Doc# OMA-DRM-2008-0130R05-CR_SCR_A2A_TS_Proposed_Changes_to_Section_9.7.doc[image: image4.jpg]
Change Request

Doc# OMA-DRM-2008-0130R05-CR_SCR_A2A_TS_Proposed_Changes_to_Section_9.7.doc
Change Request

Change Request

	Title:
	SCE A2A TS Proposed Changes to Section 9.7
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DRM

	Doc to Change:
	OMA-TS-SCE_A2A-V1_0_0-20080324-D.doc

	Submission Date:
	9 Apr 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Aram Perez, Qualcomm, aramp@qualcomm.com

	Replaces:
	n/a

1 Reason for Change

This CR provides the Proposed Change to SCE CONRR A2A comments QC028, F034, F035, F036, F037, F038, F039, F040, E019, A2A-004, L012, PH033, PH034, MOT-A2A001, MOT-A2A002, F042, E020, E021, L013, E022, F043, E023 and F044.

2 Impact on Backward Compatibility

None.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Qualcomm recommends that the DRM group approve this CR.

6 Detailed Change Proposal

Change 1: Remove section 3.6

This section is no longer needed and can be removed.

Change 2: Change section 9.7 as follows:

9.7 Move RO Transaction

The Move RO transaction is used by the DRM Requestor to Move a Rights Object (RO) with a <move> permission to a DRM Agent. This transaction MUST take place using a SAC. This transaction MUST NOT be performed if the DRM Requestor’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section Error! Reference source not found.). The following figure illustrates the Move RO transaction.

[image: image2.png]
Figure 1: Move RO Transaction
In order for this transaction to take place, the following MUST be performed:

1. The DRM Requestor performs the following:

i.
b. It checks if the RO has the <move> permission. The “allowPartial” attribute MUST be “true” if a Partial Move is to be performed. If the <move> permission is not present, the Move RO transaction is terminated. Otherwise, the following is performed:

i. If there is a <system> constraint, the DRM Requestor checks the <context> child element(s) of the <system> constraint. If no <context> child element identifies the SCE protocol, the Move RO transaction is terminated.
ii. If there is a <count> constraint, then it checks the current count value in the state information of the RO. If the current move count is 0, the Move RO transaction is terminated. Otherwise,
iii. the DRM Requestor decrements the current move count value in the state information of the RO.

c. It checks the entity type that created the RO. If the RO was created by an RI, the DRM Requestor proceeds to step 1.c. Otherwise, the following is performed:
i. If the LRM’s certificate does not have the localRightsManagerDevice extended key purpose (see [SCE-LRM]), then the RO MUST have a <userDomain> constraint. If the constraint is not present, the Move RO transaction is terminated.
ii. If the LRM’s certificate has the localRightsManagerDevice extended key purpose, the RO MUST be a Device RO. If it is not a Device RO, the Move RO transaction is terminated.
d. It checks if the RO has a <userDomain> constraint. If the constraint is present, the DRM Requestor checks its User Domain Authorization (see [SCE-DOM]). If the User Domain Authorization is expired, the Move RO transaction is terminated.
e. It marks the RO being Moved as unusable. If the RO is stateful and just a portion of the RO is being Moved (Partial Rights, see section Error! Reference source not found.), then that portion being Moved is marked as unusable.

f. It generates a random moveHandle and creates a Move context with the moveHandle, the REK of the RO being Moved and the DRM Agent ID.
2. The DRM Requestor generates a MoveRoRequest with the information of the RO (or portion) being Moved to the DRM Agent and moveHandle (from step 1.d). The information of the RO (or portion) is represented as a RightsObjectContainer. If the RO is stateful, the StateInformation field MUST be present. If the RO contains a <userDomain> constraint, the UserDomainAuthorization field MUST contain the User Domain Authorization for the DRM Requestor.
3. The DRM Requestor sends the MoveRoRequest to the DRM Agent, applying the replay protection mechanism described in section Error! Reference source not found..

4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section Error! Reference source not found..

b. It verifies the integrity of the request. If the integrity check fails, it sets MoveRoResponse.Status to IntegrityVerificationFailed and proceeds to step 5.

c. It validates the fields of the MoveRoRequest. If any field is invalid, it sets MoveRoResponse.Status to InvalidField and proceeds to step 5.

d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications fails, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

e. It checks that the RO has the <move> permission. If it does not, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

f.
g. If the RO is stateful, it validates that the StateInformation is consistent with the original state in the RO (see section 5.5). If any state is invalid, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

h. It checks the entity that created the RO. If the RO was created by an RI, the DRM Requestor proceeds to step 4.i.

i.
j. If the LRM’s certificate only has the localRightsManagerDomain extended key purpose (see [SCE-LRM]), then the RO MUST have a <userDomain> constraint. If the constraint is not present, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
k. It checks whether the RO has a <userDomain> constraint. If not, the DRM Agent proceeds to step 4.j. Otherwise, the DRM Agent performs the following checks:

i. It checks if it has a current record (whether installed or waiting to be installed) of an RO with the same ROID. If the duplicate RO exists, the DRM Agent sets CopyRoResponse.Status to DuplicateRightsObject and proceeds to step 5.
ii. It checks if an LRM created the RO. If an LRM created the RO, the DRM Agent checks if the LRM’s certificate has the localRightsManagerDomain extended key purpose. If the certificate does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
iii. It validates the UserDomainAuthorization for the DRM Requestor. If the validation fails, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5. Validation MUST include the following:

a. Verifying the signature

b. User Domain Authorization is not expired

c. Entity ID of User Domain Authorization matches ID of DRM Requestor
iv. It checks that the User Domain Authorization of the <party> element of the RO corresponds to the RI/LRM that signed the <rights> element. If <party> element does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
v. It checks that the User Domain baseID of the <userDomainID> element within the User Domain Authorization in the <party> element of the RO is the same as the User Domain baseID of the <userDomainID> element within the UserDomainAuthorization field. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
vi. It checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

vii. If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets MoveRoResponse.Status to LowUserDomainGeneration and proceeds to step 5.
l. It checks if it has enough room to install the RO. If it does not, it sets MoveRoResponse.Status to NotEnoughSpace and proceeds to step 5.

m.
n. It saves moveHandle and associates moveHandle with the RO (which MUST be be installed yet).

o. It sets MoveRoResponse.Status to Success.
5. The DRM Agent sends the MoveRoResponse to the DRM Requestor, applying the replay protection mechanism described in section Error! Reference source not found..

6. The DRM Requestor processes the response as follows:

a. It processes the response for replay as described in section Error! Reference source not found..

b. If the integrity verification of the response fails or MoveRoResponse.Status is not Success, it determines if it can restart the Move RO transaction at step 2. If it does not restart the transaction, the DRM Requestor performs the following:

i. It marks the RO (or portion) as usable.

ii. If the <move> permission had a <count> constraint, it increments the current move counter of the state information.
iii.
iv. It terminates the Move RO transaction.

c. It deletes the RO (or portion) that was Moved (but still keeps the corresponding Move context. Note: if the RO being Moved has been backed up, the Backed Up RO MUST NOT be restored.
7.
8. The DRM Requestor generates a MoveRekRequest with the data from the Move context.
9. The DRM Requestor sends the MoveRekRequest to the DRM Agent, applying the replay protection mechanism described in section Error! Reference source not found..

10. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section Error! Reference source not found..

b. It validates the fields of the MoveRekRequest. If any field is invalid, it sets MoveRekResponse.Status to InvalidField and proceeds to step 10.
c. It verifies the integrity of the request. If the integrity check fails, it sets MoveRekResponse.Status to IntegrityVerificationFailed and proceeds to step 10.

d. It checks if it has an RO that corresponds to the moveHandle. If it does not have a corresponding RO, it set MoveRekResponse.Status to UnknownHandle and continues with step 10.

e. It decrypts MoveRekRequest.Body.EncryptedRek. Note: if the RO is a User Domain RO with a <userDomain> constraint, and the DRM Agent is not yet a member of the User Domain (i.e. it does not have the UDK), the DRM Agent MUST join the User Domain to receive a copy of the UDK on order to fully decrypt the REK.
f.
g. It marks the RO that corresponds to the moveHandle as usable.

h. It sets MoveRekResponse.Status to Success.

11. The DRM Agent sends the MoveRekResponse to the DRM Requestor, applying the replay protection mechanism described in section Error! Reference source not found..

12. The DRM Requestor processes the response as follows:

a. It processes the response for replay as described in section Error! Reference source not found..

b. If the integrity verification of the response fails or MoveRekResponse.Status is not Success, it determines if it can restart the Move RO transaction at step 2 or step 7. If it does not restart the transaction, the DRM Requestor performs the following:

i. It marks the RO (or portion) as usable.

ii. If the <move> permission had a <count> constraint, it increments the current move counter of the state information.
iii.
iv. It terminates the Move RO transaction.

c. It removes the corresponding Move context.

d. If the Moved RO was stateless, the DRM Requestor caches the ROID to prevent the restoration of the Moved RO.
e. At this point the Move RO transaction has successfully completed.

9.7.1 MoveRoRequest

A MoveRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 timeStampPresent
1
bslbf
 stateInfoPresent
1
bslbf
 udaPresent
1
bslbf
 rfu
5
bslbf
 moveHandle
64
uimsbf
 RoAlias()
 SourceAlias()
 SourceId()
 if(timeStampPresent){
 SourceTimeStamp()
 }
 RightsObjectContainer()
 if(stateInfoPresent){
 StateInformation()
 }

 CertificateChain()
 if(udaPresent){
 UserDomainAuthorization()
 }
}

RoAlias(){
 String80()
}

DomainAlias(){
 String80()
}

SourceAlias(){
 String80()
}

SourceId(){
 EntityId()
}

TimeStamp(){
 year
14
uimsbf

 month
4
uimsbf

 day
5
uimsbf

 hour
5
uimsbf

 minute
6
uimsbf

 second
6
uimsbf

}

UserDomainAuthorization(){
 OctetString16()
}

The fields are defined as follows:

·
· timeStampPresent – this is a boolean field, that if true, indicates that the source (RI or LRM) TimeStamp field is present.

· stateInfoPresent – this is a boolean field, that if true, indicates that the StateInformation field is present.

· rfu – this is a 5 bit field that is reserved for future use. When sending the request, MUST be set to 0. When processing this field, its value MUST be ignored.
· moveHandle – this field contains a random 64 bit unsigned integer that is used to correlate the MoveRoRequest with the MoveRekRequest.
· RoAlias – this field contains an optional alias for the RO. It is of type String80 which is defined in section Error! Reference source not found..

· DomainAlias – this field contains an optional alias for the domain if the RO is a domain RO. It is of type String80 which is defined in section Error! Reference source not found..

· SourceAlias – this field contains an optional alias for the Rights Issuer or LRM that created the original RO. It is of type String80 which is defined in section Error! Reference source not found..

· SourceId – this field contains the identity of the Rights Issuer or LRM that created the original RO. It is of type EntityId which is defined in section Error! Reference source not found..

· RightsObjectContainer – this field contains an RO as defined in section Error! Reference source not found..

· StateInformation – this field, if present, contains the state information for the RO being Moved. This field is defined in section Error! Reference source not found.. This field MUST be present if the RO is stateful.
· year – this field contains the year – 2000 of the timestamp. Range is 0 – 16383, corresponding to the years 2000 – 18,383.

· month – this field contains the month of the timestamp, with 0 representing January. Range is 0 – 11.

· day – this field contains the day – 1 of the month of the timestamp. Range is 0 – 30.

· hour – this field contains the hour of the timestamp. Range is 0 – 23.

· minute – this field contains the minute of the timestamp. Range is 0 – 59.

· second – this field contains the seconds of the timestamp. Range is 0 – 59.

· CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the original RO. This field is defined in section Error! Reference source not found..

· UserDomainAuthorization – this field, if present, contains the User Domain Authorization for the DRM Requestor. This field MUST be present if the RO being Moved has a <userDomain> constraint.
·
9.7.2 MoveRoResponse

A MoveRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 1: MoveRoResponse Status Values
	Status Values

	Success

	InvalidField

	InvalidRightsObject

	NotEnoughSpace

	IntegrityVerificationFailed

	LowUserDomainGeneration

	

The body of a MoveRoResponse is empty and is defined as follows:

Body(){

}
9.7.3 MoveRekRequest

A MoveRekRequest is sent as a protected request and its body is defined as follows:

Body(){
 moveHandle
64
uimsbf
 EncryptedRek()
}

EncryptedRek(){
 EncryptedData()
}

Rek(){
 for(i = 0; i < 16; i++){

 byte
8
uimsbf

 }

}

The fields are defined as follows:

· moveHandle – this field contains a random 64 bit unsigned integer that is used to correlate the MoveRoRequest with the MoveRekRequest.
· EncryptedRek – this field contains an encrypted REK. If the RO has a <userDomain> constraint, the REK is first encrypted with the (current generation of the) UDK (for the User Domain) using [AES-WRAP] and then the wrapped REK is encrypted with the SK using the negotiated algorithm. If the RO does not have a <userDomain> constraint, the REK is encrypted by the SK using the negotiated algorithm. The field is of type EncryptedData which is defined in section Error! Reference source not found..

·
· Rek – this field contains an REK.
9.7.4 MoveRekResponse

A MoveRekResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 2: MoveRekResponse Status Values
	Status Values

	Success

	InvalidField

	UnknownHandle

	IntegrityVerificationFailed

The body of a MoveRekResponse is empty and is defined as follows:
Body(){

}
9.7.5

Change 3: Add a new section 9.x for the Copy RO Operation

9.x Copy RO Operation

The Copy RO operation is only used by a DRM Requestor to Copy a <userDomain>-constrained Rights Object (RO) with a <copy> permission to a DRM Agent. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requestor’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section Error! Reference source not found.). The following figure illustrates the Copy RO operation.

[image: image3.png]
Figure 2: Copy RO Operation
In order for this operation to take place, the following MUST be performed:

1. The DRM Requestor performs the following:

a. It checks if the RO has the <copy> permission. If the <copy> permission is not present, the Copy RO operation is terminated. Otherwise, the following is performed:

i. If there is a <system> constraint, the DRM Requestor checks the <context> child element(s) of the <system> constraint. If no <context> child element identifies the SCE protocol, the Copy RO operation is terminated.
ii. If there is a <count> constraint, then it checks the current count value in the state information of the RO. If the current copy count is 0, the DRM Requestor terminates the Copy RO operation. Otherwise, it decrements the current copy count value in the state information of the RO. However, when the state information is sent in the CopyRoRequest, the current copy count MUST be set to zero

b. It checks the entity type that created the RO. If an RI created the RO, the DRM Requestor proceeds to step 1.d.

c. If the LRM’s certificate does not have the localRightsManagerDomain extended key purpose (see [SCE-LRM]), the Copy RO operation is terminated.
d. It checks its User Domain Authorization ([SCE-DOM]). If the User Domain Authorization is expired, the Copy RO operation is terminated.

e. It checks if the RO contains a <userDomain> constraint. If there is no <userDomain> constraint, it terminates the Copy RO operation.
2. The DRM Requestor generates a CopyRoRequest with the information for the RO being Copied to the DRM Agent.

3. The DRM Requestor sends the CopyRoRequest to the DRM Agent, applying the replay protection mechanism described in section Error! Reference source not found..

4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section Error! Reference source not found..

b. It verifies the integrity of the request. If the integrity check fails, the DRM Agent sets CopyRoResponse.Status to IntegrityVerificationFailed and proceeds to step 5.

c. It validates the fields of the CopyRoRequest. If any field is invalid, the DRM Agent sets CopyRoResponse.Status to InvalidField and proceeds to step 5.

d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications fails, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

e. It checks if it has a current record (whether installed or waiting to be installed) of an RO with the same ROID. If the duplicate RO exists, the DRM Agent sets CopyRoResponse.Status to DuplicateRightsObject and proceeds to step 5.
f. It checks that the RO has the <copy> permission. If it does not, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

g. It checks the entity that created the RO. If the RO was created by an RI, the DRM Requestor proceeds to step 4.h.

h. If the LRM’s certificate does not have the localRightsManagerDomain extended key purpose (see [SCE-LRM]), the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

i. It checks if the RO has a <userDomain> constraint. If the constraint is not present, the DRM Agent sets CopyROResponse.Status to InvalidRightsObject and proceeds to step 5.
j. It validates the UserDomainAuthorization for the DRM Requestor. If the validation fails, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5. Validation MUST include the following:

a. Verifying the signature

b. User Domain Authorization is not expired

c. Entity ID of User Domain Authorization matches ID of DRM Requestor
k. It checks that the User Domain Authorization of the <party> element of the RO corresponds to the RI/LRM that signed the <rights> element. If it does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
l. It checks that the User Domain baseID of the <userDomainID> element within the User Domain Authorization in the <party> element of the RO is the same as the User Domain baseID of the <userDomainID> element within the UserDomainAuthorization field. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
m. If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
n. It checks if it has enough room to install the RO. If it does not, it sets CopyRoResponse.Status to NotEnoughSpace and proceeds to step 5.

o. If the DRM Agent is already a member of the User Domain, it installs the RO per [DRM-v2.1] except that the replay cache is not considered. When installed, this RO loses the <copy> permission, i.e. the DRM Agent, acting as a DRM Requestor, SHALL NOT Copy the RO to another DRM Agent. Note: if the DRM Agent is not a member of the User Domain, it will not be able to decrypt the REK and install the RO until it joins the User Domain and receives a copy of the UDK.

p. It sets CopyRoResponse.Status to Success.
5. The DRM Agent sends the CopyRoResponse to the DRM Requestor, applying the replay protection mechanism described in section Error! Reference source not found..

6. The DRM Requestor processes the response as follows:

d. It processes the response for replay as described in section Error! Reference source not found..

e. If CopyRoResponse.Status is not Success, it determines if it can restart the Copy RO operation at step 2. If it does not restart the operation, the DRM Requestor performs the following:

i. If the <copy> permission had a <count> constraint, it increments the current move counter of the state information.
ii. It terminates the Copy RO operation.

f. At this point the Copy RO operation has successfully completed.

9.x.1 CopyRoRequest

A CopyRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 timeStampPresent
1
bslbf
 rfu
7
bslbf
 RoAlias()
 SourceAlias()
 SourceId()
 if(timeStampPresent){
 TimeStamp()
 }
 RightsObjectContainer()
 EncryptedRek()
 CertificateChain()
 UserDomainAuthorization()
}

EncryptedRek(){
 EncryptedData() //Contains an encrypted REK
}

The fields are defined as follows:

· imeStampPresent – this is a boolean field, that if true, indicates that the source (RI or LRM) TimeStamp field is present.

· rfu – this is a 7 bit field that is reserved for future use. When sending the request, MUST be set to 0. When processing this field, its value MUST be ignored.
· RoAlias – this field contains an optional alias for the RO. It is defined in section 9.7.1.

· DomainAlias – this field contains an optional alias for the domain if the RO is a domain RO. It is defined in section 9.7.1.

· SourceAlias – this field contains an optional alias for the Rights Issuer or LRM that created the original RO. It is defined in section 9.7.1.

· SourceId – this field contains the identity of the Rights Issuer or LRM that created the original RO. It is defined in section 9.7.1.

· RightsObjectContainer – this field contains an RO as defined in section Error! Reference source not found..

· EncryptedRek – this field contains an REK that has been encrypted twice. The REK is first encrypted with the UDK (for the User Domain) using [AES-WRAP] and then the wrapped REK is encrypted with the SK using the negotiated algorithm. The field is of type EncryptedData which is defined in section Error! Reference source not found.. A Rek field is defined in section 9.7.1.

· TimeStamp – this field constains the timestamp of the Rights Issuer or LRM that created the original RO. It is defined in section 9.7.1.
· CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the original RO. This field is defined in section Error! Reference source not found..
· UserDomainAuthorization – this field contains the User Domain Authorization for the DRM Requestor.
9.x.2 CopyRoResponse

A CopyRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 3: CopyRoResponse Status Values
	Status Values

	Success

	InvalidField

	InvalidRightsObject

	DuplicateRightsObject

	NotEnoughSpace

	IntegrityVerificationFailed

The body of a CopyRoResponse is empty and is defined as follows:
Body(){

}

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 10 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

