Doc# OMA-DRM-2008-0247R03-CR_Proposal_for_Modified_Construction_of_DBREK[image: image2.jpg]
Change Request

Doc# OMA-DRM-2008-0247R03-CR_Proposal_for_Modified_Construction_of_DBREK
Change Request

Change Request

	Title:
	Proposal for Modified Construction of DBREK
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA DRM

	Doc to Change:
	OMA-TS-SCE_A2A-V1_0-20080528-D

	Submission Date:
	16Jun 2008

	Classification:
	 FORMCHECKBOX
0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	David Kravitz, Motorola, david.kravitz@motorola.com

	Replaces:
	n/a

1 Reason for Change

The purpose of this CR is to close comment MOT-A2A001. The proposed change included herein is different than that mentioned in the comment, because subsequent to submission of the comment there was group discussion that the DRM Agent should not have to be a member of the User Domain at the time of the Rights transfer.

Unlike out-of-band communication of a Domain RO, as part of A2A Rights transfer the DRM Requestor indicates any required State Information, where this data could be undetectably falsified when transmitted by an unknown-compromised DRM Requestor (as long as State Information consistency checks by the DRM Agent succeed). An unknown-compromised DRM Requestor could also misuse current state: For example, if an RO includes a <copy> permission, an unknown-compromised DRM Requestor could perform more Copy operations than are permitted based on the RO as previously received by that Device. Therefore, from a security perspective the system should mandate that Devices are required to join the User Domain prior to acting as DRM Requestors relative to User Domain ROs corresponding to the particular User Domain. This ensures that the DEA responsible for the User Domain is aware of the identities of such Devices. The revised construction of DBREK proposed here addresses this issue by basing the computation on MDK rather than DDK and by requiring a recipient-dependent translation of the REK value.

Note that this CR is not intended to make changes to the processing that are needed if the DRM Agent is not required to join the User Domain prior to completing the Rights transfer – The processing of the PutRekRequest will have to be modified so that recovery of REK is not required prior to determining PutRekResponse Status and formulating the PutRekResponse.
R02 specifies the truncation as the 16 least significant bytes of the Entity ID of the DRM Agent.
R03 corrects the term “16 least significant bytes” to “first 16 bytes.”
2 Impact on Backward Compatibility

No impact on backward compatibility is anticipated.

3 Impact on Other Specifications

No impact on other specifications is anticipated.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The author requests that the CR be agreed and incorporated into the current SCE A2A Technical Specification draft.

6 Detailed Change Proposal

Modify the text of section 9.7 (and its subsections) to accommodate a modified construction of DBREK.
9.7 Put RO Transaction

The Put RO transaction is used by the DRM Requestor to Move (put) a Rights Object to a DRM Agent. This transaction MUST take place using a SAC. This transaction MUST NOT be performed if the DRM Requestor’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The following figure illustrates the Put RO transaction.

[image: image1.png]
Figure 8: Put RO Transaction
In order for this transaction to take place, the following MUST be performed:

1. The DRM Requestor performs the following:

a. It checks whether the Rights Object was created by an LRM. If it was created by an LRM and the LRM’s certificate only has the localRightsManagerDomain extended key purpose (see [SCE-LRM], Appendix C.1), it terminates the Put RO transaction.
b. In the case of a Move, it checks if the Rights Object has the <move> permission. The “allowPartial” attribute MUST be “true” if a Partial Move is to be performed. In the case of a Copy, it checks if the Rights Object has a <copy> permission. If the Rights Object cannot be Moved or Copied, the Put RO transaction is terminated. Otherwise, the following is performed:

i. If there is a <system> constraint, then it checks the <context> child element(s) of the <system> constraint. If no <context> child element identifies the SCE protocol, then the Put RO transaction is terminated.
ii. If there is a <count> constraint, then it checks the current count value in the state information of the Rights Object. In case of a Move, if the current move count is 0, then it terminates the Put RO transaction. In case of a Copy, if the current copy count is 0, then it terminates the Put RO transaction.

iii. The current move or copy count value in the state information of the Rights Object is decremented.

c. In case of a Move, it marks the Rights Object being Moved as unusable. If the Rights Object is stateful and just a portion of the Rights Object is being Moved (Partial Rights, see section 5.3), then that portion being Moved is marked as usuable.

d. It generates a random PutRoHandle and caches the PutRoHandle, the REK of the Rights Object being Moved or Copied, and the DRM Agent ID.
2. The DRM Requestor generates a PutRoRequest with the information for the Rights Object (or portion) being Moved or Copied to the DRM Agent and PutRoHandle (from step 1.d).

3. The DRM Requestor sends the PutRoRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It validates the fields of the PutRoRequest. If any field is invalid, it sets PutRoResponse.Status to InvalidField and proceeds to step 5.

c. It verifies the signature on the Rights Object, including the SourceCertificateChain field. If any of the verifications fails, it sets PutRoResponse.Status to InvalidRightsObject and proceeds to step 5.

d. In case of a Move, it checks that the Rights Object has the <move> permission. If it does not, it sets PutRoResponse.Status to InvalidRightsObject and proceeds to step 5.

e. In case of a Copy, it checks that the Rights Object has the <copy> permission. If it does not, it sets PutRoResponse.Status to InvalidRightsObject and proceeds to step 5.

f. If the Rights Object is stateful, it validates that the StateInformation is consistent with the original state in the Rights Object (see section 5.5). If any state is invalid, it sets PutRoResponse.Status to InvalidRightsObject and proceeds to step 5.

g. If the Rights Object contains a top-level "domain" constraint, it verifies that it is a member of the assocated User Domain. If not, it sets PutROResponse.Status to NotADomainMember and proceeds to step 5.
h. It checks whether the Rights Object was created by an LRM. If it was created by an LRM and the LRM’s certificate only has the localRightsManagerDomain extended key purpose (see [SCE-LRM], Appendix C.1), it sets PutRoResponse.Status to InvalidRightsObject and proceeds to step 5.

i. It checks if it has enough room to install the Rights Object. If it does not, it sets PutRoResponse.Status to NotEnoughSpace and proceeds to step 5.

j. It installs the Rights Object per [OMADRMV2] except that the replay cache is not considered and marks the Rights Object as unusable. Note that it does not have the REK for the Rights Object yet. If the Rights Object was Copied and the associated <copy> permission contains a <count> constraint, it sets the current copy count to zero, i.e. the DRM Agent, acting as a DRM Requestor, SHALL NOT Copy the Rights Object to another DRM Agent.
k. It decrypts PutRoRequest.EncryptedPutRoHandle, saves PutRoHandle and associates PutRoHandle with the installed Rights Object.

l. It sets PutRoResponse.Status to Success.
5. The DRM Agent sends the PutRoResponse to the DRM Requestor, applying the replay protection mechanism described in section 7.3.

6. The DRM Requestor processes the response as follows:

a. It processes the response for replay as described in section 7.3.

b. If PutRoResponse.Status is not Success, it determines if it can restart the Put RO transaction at step 2. If it does not restart the transaction, the DRM Requestor performs the following:

i. It marks the Rights Object (or portion) as usable.

ii. If this transaction is for a Move and the <move> permission had a <count> constraint, it increments the current move counter of the state information.
iii. If this transaction is for a Copy and the <copy> permission had a <count> constraint, it increments the current copy counter of the state information.
iv. It terminates the Put RO transaction.

c. If this transaction is for a Move, it deletes the Rights Object (or portion) that was Moved (but still keeps the corresponding REK associated with the PutRoHandle.

d. If this transaction is for a Copy, it marks the Rights Object as usable.

7. The DRM Requestor generates a PutRekRequest with the PutRoHandle (from step 1.d) and the associated REK. For a Copy transaction where the RO has a top-level <domain> constraint, the RekOrDbrek field should contain a DBREK, which is defined as DBREK = AES-WRAP(MDK, REK xor DrmAgent) where DrmAgent is comprised of the first 16 bytes of the Entity ID of the DRM Agent in the SAC context used by the DRM Requestor, see [AES-WRAP].

8. The DRM Requestor sends the PutRekRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

9. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It validates the fields of the PutRekRequest. If any field is invalid, it sets PutRoResponse.Status to InvalidField and proceeds to step 10.
c. It decrypts PutRekRequest.Body.EncryptedPutRoHandleAndRek. For a Copy transaction where the RO has a top-level <domain> constraint, REK = DrmAgent xor AES-UNWRAP(MDK, DBREK) where DrmAgent is comprised of the first 16 bytes of the Entity ID of the DRM Agent (under the appropriate trust anchor), see [AES-WRAP].

d. It checks if it has a Rights Object that corresponds to the PutRoHandle. If it does not have a corresponding Rights Object, it set PutRekResponse.Status to UnknownHandle and continues with step 10.

e. It marks the Rights Object that corresponds to the PutRoHandle as usable and saves the REK.

f. It sets PutRekResponse.Status to Success.

10. The DRM Agent sends the PutRekResponse to the DRM Requestor, applying the replay protection mechanism described in section 7.3.

11. The DRM Requestor processes the response as follows:

a. It processes the response for replay as described in section 7.3.

b. If PutRekResponse.Status is not Success, it determines if it can restart the Put RO transaction at step 2 or step 7. If it does not restart the transaction, the DRM Requestor performs the following:

i. It marks the Rights Object (or portion) as usable.

ii. If this transaction if for a Move, then if the <move> permission had a <count> constraint, it increments the current move counter of the state information.
iii. If this transaction if for a Copy, then if the <copy> permission had a <count> constraint, it increments the current copy counter of the state information.
iv. It terminates the Put RO transaction.

c. It removes the cached PutRoHandle, REK and DRM Agent information.

e. At this point the Put RO transaction has successfully completed.

9.7.1 PutRoRequest

A PutRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 moveOrCopy
1
bslbf
 timeStampPresent
1
bslbf
 stateInfoPresent
1
bslbf
 rfu
5
bslbf
 EncryptedPutRoHandle()
 RoAlias()
 SourceAlias()
 SourceId()
 if(timeStampPresent){
 SourceTimeStamp()
 }
 RightsObjectContainer()
 if(stateInfoPresent){
 StateInformation()
 }

 CertificateChain()
}

RoAlias(){
 String80()
}

DomainAlias(){
 String80()
}

SourceAlias(){
 String80()
}

SourceId(){
 EntityId()
}

TimeStamp(){
 year
14
uimsbf

 month
4
uimsbf

 day
5
uimsbf

 hour
5
uimsbf

 minute
6
uimsbf

 second
6
uimsbf

}

EncryptedPutRoHandle(){
 EncryptedData() //Contains an encrypted PutRoHandle
}

PutRoHandle() {

 for(i = 0; i < 10; i++){

 byte
8
uimsbf

 }

}
The fields are defined as follows:

· moveOrCopy – this is a boolean field, the if true, indicates that a Move transaction is being performed, and if false, indicates that a Copy transaction if being performed.

· timeStampPresent – this is a boolean field, that if true, indicates that the source (RI or LRM) TimeStamp field is present.

· stateInfoPresent – this is a boolean field, that if true, indicates that the StateInformation field is present.

· rfu – this is a 5 bit field that is reserved for future use. When sending the request, this field MUST be set to 0. When processing this field, its value MUST be ignored.
· EncryptedPutRoHandle – this field contains a PutRoHandle, encrypted by the current session key and the negotiated algorithm. The field is of type EncryptedData which is defined in section 8.11.
· RoAlias – this field contains an optional alias for the Rights Object. It is of type String80 which is defined in section 8.15.

· DomainAlias – this field contains an optional alias for the domain if the Rights Object is a domain Rights Object. It is of type String80 which is defined in section 8.15.

· SourceAlias – this field contains an optional alias for the Rights Issuer or LRM that created the original Rights Object. It is of type String80 which is defined in section 8.15.

· SourceId – this field contains the identity of the Rights Issuer or LRM that created the original Rights Object. It is of type EntityId which is defined in section 8.5.

· RightsObjectContainer – this field contains a Rights Object as defined in section 8.18.

· StateInformation – this field, if present, contains the state information for the Rights being Moved. This field is defined in section 8.19.

· year – this field contains the year – 2000 of the timestamp. Range is 0 – 16383, corresponding to the years 2000 – 18,383.

· month – this field contains the month of the timestamp, with 0 representing January. Range is 0 – 11.

· day – this field contains the day – 1 of the month of the timestamp. Range is 0 – 30.

· hour – this field contains the hour of the timestamp. Range is 0 – 23.

· minute – this field contains the minute of the timestamp. Range is 0 – 59.

· second – this field contains the seconds of the timestamp. Range is 0 – 59.

· CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the original Rights Object. This field is defined in section 8.8.
· PutRoHandle – this field contains a 10 byte random handle that is used to correlate the REK in this transaction.

9.7.2 PutRoResponse

A PutRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 14: PutRoResponse Status Values
	Status Values

	Success

	InvalidField

	InvalidRightsObject

	NotEnoughSpace

	NotADomainMember

The body of a PutRoResponse is empty and is defined as follows:

Body(){

}

9.7.3 PutRekRequest

A PutRekRequest is sent as a protected request and its body is defined as follows:

Body(){
 EncryptedPutRoHandleAndRek()
}

EncryptedPutRoHandleAndRek (){
 EncryptedData() //Contains an encrypted PutRoHandleAndRek
}

PutRoHandleAndRek(){
 PutRoHandle()
 RekOrDbrek()
}

RekOrDbrek(){
 OctetString8()
}

The fields are defined as follows:

· EncryptedPutRoHandleAndRek – this field contains a PutRoHandleAndRek field, encrypted by the current session key and the negotiated algorithm. The field is of type EncryptedData which is defined in section 8.11.

· PutRoHandleAndRek – this field contains a PutRoHandle field (see section 9.7.1) and a RekOrDbrek field (see below).
· RekOrDbrek – this field contains an REK (16 bytes) for a Move transaction or for a Copy transaction where RO does not contain a top-level <domain> constraint. For a Copy transaction where the RO contains a top-level <domain> constraint, this field contains a DBREK, which is defined as DBREK = AES-WRAP(MDK, REK xor DrmAgent), see [AES-WRAP].

9.7.4 PutRekResponse

A PutRekResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 15: PutRoResponse Status Values
	Status Values

	Success

	InvalidField

	UnknownHandle

The PutRekResponse is empty and is defined as follows:

Body(){

}

9.7.5 REK Encryption/Decryption

For the Copy RO operation, how the REK is encrypted depends on whether or not the Rights Object contains a top-level <domain> contraint. If the Rights Object contains a top-level <domain> constraint, then the REK xor DrmAgent is encrypted by the MDK using [AES-WRAP] prior to encryption using the current session key and negotiated algorithm (see section 9.2.7). In all other cases, the REK is encrypted directly using the current session key and negotiated algorithm (see section 9.2.7).

Decryption follows the same logic, i.e. if the Rights Object contains a top-level <domain> constraint, then REK is recovered via SAC-level decryption (see section 9.2.7) followed by decryption by the MDK using [AES-WRAP] and subsequent xor of DrmAgent. Otherwise, it is recovered via direct decryption using the current session key and negotiated algorithm (see section 9.2.7).

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 5 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

