to the user, and the client MUST NOT retry:
1. Parse the LRM Ticket. If the general ticket format does not fit the specification, then verification fails.

2. If the ServerName and ServerDomainBaseID in the LRM Ticket does not match what the client was expecting from the DEA, then verification fails.

3. If the end of the LRM Ticket validity period (End Time) is in the past by more than the clock skew period (usually 5 minutes), then verification fails.

7.2.1.3.3 SAC Key Request Message Details

The SAC Key Request message has the syntax described in Section ‎6.1. The fields of the message are as follows:

· msgType – This field contains the value 8.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section ‎7.2.1.3.3.1.
· dtid – This field is set as discussed in Section ‎7.2.1.3.3.1.
· retryCount – This field is set as discussed in Section ‎7.2.1.3.3.1.
· Attributes – This data structure contains the following attributes: DOI_ID, EncTypeSet, CsumTypeSet, ClientDRMtimeSeconds, and ClientDRMtimeMicroSeconds.
· nbrOfAttrs – This field contains the value 5.
· AttributeStructures – This data structure contains the following attribute data structures: Ticket and CiphersuiteSet.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – This attribute data structure specifies a digital signature of the message.
7.2.1.3.3.1. Generating SAC Key Request Message

The Device MUST follow the following steps to generate a SAC Key Request message:

1. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding SAC Key Request messages. Continue repeating this step until a unique value is generated.
2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the DOI_ID attribute.
5. Fill in list of encryption types supported by the client (EncTypeSet).

6. Fill in list of checksum types supported by the client (CsumTypeSet).

7. Fill in the ClientDRMtimeSeconds attribute and the ClientDRMtimeMicroSeconds attribute.
8. Insert the Ticket attribute data structure received from the DEA, i.e. the LRM Ticket.
9. Add the number of ciphersuites and list of ciphersuites that the server can use to generate key. The ciphersuite indicates the content format and an associated combination of cryptographic algorithms (such as authentication and encryption algorithms) supported.
10. Generate the Signature attribute data structure. Specifically, the client chooses a checksum algorithm based on the intersection of the list of algorithms specified in the CsumTypeSet attribute in the LRM Ticket with the list of checksum algorithms supported by the client. The data structure consists of a CsumType attribute and a SigValue attribute. The client then specifies the chosen checksum algorithm identifier in the CsumType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Key contained in the LRM Ticket to compute the checksum.
After the Device sends out the Ticket Request message, it MUST save the value of the stid header field in order to later validate the matching Ticket Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Ticket Response message and must retry and increment the retryCount value.

7.2.1.3.3.2. Processing SAC Key Request Message

The LRM MUST perform the following steps to verify the SAC Key Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.
4. Verify the LRM Ticket as specified in Section ‎7.2.1.3.3.3. If the LRM Ticket verification fails with a Recoverable error code, save the error code and proceed to the next step without returning an error message yet. If the LRM Ticket verification fails with a Non-Recoverable error code, drop the message and do not return an error.
5. If the LRM cannot accommodate one of the requested encryption types, then the DEA returns an error message with the error code DEA_ERR_ETYPE_NOSUPP.

6. If the LRM cannot accommodate one of the requested checksum types, then the DEA returns an error message with the error code DEA_ERR_SUMTYPE_NOSUPP.

7. Verify the signature attribute. If verification fails for any reason, drop the message and do not return an error. If the LRM Ticket verification earlier resulted in a Recoverable error code, then the LRM must possess the LRM Service Key and can use it to extract the LRM Session Key for verifying the signature.

8. If the LRM Ticket verification earlier resulted in a Recoverable error code, at this time return the corresponding error message. The same Session Key that was used to verify the signature in Step ‎4 above MUST now be used to generate a keyed checksum for the error message.

9. Check the ClientDRMtimeSeconds attribute in the SAC Key Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

10. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the SAC Key Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the LRM finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the SAC Key Request message continues as specified below.

11. At this point, the LRM MUST update the Replay Cache with the record corresponding to this SAC Key Request message (containing message hash and value of ClientDRMtimeSeconds).
12. If the LRM cannot accommodate any of the ciphersuites listed by the client, an error message with code ESB_ERR_CIPHERSUITE_NOSUPP is returned.

13. If the specified DOI_ID is not supported, return an error message with the code ESB_ERR_DOI_ID_NOT_RECOGNIZED.
14. The LRM can now retrieve the client record for ClientName from its storage to get the up-todate status and other information for this client. This step MAY be skipped for optimization purposes. If the ClientName value in the request is not found in the storage then an error message with a DEA_ERR_C_PRINCIPAL_UNKNOWN is returned. If the credentials of the client have been revoked then an error message DEA_ERR_CLIENT_REVOKED is returned.

15. If no errors are generated during the processing of the SAC Key Request message, then a SAC Key Response message is generated.

7.2.1.3.3.3. Verifying LRM Ticket
The LRM MUST verify the LRM Ticket attribute data structure by using the following procedure:

1. Parse the LRM Ticket. If the general ticket format does not fit the specification, then verification fails with the error code ERR_TICKET.

2. If the LRM does not support the ticket version number, then verification fails with the error code ERR_TICKET_VERSION.

3. If the ServerName and ServerDomainBaseID values in the LRM Ticket do not match that of the LRM, then verification fails with the error code ERR_NOT_US.

4. If the version number of the LRM Service Key (used to encrypt the PrivateTicketPart) is not the current version used by the LRM, then the LRM does the following:
• If the LRM still possesses the Service Key with the version number specified in the LRM Ticket, the LRM MUST use it to authenticate the LRM Ticket (Step ‎5 below) and to decrypt the private ticket part and to extract the Session Key (Step ‎6 below). The LRM SHOULD save the old Service Keys of the LRM for at least the maximum duration of the LRM Tickets.

• Otherwise, LRM Ticket verification fails immediately with the error code ERR_BADKEYVER.
5. Verify the keyed checksum over the LRM Ticket by using the version of the LRM Service Key that is specified in the LRM Ticket. If the LRM no longer supports the checksum type, then verification fails with the error code ERR_TKT_INAPP_CKSUM. If the checksum verification fails, then the overall DEA Ticket verification fails with the error code ERR_BAD_INTEGRITY.

6. Decrypt the private part of the LRM Ticket and then parse the decrypted data. If decryption fails or if parsing fails, then the overall LRM Ticket verification fails with the error code ERR_PRIV_TKT_PART.
7. If the IPv4Address does not match the IP v4 address in of the request message, then the overall DEA Ticket verification fails with the error code ERR_BADIPADDR.
8. If the start of the ticket validity period is in the future by more than the acceptable clock skew (usually configured to be 5 minutes), then verification fails with the error code ERR_TKT_NYV.

9. If the end time of the ticket validity period is passed by more than the acceptable clock skew, then the verification fails with the error code ERR_TKT_EXPIRED.

When an error is detected in Steps 1 through 5 above, the corresponding error code must be considered as Non-Recoverable: the error code MUST NOT be returned by the LRM in an error message. Unless Step 5 succeeds with no errors, the Session Key was not successfully extracted from the LRM Ticket, and, therefore, the DEA cannot authenticate an error message.

When an error is detected after Step 5, the corresponding error code MUST be considered as Recoverable: an error message can be authenticated with a checksum that is keyed with the Session Key.
7.2.1.3.4 SAC Key Response Message Details

The SAC Key Response message has the syntax described in Section ‎6.1. The fields of the message are as follows:

· msgType – This field contains the value 9.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section ‎7.2.1.3.4.1.
· dtid – This field is set as discussed in Section ‎7.2.1.3.4.1.
· retryCount – This field is set as discussed in Section ‎7.2.1.3.4.1.
· Attributes – This data structure contains no attributes.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains the following attribute data structures: EncryptedData and CiphersuiteType.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – This attribute data structure specifies a digital signature of the message.
7.2.1.3.4.1. Generating SAC Key Response Message

The LRM MUST follow the following steps to generate a SAC Key Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Ticket Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding SAC Key Request message is copied to the retryCount in this message.

4. The LRM uses keying material TBD to secure the SAC.
5. The LRM chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding SAC Key Request message with the list of encryption algorithms supported by the LRM. If this intersection contains more than one encryption algorithm, the LRM MUST select the strongest one. The encryption algorithm is used to encrypt the data in EncryptedData.

6. The DEA populates the EncryptedData attribute data structure. The EncType contains the identifier of the encryption algorithm that the LRM chose. The CipherText contains the keying material TBD type in a KeyType attribute and the keying material TBD in a KeyValue attribute. The value of the CipherText attribute is encrypted by using the Session Key contained in the LRM Ticket.
7. Populate the CiphersuiteType. This is the ContentFormatID and CipherSuiteID pair chosen by the LRM from the CiphersuiteSet sent by the client in the preceding SAC Key Request message.
8. Generate the Signature attribute data structure. The data structure consists of a CsumType attribute and a SigValue attribute. The value in the CsumType attribute is the same as the value of the CsumType attribute in the preceding SAC Key Request message. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Key contained in the LRM Ticket to compute the checksum.
7.2.1.3.4.2. Processing SAC Key Response Message

The client MUST follow the following procedure to process the SAC Key Response message. Note that the client does not send an error message back to the LRM. In some cases, the client will retry with another SAC Key Request message:

1. Parse the message header. If the header parsing fails, pretend that the SAC Key Response message were never received, i.e. continue waiting for a reply to the initial SAC Key Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding SAC Key Request message whose stid value matches the dtid header field in the SAC Key Response message. If there is no match, the client proceeds as if the SAC Key Response message were never received.

4. Verify that the retryCount in the preceding SAC Key Request message matches the retryCount in the SAC Key Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the SAC Key Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the keyed checksum (by using the shared session key). If the checksum does not verify, this message is dropped and the client proceeds as if the message were never received.
10. The client decrypts the value of the Ciphertext attribute in EncryptedData in the reply message using the Session Key contained in the LRM Ticket. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a Session Key with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
11. Attempt to decrypt the keying material TBD in the reply by using the shared session key. If the keying material TBD cannot be decrypted, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the keying material TBD is not of the correct type or length, a fatal error MUST also be reported to the user, and the client MUST NOT retry.
11. If no error in the SAC Key Response message was detected, the client MUST save the keying material TBD.
7.2.1.3.5 Imported-RO Request Message Details

TBD
7.2.1.3.6 Imported-RO Response Message Details

TBD
Change 5: Change to Section 7.2 (Key Transport Mechanisms)

7.2.1.4 dmpPair-Protocol

Any DRM Agent can request Pairing with any other DRM Agent to Move or provide Copy of an Imported-Rights-Object associated with some desired Imported-Content. For two DRM Agents to be Paired, at least one of the Devices must obtain a Ticket from a DEA with which the Device is registered. Only Devices that are registered, i.e. that are User Domain Devices, are allowed to request Pairings.
Figure 4 depicts the messages used in Pairing. When a Source DRM Agent wants to Pair with a Destination DRM Agent, and the Source DRM Agent does not have a valid Ticket for the Destination DRM Agent, then the Source DRM Agent SHALL obtain a Ticket for the Destination DRM Agent. If the Source DRM Agent wants to Pair with a Destination DRM Agent, and the Source DRM Agent already has a valid Ticket for the Destination DRM Agent, then the Source DRM Agent MAY obtain a new Ticket for the Destination DRM Agent, in which case the Source DRM Agent SHALL discard the old Ticket. A DRM Agent SHALL use an Agent Ticket Request message to request from a DEA a Ticket for another DRM Agent. The Agent Ticket Request message is specified in Section ‎7.2.1.4.1.
[image: image5.wmf]Source DRM Agent

DEA

Agent Ticket Request

Agent Ticket Response

SAC Key Request

SAC Key Response

Destination DRM Agent

A2A Imp

-

RO Request

A2A Imp

-

RO Response

Source DRM Agent

DEA

Agent Ticket Request

Agent Ticket Response

SAC Key Request

SAC Key Response

Destination DRM Agent

A2A Imp

-

RO Request

A2A Imp

-

RO Response

Figure 4: Pairing Protocol Messages

The Agent Ticket Request message SHALL contain the identity of the Destination DRM Agent and contain the DEA-Ticket. To check against replays, this message SHALL also contain a NONCE. The Source DRM Agent SHALL authenticate the message by using a keyed hash that uses the Service Key of the Device that contains the Source DRM Agent.
Once the DEA validates the Agent Ticket Request message from the Source DRM Agent, the DEA SHALL randomly generate a symmetric Session Key (also known as a Pairing Secret), and then send a copy of it in an Agent Ticket Response message to the Source DRM Agent, as specified next.
The Agent Ticket Response message SHALL include an Agent-Ticket that has both a clear and an encrypted part. The clear part of the Agent-Ticket SHALL include the identity of the Destination DRM Agent, a Ticket validity period, and the type of registration (i.e. “User Domain Device” or “Not Registered”) of the Destination DRM Agent. The encrypted part of the Agent-Ticket SHALL contain the identity of the Source DRM Agent, information pertaining to the symmetric Session Key, and the type of registration (i.e. “User Domain Device” or “Not Registered”) of the Source DRM Agent. The encrypted part of the Agent-Ticket SHALL be encrypted by using the Service Key of the Destination DRM Agent. The Agent-Ticket SHALL be integrity protected by a keyed hash that uses the Service Key of the Destination DRM Agent. The DEA SHALL include an encrypted version of the Session Key in the Agent Ticket Response message. The DEA also SHALL authenticate the message by using a keyed hash that uses the Service Key of the Device that contains the Source DRM Agent. The Agent Ticket Response message is specified in Section ‎7.2.1.4.2.
Once the Source DRM Agent validates the Agent Ticket Response message from the DEA, the Source DRM Agent SHALL send a SAC Key Request message to the Destination DRM Agent. The SAC Key Request message SHALL include the Agent-Ticket. The LRM-Ticket SHALL be integrity protected by a keyed hash that uses the Session Key obtained from the DEA. The SAC Key Request message is specified in Section ‎7.2.1.3.3.
Once the Destination DRM Agent validates the SAC Key Request message from the Source DRM Agent, the Source DRM Agent and the Destination DRM Agent SHALL use the Session Key/Pairing Secret (details TBD) to establish a shared secret Z that is plugged into the KDF of the Mutual Authentication and Key Exchange (MAKE) transaction of [SCE A2A TS] to derive the default SAC key material. The SAC Key Response message is specified in Section ‎7.2.1.3.4.
As long as the DRM Agent has a valid Agent-Ticket and a valid SAC, then the Source DRM Agent MAY Move Rights associated with Imported-Content to the Destination DRM Agent, subject to the restrictions imposed by the type of registration (i.e. “User Domain Device” or “Not Registered”) of the two Agents, as discussed in Section ‎5.3.1 and Section ‎5.3.4.2
. Details are TBD. The details of the A2A Imp-RO Request message are specified in Section ‎7.2.1.4.3. The details of the A2A Imp-RO Response message are specified in Section ‎7.2.1.4.4.
Note that for A2A-Imp RO Request and Response messaging either the Source Device or the Destination Device can send the Agent Ticket Request, since a Ticket can be used for bi-directional Rights transfers.
7. Agent Ticket Request Message Details

The Agent Ticket Request message has the syntax described in Section ‎6.1. The fields of the message are as follows:

· msgType – This field contains the value 24.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section ‎7.2.1.4.1.1.
· dtid – This field is set as discussed in Section ‎7.2.1.4.1.1.
· retryCount – This field is set as discussed in Section ‎7.2.1.4.1.1.
· Attributes – This data structure contains the following attributes: ServerName, ReturnAuthData, EncTypeSet, CsumTypeSet, ClientDRMtimeSeconds, and ClientDRMtimeMicroSeconds.
· nbrOfAttrs – This field contains the value 6.
· AttributeStructures – This data structure contains a Ticket attribute data structures.
· nbrOfAttrStrs – This field contains the value 1.
· Signature – This attribute data structure specifies a digital signature of the message.
7.2.1.4.7.1. Generating Agent Ticket Request Message

The Source client MUST follow the following steps to generate an Agent Ticket Request message:

1. Generate a pseudo random number for the stid header field of the message. Make sure that this value does not correspond to any outstanding Agent Ticket Request messages. Continue repeating this step until a unique value is generated.
2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ServerName for the LRM.

5. Fill in the value of the ReturnAuthData – depending on whether the Device wants a copy of the value of the AuthData attribute returned in the reply message.

6. Fill in list of encryption types supported by the Source client (EncTypeSet).

7. Fill in list of checksum types supported by the Source client (CsumTypeSet).

8. Fill in the ClientDRMtimeSeconds attribute and the ClientDRMtimeMicroSeconds attribute
9. Insert the Ticket attribute data structure received from the DEA, i.e. the DEA Ticket.
10. Generate the Signature attribute data structure. The data structure consists of a CsumType attribute and a SigValue attribute. The value in CsumType is the same as the value of the checksum on the DEA Ticket. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Key contained in the DEA Ticket to compute the checksum.
After the Device sends out the Agent Ticket Request message, it MUST save the value of the stid header field in order to later validate the matching Agent Ticket Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Agent Ticket Response message and must retry and increment the retryCount value.

7.2.1.4.7.2. Processing Agent Ticket Request Message

The DEA MUST perform the following steps to verify the Agent Ticket Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.
4. Verify the DEA Ticket as specified in Section ‎7.2.1.4.1.3. If the DEA Ticket verification fails with a Recoverable error code, save the error code and proceed to the next step without returning an error message yet. If the DEA Ticket verification fails with a Non-Recoverable error code, drop the message and do not return an error.
5. If the DEA cannot accommodate one of the requested encryption types, then the DEA returns an error message with the error code DEA_ERR_ETYPE_NOSUPP.

6. If the DEA cannot accommodate one of the requested checksum types, then the DEA returns an error message with the error code DEA_ERR_SUMTYPE_NOSUPP.

7. Verify the signature attribute. If verification fails for any reason, drop the message and do not return an error. If the DEA Ticket verification earlier resulted in a Recoverable error code, then the DEA must possess the DEA secret key and can use it to extract the DEA Session Key for verifying the signature. (In the case of the ERR_BADKEYVER error code during DEA Ticket verification, the secret key needed to verify the signature may be an old secret key.)

8. If the DEA Ticket verification earlier resulted in a Recoverable error code, at this time return the corresponding error message. The same Session Key that was used to verify the signature in Step ‎7 above MUST now be used to generate a keyed checksum for the error message.

9. Check the ClientDRMtimeSeconds attribute in the Ticket Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

10. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the Ticket Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the Ticket Request message continues as specified below.

11. At this point, the DEA MUST update the Replay Cache with the record corresponding to this Ticket Request message (containing message hash and value of ClientDRMtimeSeconds).

12. The DEA can now retrieve the client record for ClientName from its storage to get the up-todate status and other information for this client. If the ClientName value in the request is not found in the storage then an error message with a DEA_ERR_C_PRINCIPAL_UNKNOWN is returned. If the credentials of the client have been revoked then an error message DEA_ERR_CLIENT_REVOKED is returned.

13. If the ServerName value is not in the storage, or the DEA is not authorized by the DA to issue tickets for the ServerName, then an error message then an error message DEA_ERR_S_PRINCIPAL_UNKNOWN is returned.

14. If the ServerName cannot accommodate one of the requested encryption type, an error message with code DEA_ERR_ETYPE_NOSUPP is returned.
15. If the ServerName cannot accommodate one of the requested checksum type, an error message with code DEA_ERR_SUMTYPE_NOSUPP is returned.
16. If no errors are generated during the processing of the Agent Ticket Request message, then a Agent Ticket Response message is generated.

7.2.1.4.7.3. Verifying DEA Ticket
The DEA MUST verify the DEA Ticket attribute data structure by using the following procedure:

1. Parse the Ticket. If the general ticket format does not fit the specification, then verification fails with the error code ERR_TICKET.

2. If the DEA does not support the ticket version number, then verification fails with the error code ERR_TICKET_VERSION.

3. If the ServerName and ServerDomainBaseID values in the Ticket do not match that of the DEA, then verification fails with the error code ERR_NOT_US.

4. If the version number of the DEA secret key (used to encrypt the PrivateTicketPart) is not the current version used by the DEA, then the DEA does the following:
• If the DEA still possesses the secret key with the version number specified in the DEA Ticket, the DEA MUST use it to authenticate the DEA Ticket (Step ‎5 below) and to decrypt the private ticket part and to extract the Session Key (Step ‎6 below). At this point, an ERR_BADKEYVER error code is generated and saved but the processing of the DEA Ticket continues with the next step. The DEA SHOULD save the old secret keys of the DEA for at least the maximum duration of the DEA Tickets.

• Otherwise, DEA Ticket verification fails immediately with the error code ERR_BADKEYVER.
5. Verify the keyed checksum over the DEA Ticket by using the version of the DEA secret key that is specified in the DEA Ticket. If the DEA no longer supports the checksum type, then verification fails with the error code ERR_TKT_INAPP_CKSUM. If the checksum verification fails, then the overall DEA Ticket verification fails with the error code ERR_BAD_INTEGRITY.

6. Decrypt the private part of the DEA Ticket and then parse the decrypted data. If decryption fails or if parsing fails, then the overall DEA Ticket verification fails with the error code ERR_PRIV_TKT_PART.
7. If the IPv4Address does not match the IP v4 address in of the request message, then the overall DEA Ticket verification fails with the error code ERR_BADIPADDR.
8. If Step ‎4 above previously recorded error code ERR_BADKEYVER, now fail the ticket verification with this error code.

9. If the start of the ticket validity period is in the future by more than the acceptable clock skew (usually configured to be 5 minutes), then verification fails with the error code ERR_TKT_NYV.

10. If the end time of the ticket validity period is passed by more than the acceptable clock skew, then the verification fails with the error code ERR_TKT_EXPIRED.

When an error is detected in Steps 1 through 6 above, the corresponding error code must be considered as Non-Recoverable: the error code MUST NOT be returned by the DEA in an error message. Unless Step 6 succeeds with no errors, the Session Key was not successfully extracted from the DEA Ticket, and, therefore, the DEA cannot authenticate an error message.

When an error is detected after Step 6, the corresponding error code MUST be considered as Recoverable: an error message can be authenticated with a checksum that is keyed with the Session Key.
7. Agent Ticket Response Message Details

The Ticket Response message has the syntax described in Section ‎6.1. The fields of the message are as follows:

· msgType – This field contains the value 25.
· Pvno – This field contains the value TBD.

· stid – This field is set as discussed in Section ‎7.2.1.4.2.1.
· dtid – This field is set as discussed in Section ‎7.2.1.4.2.1.
· retryCount – This field is set as discussed in Section ‎7.2.1.4.2.1.
· Attributes – This data structure contains the DASignedData attributes.
· nbrOfAttrs – This field contains the value 1.
· AttributeStructures – This data structure contains the following attribute data structures: Ticket, and EncryptedData.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – This attribute data structure specifies a digital signature of the message.
7.2.1.4.8.1. Generating Ticket Response Message

The DEA MUST follow the following steps to generate an Agent Ticket Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Agent Ticket Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Agent Ticket Request message is copied to the retryCount in this message.

4. The DEA randomly generates a Session Key. The DEA MUST assign the type of Session Key based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Ticket Request message with the list of encryption algorithms supported by the ServerName. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in PrivateTicketPart.
5. The DEA generates an Agent Ticket, as per Section ‎7.2.1.4.2.2.
6. The DEA chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Ticket Request message with the list of encryption algorithms supported by the DEA. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in EncryptedData.

7. The DEA populates the EncryptedData attribute data structure. The EncType contains the identifier of the encryption algorithm that the DEA chose. The CipherText contains the Session Key type in a KeyType attribute and the Session Key in a KeyValue attribute. In addition, if the client set the RetrunAuthData attribute in the preceding Ticket Request message to 1, then the CipherText also includes the AuthData attribute that is included in the Ticket. The value of the CipherText attribute is encrypted by using the Session Key contained in the DEA Ticket.
8. Populate the DASignedData attribute.
9. Generate the Signature attribute data structure. Specifically, the DEA chooses a checksum algorithm based on the intersection of the list of algorithms specified in the CsumTypeSet attribute in the preceding Ticket Request message with the list of checksum algorithms supported by the DEA. The data structure consists of a CsumType attribute and a SigValue attribute. The DEA then specifies the chosen checksum algorithm identifier in the CsumType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Key contained in the DEA Ticket to compute the checksum.

7.2.1.4.8.2. Generating Agent Ticket

The DEA generates an AgentTicket attribute data structure as follows:

1. Fill in the TktVnum with the value 2.0.

2. Fill in the ServerDomainBaseID and ServerName values. The ServerDomainID is the same as the ClientDomainID. The ServerName is copied from the preceding Agent Ticket Request message.
3. Fill in the ClientDomainBaseID and ClientName values corresponding to the client.

4. Fill in the AuthTime attribute value. This is the value of ClientDRMtimeSeconds in the record of the ClientName in the DEA storage.

5. Fill in the EndTime attribute value. This is the expiration time for the Agent Ticket and MAY be set according to a policy communicated to the DEA. The format of this policy and the method to communicate the policy to the DEA are outside the scope of these specifications.

6. Fill in the EncType attribute value. This is the identifier of the algorithm the DEA uses to encrypt PrivateTicketPart.
7. Generate the PrivateTicketPart attribute data structure. This data structure contains the Session Key type in a KeyType attribute, the Session Key in a KeyValue attribute, the ClientDomainBaseID attribute, the ClientName attribute, the IPv4 address of the client in the IPv4Address attribute, and authorization data in the AuthData attribute. Also, the DEA includes the DeviceRegistrationTypeResponse attribute for the Source client registration in the AuthData attribute. PrivateTicketPart is encrypted by using the Service Key for the ServerName.

8. Fill in the Service Key version number in the SkeyVnum attribute. This version number is for the Service Key for the ServerName.

9. Fill in the values of EncTypeSet and CsumTypeSet for the ServerName.
10. Fill in the DeviceRegistrationTypeResponse attribute based on the status of the Destination client registration.
11. Compute the checksum for the Agent Ticket and populate the Signature attribute data structure. Specifically, the DEA chooses a checksum algorithm based on the intersection of the list CsumTypeSet of algorithms in the ServerName record with the list of checksum algorithms supported by the DEA. If this intersection contains more than one checksum algorithm, the DEA MUST select the strongest one. The DEA then specifies the chosen checksum algorithm identifier in the CsumType attribute. The DEA then computes a checksum over the entire Ticket except for the CsumType and SigValue attributes and populates SigValue with the computed checksum. (During the checksum calculation, the value of the lengthStr field is adjusted to reflect the missing CsumType and SigValue attributes.) The DEA uses the Service Key of the ServerName to compute the checksum for the Ticket.

7.2.1.4.8.3. Processing Agent Ticket Response Message

The Source client MUST follow the following procedure to process the Agent Ticket Response message. Note that the client does not send an error message back to the DEA. In some cases, the client will retry with another Agent Ticket Request message:

1. Parse the message header. If the header parsing fails, pretend that the Agent Ticket Response message were never received, i.e. continue waiting for a reply to the initial Ticket Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Agent Ticket Request message whose stid value matches the dtid header field in the Ticket Response message. If there is no match, the client proceeds as if the Agent Ticket Response message were never received.

4. Verify that the retryCount in the preceding Agent Ticket Request message matches the retryCount in the Ticket Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Agent Ticket Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the keyed checksum (by using the shared session key). If the checksum does not verify, this message is dropped and the client proceeds as if the message were never received.
7. The client decrypts the value of the Ciphertext attribute in EncryptedData in the reply message using the Session Key contained in the DEA Ticket. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a Session Key with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
8. The client processes the Agent Ticket by using the procedure described in Section ‎7.2.1.4.2.4. If there is an error in the Agent Ticket, then a fatal error is reported to the user, and the client MUST NOT retry.

9. Verify that the value of the DASignedData attribute shows that the DEA is authorized by the DA to issue Tickets to the Source Device and Destination Device. For example, if the DA-signed data is Device-specific, then the value of the DASignedData attribute must include the value of the ClientIdentifier. If the verification fails, then the client MUST abort processing of the message and log the error code DEA_ERROR_KDC_NOT_TRUSTED.
12. If no errors in the Agent Ticket Response message were detected, the client MUST save the full Agent Ticket in a new entry in its ticket cache until the Agent Ticket expires. Also, the client MUST store the value of the DeviceRegistrationTypeResponse attribute of the Destination client.
7.2.1.4.8.4. Agent Ticket Processing by Client
A Source client is normally unable to verify the integrity of an Agent Ticket. Still, a client MUST perform some verification on the received Ticket, as specified below. If the verification below fails at any step, the client application reports it as a fatal error to the user, and the client MUST NOT retry:

4. Parse the Agent Ticket. If the general ticket format does not fit the specification, then verification fails.

5. If the ServerName and ServerDomainBaseID in the Agent Ticket does not match what the client was expecting from the DEA, then verification fails.

6. If the end of the Agent Ticket validity period (End Time) is in the past by more than the clock skew period (usually 5 minutes), then verification fails.

7. A2A Imp-RO Request Message Details

TBD
7. A2A Imp-RO Response Message Details

TBD

�

�

�Editor – Please insert dynamic links

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 52)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 44 (of 52)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

