Doc# OMA-DRM-2008-0358-CR_SCE_LRM_TS_Clarification_of_Pairing_Key_Management.doc[image: image2.jpg]
Change Request

Doc# OMA-DRM-2008-0358-CR_SCE_LRM_TS_Clarification_of_Pairing_Key_Management.doc
Change Request

Change Request

	Title:
	Clarification of Pairing Key Management
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DRM WG

	Doc to Change:
	OMA-TS-SCE_LRM-V1_0-20080805-D

	Submission Date:
	15 Aug 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Youn-Sung Chu, LG Electronics, Inc. yschu@lge.com

	Replaces:
	n/a

1 Reason for Change

In this CR, the Service Key for the Device is distributed from the DEA without the key agreement. This CR clarifies the use of the keyed checksum (Signature attribute) for Ticket acquisition and Import RO.
2 Impact on Backward Compatibility

n/a
3 Impact on Other Specifications

n/a
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

DRM WG agrees this Change Request.
6 Detailed Change Proposal

Change 1: Modify the section 7.2.1.2
7.2.1.2 Service Keys and PDKs for Devices
The DEA SHALL assign a unique symmetric Service Key to each Device. The symmetric Service Keys provide faster authentication to the DEA in subsequent ticket requests than authentication with public/private keys. The assignment of the Service Keys is described below and is shown in Figure 7.

[image: image1.emf]DeviceDEA

Device Registration Response

Device Registration Request

Key Request

Key Response

Figure 7 – Assignment of Service Keys and distributions of PDKs
To obtain a Service Key, a Device SHALL send to the DEA a Key Request message that is authenticated by using the private key of the Device. The message SHALL contain the identity of the Device, the identity of the DEA, and a list of symmetric encryption algorithms that are supported by the Device. To check against replays, this message SHALL also contain a nonce. The Key Request message is specified in Section 7.2.1.2.1.
In response, the DEA SHALL randomly generate a symmetric Service Key, store it, and then send a copy of it in a Key Response message to the Device, as specified next. The Key Response message SHALL include the Service Key encrypted by using a public key of the Device, and a validity period. The entire Key Response message SHALL be signed by the DEA private key. The Key Response message is specified in Section 7.2.1.2.2.
Each Device that has a Service Key SHALL periodically update its Service Key based on an expiration time returned in the Key Response message. Each Service Key update is performed by repeating the Key Request/Response exchange. The default value for the Service Key lifetime is RECOMMENDED to be 30 days. When a Service Key is renewed, the value field in the inner SkeyVnum attribute (inside encrypted PrivateKeyInfo) associated with the Service Key is incremented by one.

In addition to the Service Key, a Pairing Domain Key (PDK) SHALL be delivered to a Device using the Key Response message. PDKs are domain-global keys generated by the DEA that are used between DRM Agents to perform a Move transaction [SCE-A2A] with respect to a <pairing>-constrained LRM-created RO. PDKs are not used by or made available to LRMs. If a Device has been revoked and the Device with which it communicates is aware of the revocation, the revoked Device will not be able to perform successfully as DRM Requestor or DRM Agent relative to a Move transaction, regardless of whether or not the Device has access to a current PDK. A DRM Agent need not be registered with the DEA in order to complete a Move transaction with a DRM Requestor. In order to consume the RO, the DRM Agent acquires from the DEA within a Key Response the PDK used by the DRM Requestor.

To avoid storage of multiple PDKs in the Device, the PDKs are derived using Hash Chains as specified in section 7.3 of [DRM-DRM-v2.1].

DRM Requestors SHALL use the latest PDK they have when performing a Move of an RO.
7.2.1.2.1 Key Request Message Details

The Key Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 3.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.2.1.1.
· dtid – This field is set as discussed in Section 7.2.1.2.1.1.
· retryCount – This field is set as discussed in Section 7.2.1.2.1.1.
· Attributes – This data structure contains the following attributes: EncTypeSet, SigTypeSet and Nonce.
· nbrOfAttrs – This field contains the value 3.
· AttributeStructures – This data structure contains the following attribute data structures: PubKeyClientAuthenticator and CertificateChain. The CertificateChain attribute data structure is optional.
· nbrOfAttrStrs – This field contains the value 2 if the CertificateChain attribute data structure is present; else the value is 1.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.2.1.1.
7.2.1.2.1.1 Generating Key Request Message

The Device MUST follow the following steps to generate a Key Request message:

1. Generate a pseudo random number for the stid header field of the message.

2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in list of encryption types supported by the client (EncTypeSet).

5. Fill in list of signature types supported by the client (SigTypeSet).
6. Generate a Nonce and fill in the Nonce attribute value.
7. Generate the PubKeyClientAuthenticator attribute data structure to authenticate this request as per Section 7.2.1.1.1.2.
8. Generate the CertificateChain attribute data structure if the client is registered with the DEA and wants to update its certificate chain in the DEA.
9. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Device private key to compute the signature.
After the Device sends out the Key Request message, it MUST save the value of the stid header field in order to later validate the matching Key Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Key Response message and must retry and increment the retryCount value.

7.2.1.2.1.2 Generating PubKeyClientAuthenticator

The PubKeyClientAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a client to the DEA. The generation steps are:

1. Generate ClientName attribute and ClientDomainBaseID attribute. A client MAY set the length field value of ClientDomainBaseID to 0 and not specify a value for ClientDomainBaseID.

2. Fill in the ClientDRMtimeSeconds attribute.

3. Add the DEAPubKeyIdentifier attribute data structure.

4. If the Device previously saved a DEA certificate chain, check if any of the corresponding CRLs are expired. If so, add a RequestCRLs attribute to the PubKeyClientAuthenticator, listing the issuers of the expired CRLs. The DEA will be required to reply with the corresponding up-to-date CRLs.

7.2.1.2.1.3 Processing Key Request Message

The DEA MUST perform the following steps to verify the Key Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.

4. If the CertificateChain attribute data structure is present in the message, then validate the client certificate chain, extract the client’s public key, and compute the ClientIdentifier from the certificate.
5. Based on whether the client is a Device or LRM, the DEA looks up the corresponding DA-Signed Data to verify that it is authorized by the DA to register the client. That is, if the client is a Device, the DEA looks up the DEA-Device type DA-Signed Data. The DEA is authorized to register the Device if the DA-Signed Data is Device-null, or if the ClientIdentifier is included in the ClientList of the DA-Signed Data if it is Device-specific. Alternatively, if the client is an LRM, the DEA looks up the DEA-LRM type DA-Signed Data. The DEA is authorized to register the LRM if the LRM is in the ServerList of the DA-Signed Data. If the DEA is not authorized, it returns an error message with the error code DEA_ERR_DEA_NOT_AUTHORIZED.
6. Process the PubKeyClientAuthenticator attribute data structure as specified in Section 7.2.1.2.1.4.

7.
8. If the DEA cannot accommodate the requested encryption type, then the DEA returns an error message with the error code DEA_ERR_ETYPE_NOSUPP.

9. If the DEA cannot accommodate the requested signature type, then the DEA returns an error message with the error code DEA_ERR_SIGTYPE_NOSUPP.

10. The DEA generates the Key Response message.
7.2.1.2.2 Key Response Message Details

The Key Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 4.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.2.2.1.
· dtid – This field is set as discussed in Section 7.2.1.2.2.1.
· retryCount – This field is set as discussed in Section 7.2.1.2.2.1.
· Attributes – This data structure contains no attributes.
· nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains the following attribute data structures: one or two sets of EncryptedData, EndTime, CsumType, EncType, DASignedData and PubKeyDEAAuthenticator.
· nbrOfAttrStrs – This field contains the value 6 or 7, depending on whether a PDK is included.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.2.2.1.
7.2.1.2.2.1 Generating Key Response Message

The DEA MUST follow the following steps to generate a Key Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Key Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Key Request message is copied to the retryCount in this message.

4. The DEA randomly generates a Service Key.
5. The DEA chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Key Request message with the list of encryption algorithms supported by the DEA. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in EncryptedData.

6. Fill in the Nonce attribute value which was received by the Device.
7. The DEA populates the EncryptedData attribute data structure. The EncType contains the identifier of the encryption algorithm that the DEA chose. The CipherText contains the Service Key type in a KeyType attribute and the Service Key in a KeyValue attribute. The CipherText also contains the Service Key version number (SkeyVnum) attribute for the Service Key. If this is the first Service Key created for the client, then the version number is 1. If this is not the first Service Key created for the client, then a Service Key number already is associated with the record for the client in the DEA storage. So, the Service Key number is incremented by one. The value of the CipherText attribute is encrypted by using the symmetric shared key generated from the Key Agreement.
8. If the client is a DRM Agent (i.e. not an LRM), the DEA populates a second EncryptedData attribute data structure with the current generation of the PDK. The EncType contains the identifier of the encryption algorithm that the DEA chose. The CipherText contains the PDK type in a KeyType attribute and the current generation of the PDK in a KeyValue attribute.
9. The DEA adds the Service Key and the Service Key version number to the record for the client in the DEA storage. The DEA MUST keep all versions of Service Keys for all clients in the DEA storage, such that when a DRM Agent submits an Authorization Request for an RO, the DEA will always be able to verify the keyed checksum generated by the DRM Requestor where the RO is Moved from.

10. Fill in the EndTime attribute value. This is the expiration time for this Service Key and MAY be set according to a policy communicated to the DEA. The format of this policy and the method to communicate the policy to the DEA are ouside the scope of these specifications.

11. Fill in the EncType and the CsumType attribute values. The EncType indicates the DEA chose in step 5 above. The CsumType is similarly chosen by the DEA.

12. Populate the DASignedData attribute with the appropriate type of DA-Signed Data. If the client is a Device, the DEA returns the DEA-Device type DASignedData; whereas if the client is an LRM, the DEA returns the DEA-LRM type DASignedData.

13. Generate the PubKeyDEAAuthenticator attribute data structure to authenticate this request as per Section 7.2.1.2.2.2.
14. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the DEA private key to compute the signature.

7.2.1.2.2.3 Processing Key Response Message

The client MUST follow the following procedure to process the Key Response message. Note that the client does not send an error message back to the DEA. In some cases, the client will retry with another Key Request message:

1. Parse the message header. If the header parsing fails, pretend that the Key Response message were never received, i.e. continue waiting for a reply to the initial Key Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Key Request message whose stid value matches the dtid header field in the Key Response message. If there is no match, the client proceeds as if the Key Response message were never received.

4. Verify that the retryCount in the preceding Key Request message matches the retryCount in the Key Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Key Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the signature (by using the DEA public key). If the signature does not verify, this message is dropped and the client proceeds as if the message were never received.
7. Verify that the value of the DASignedData attribute shows that the DEA is authorized by the DA to register the client. For example, for a Device, if the DA-Signed Data is Device-specific, then the value of the DASignedData attribute must include the value of the ClientIdentifier. If the verification fails, then the client MUST abort processing of the message and log the error code DEA_ERR_DEA_NOT_TRUSTED.
To Be Done: REMOVE all instances of logging.
8.
9. The client decrypts the value of the Ciphertext attribute in EncryptedData in the reply message by using the private key of the Device. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a Service Key with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
10. If the client is a DRM Agent (i.e. not an LRM), it decrypts the value of the Ciphertext attribute in the second EncryptedData in the reply message by using the symmetric shared key. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a PDK with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
11. Process PubKeyDEAAuthenticator as specified in Section 7.2.1.2.2.4.
12. If no errors in the Key Response message were detected, the client MUST save the Service Key (and a PDK in the case of a DRM Agent) in a new entry in its key ring until the Service Key (and the PDK) expires (as indicated by the EndTime attribute in the response). The client also saves the CsumType and EncType chosen by the DEA.

Change 2: Modify the section 7.2.1.3

7.2.1.3.2 Ticket Request Message Details

The Ticket Request message has the syntax described in Section 6.1. The fields of the message are as follows:

msgType – This field contains the value 5.
Pvno – This field contains the value 1.0.

stid – This field is set as discussed in Section 7.2.1.3.2.1.
dtid – This field is set as discussed in Section 7.2.1.3.2.1.
retryCount – This field is set as discussed in Section 7.2.1.3.2.1.
Attributes – This data structure contains the following attributes: ServerName, ClientIdentifer, EncTypeSet, SigTypeSet, ClientDRMtimeSeconds.
· nbrOfAttrs – This field contains the value 5.
AttributeStructures – This data structure does not contain any attribute data structure.
· nbrOfAttrStrs – This field contains the value 0.
Signature – This attribute data structure specifies a keyed checksum that uses the Service Authentication Key derived from the Service Key of the message as discussed in Section 7.2.1.3.2.1.
7.2.1.3.2.1 Generating Ticket Request Message

The Device MUST follow the following steps to generate a Ticket Request message:

1. Generate a pseudo random number for the stid header field of the message.

2. Set the dtid header field of the message to 0.

3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ClientIdentifier attribute with the Device’s Identifier.

5. Fill in the ServerName for the LRM to which the Ticket is associated with.

6. Fill in list of encryption types supported by the client (EncTypeSet).

7. Fill in list of checksum types supported by the client (SigTypeSet).

8. Fill in the ClientDRMtimeSeconds attribute.
9. Generate the Signature attribute data structure. The data structure consists of a CsumType attribute and a SigValue attribute. The value in CsumType is that indicates in the Key Response by the DEA. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Device’s Service Authentication Key derived from the Service Key to compute the keyed checksum.

After the Device sends out the Ticket Request message, it MUST save the value of the stid header field in order to later validate the matching Ticket Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Ticket Response message and must retry and increment the retryCount value.

1.
2.
3.
4.

5.
6.
7.
8.
9.

7.2.1.3.3 Ticket Response Message Details

The Ticket Response message has the syntax described in Section 6.1. The fields of the message are as follows:

msgType – This field contains the value 6.
Pvno – This field contains the value 1.0.

stid – This field is set as discussed in Section 7.2.1.3.3.1.
dtid – This field is set as discussed in Section 7.2.1.3.3.1.
retryCount – This field is set as discussed in Section 7.2.1.3.3.1.
Attributes – This data structure does not contain any attribute.
· nbrOfAttrs – This field contains the value 0.
AttributeStructures – This data structure contains the following attribute data structures: DASignedData and TicketResp.
· nbrOfAttrStrs – This field contains the value 2.
Signature – This attribute data structure specifies a keyed checksum that uses the Service Authentication Key derived from the Service Key of the message as discussed in Section 7.2.1.3.3.1.
7.2.1.3.3.2 Generating a Ticket

The DEA generates a Ticket attribute data structure as follows:

1. Fill in the TktVnum with the value 1.0.

2. Fill in the ServerDomainBaseID and ServerName values. The ServerDomainID is the same as the ClientDomainID. The ServerName is copied from the preceding Ticket Request message.
3. Fill in the ClientDomainBaseID and ClientName values corresponding to the client.

4. Fill in the AuthTime attribute value. This is the value of ClientDRMtimeSeconds in the record of the ClientName in the DEA storage.

5. Fill in the EndTime attribute value. This is the expiration time for the Ticket and MAY be set according to a policy communicated to the DEA. The format of this policy and the method to communicate the policy to the DEA are outside the scope of these specifications.

6. Fill in the EncType attribute value. This is the identifier of the algorithm the DEA uses to encrypt PrivateTicketPart.
7. Generate the PrivateTicketPart attribute data structure. This data structure contains the Session Key type in a KeyType attribute, the Session Key in a KeyValue attribute, the ClientDomainBaseID attribute and the ClientName attribute. PrivateTicketPart is encrypted by using the Service Key for the ServerName.

8. Fill in the Service Key version number in the outer SkeyVnum attribute. This version number is for the Service Key for the ServerName.

9. Fill in the values of EncTypeSet and SigTypeSet for the ServerName.
10. Compute the keyed checksum for the Ticket and populate the Signature attribute data structure. Specifically, the DEA chooses a checksum algorithm based on the intersection of the list SigTypeSet of algorithms in the ServerName record with the list of keyed checksum algorithms supported by the DEA. If this intersection contains more than one keyed checksum algorithm, the DEA MUST select the strongest one. The DEA then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The DEA then computes a keyed checksum over the entire Ticket except for the SigType and SigValue attributes and populates SigValue with the computed keyed checksum. (During the keyed checksum calculation, the value of the lengthStr field is adjusted to reflect the missing SigType and SigValue attributes.) The DEA uses the Service Authentication Key derived from the Service Key of the ServerName to compute the keyed checksum for the Ticket.

7.2.1.3.4 Imported-RO Request Message Details

The Imported-RO Request message has the syntax described in Section 6.1. The fields of the message are as follows:

msgType – This field contains the value 26.
Pvno – This field contains the value 1.0.

stid – This field is set as discussed in Section 7.2.1.3.4.1.
dtid – This field is set as discussed in Section 7.2.1.3.4.1.
retryCount – This field is set as discussed in Section 7.2.1.3.4.1.
Attributes – This data structure contains the following attributes: ClientName, EncTypeSet, ROReqFlags and ClientDRMtimeSeconds.
nbrOfAttrs – This field contains the value 4.
AttributeStructures – This data structure contains the following attribute data structures: Ticket and ROReqList.
nbrOfAttrStrs – This field contains the value 2.
Signature – This field is a data structure specifies a keyed checksum of the message as discussed in Section 7.2.1.3.4.1.
7.2.1.3.4.1 Generating Imported-RO Request Message

The Device MUST follow the following steps to generate an Imported-RO Request message:

1. Generate a pseudo random number for the stid header field of the message.

2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ClientName attribute.

5. Fill in list of encryption types supported by the client (EncTypeSet).

6. Fill in the ROReqFlags attribute: If the DRM Agent does not have the DEA-LRM type DA-Signed Data that associates the LRM to the DEA, it sets the corresponding bit to 1; otherwise it sets it to 0. Similarly, if the DRM Agent does not have the LRM’s certificate chain, it sets the corresponding bit to 1, otherwise it sets it to 0.

7. Fill in the ClientDRMtimeSeconds attribute.

8. Insert the Ticket attribute data structure with the LRM Ticket received from the DEA.

9. For each of the ROs that the DRM Agent wants to import, create an RO_ID attribute with the RO_ID and insert it into the RORequestList attribute data structure.

10. Generate the Signature attribute data structure. Specifically, the DRM Agent chooses a keyed checksum algorithm based on the intersection of the list of algorithms specified in the SigTypeSet attribute in the Ticket with the list of keyed checksum algorithms supported by the client. The data structure consists of a SigType attribute and a SigValue attribute. The client then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Authentication Key derived from the Session Key obtained from the DEA to compute the keyed checksum.
After the Device sends out the Imported-RO Request message, it MUST save the value of the stid header field in order to later validate the matching Imported-RO Response message from the LRM. The Device MUST keep the stid until a configurable time out value. After the time out, the Device MUST retry the request with the same stid and increment the retryCount value.

7.2.1.3.5 Imported-RO Response Message Details

The Imported-RO Response message has the syntax described in Section 6.1. The fields of the message are as follows:

msgType – This field contains the value 27.
Pvno – This field contains the value 1.0.

stid – This field is set as discussed in Section 7.2.1.3.5.11.
dtid – This field is set as discussed in Section 7.2.1.3.5.1.
retryCount – This field is set as discussed in Section 7.2.1.3.5.1.
Attributes – This data structure does not contain any attribute.
· nbrOfAttrs – This field contains the value 0.
AttributeStructures – This data structure contains the RORespList attribute data structure and may contain the DEA-LRM type DASignedData or CertificateChain attribute data structure if requested in the corresponding request.
· nbrOfAttrStrs – This field contains the value 2 or 3.
Signature – This field is a data structure specifies a keyed checksum of the message as discussed in Section 7.2.1.3.5.1.
7.2.1.3.5.1 Generating Imported-RO Response Message

The LRM MUST follow the following steps to generate an Imported-RO Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Imported-RO Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Imported-RO Request message is copied to the retryCount in this message.
4. If the DA-Signed Data bit of the ROReqFlags is set in the Imported-RO Request message, the LRM adds a DASignedData attribute data structure containing the DEA-LRM type DA-Signed Data that associates the LRM to the DEA.

5. If the LRM’s certificate chain bit of the ROReqFlags is set in the Imported-RO Request message, the LRM adds a CertificateChain attribute data structure containing the LRM’s certificate chain.

6. If the request is a retry, the LRM retrieves the ROReqList attribute data structure from its storage and inserts it to the Imported-RO Response message. The LRM then proceeds to step 9.

7. For each RO_ID listed in the ROReqList of the Imported-RO Request message, the LRM adds an ROResp attribute data structure to the RORespList attribute data structure in the response:

a. If the RO_ID is not recognized, the LRM sets the status code in the RORespStatus attribute to indicate this error and continue to process the next RO_ID.

b. If the LRM is no longer authorized to issue the Imported-RO corresponding to the RO_ID, the LRM sets the status code in the RORespStatus attribute to indicate this error and continue to process the next RO_ID.

c. The LRM sets the status code in the RORespStatus attribute to “Status OK”. The LRM decrements by one the number of Imported-ROs corresponding to the specific Import-Ready Data that the LRM has available for use within the User Domain managed by the DEA corresponding to the LRM.

d. The LRM generates a random REK for use by this Imported-RO. The LRM chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Imported-RO Request message with the list of encryption algorithms supported by the LRM. If this intersection contains more than one encryption algorithm, the LRM MUST select the strongest one. The encryption algorithm is used to encrypt the REK to create the EncryptedData attribute data structure.

e. The LRM creates an Imported-RO that contains within the <rights> element the base64 encoded SHA-1 hash over the concatenation of the values of the RO_ID and ClientIdentifier attributes. The LRM inserts the Imported-RO into the ImportedRights attribute of the corresponding ROResp attribute data structure. The LRM proceed to process the next RO_ID.

8. If this request is not a retry, the LRM stores the RORespList indexed by the stid of the Imported-RO Request message until the Imported-RO Request message no longer exists in the Replay Cache. This allows the LRM to re-send the same RORespList if a retry Imported-RO Request message arrives at the LRM.
9. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in the SigType attribute is the same as the value of the SigType attribute in the preceding Imported-RO Request message. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Authentication Key derived from the Session Key in the Ticket to compute the keyed checksum.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 8 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

_1275476859.vsd
Device

DEA

Key Request

Key Response

Device Registration Response

Device Registration Request

