OMA-TS-SCE_DOM-V1_0-20080916-D
Page 47 V(60)

	[image: image8.png]DRM Agent DEA

LeaveUserDomainTrigger

r
| LeaveUserDomainResponse

LeaveUserDomainRequest >l
|
|

	

	SCE User Domains

	Draft Version 1.0 – 16 Sep 2008

	Open Mobile Alliance

	OMA-TS-SCE_DOM-V1_0-20080916-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

61.
Scope

72.
References

72.1
Normative References

72.2
Informative References

83.
Terminology and Conventions

83.1
Conventions

83.2
Definitions

83.3
Abbreviations

94.
Introduction

94.1
User Domain Authorization

114.2
Acquiring User Domain RO’s

125.
User Domain Management

125.1
Devices

125.1.1
Registration with a DEA

125.1.2
Joining a User Domain

125.1.3
Leaving a User Domain

135.2
RIs and LRMs

135.2.1
Registration with a DEA

135.2.2
Getting Authorized for a User Domain

135.3
Memberships and Authorizations

145.4
Compatibility with DRM v2.x Domains

156.
The Domain Management Protocol Suite (SCE-2-DMP)

156.1
DRM Agent-DEA Registration Protocol

156.1.1
DRM Agent-DEA Registration Trigger

166.1.2
DRM Agent-DEA Hello Request

166.1.3
DRM Agent-DEA Hello Response

166.1.4
DRM Agent-DEA Registration Request

166.1.5
DRM Agent-DEA Registration Response

176.2
Join User Domain Protocol

176.2.1
Join User Domain Trigger

186.2.2
Join User Domain Request

196.2.3
Join User Domain Response

216.3
Leave User Domain Protocol

216.3.1
Leave User Domain Trigger

226.3.2
Leave User Domain Request

236.3.3
Leave User Domain Response

257.
The Rights Issuer – Domain Enforcement Agent Protocol Suite (SCE-3-RDP)

257.1
RI-DEA Registration Protocol

267.1.1
RI-DEA Hello Request

267.1.2
RI-DEA Hello Response

267.1.3
RI-DEA Registration Request

277.1.4
RI-DEA Registration Response

277.2
Get User Domain Authorization Protocol

277.2.1
Get User Domain Authorization Trigger

287.2.2
Get User Domain Authorization Request

297.2.3
Get User Domain Authorization Response

307.3
Drop User Domain Authorization Protocol

307.3.1
Drop User Domain Authorization Trigger

317.3.2
Drop User Domain Authorization Request

327.3.3
Drop User Domain Authorization Response

337.4
Proxy Join User Domain Protocol

347.4.1
Proxy Join User Domain Request

357.4.2
Proxy Join User Domain Response

377.4.2.1
Sending JoinUserDomainResponse

377.5
Proxy Leave User Domain Protocol

387.5.1
Proxy Leave User Domain Request

397.5.2
Proxy Partial Leave User Domain Response

407.5.2.1
Sending ProxyLeaveUserDomainResponse

417.5.2.2
Sending LeaveDomainResponse

417.6
DEA Indirectly Trigger a v2.x DRM Agent Leave User Domain

427.6.1
RDP Trigger {Proxy Leave User Domain}

437.6.2
SendingProcessing ROAP Leave Domain Trigger RDP Trigger {Proxy Leave User Domain}

458.
User Domain RO Processing

458.1
User Domain RO format

458.2
Installing a User Domain RO

458.2.1
Ensuring User Domain membership

468.2.2
Ensuring User Domain RO validity

478.2.3
User Domain RO post-processing

478.3
User Domain Upgrade

488.4
Use of hash chains for Domain key management

509.
Key management

509.1
Overall key management

509.2
Key Transport Mechanisms

509.2.1
Distributing MDK and KMAC under a Device Public Key

519.2.2
Distributing KMAC and KREK under a Diversified Domain Key (DDK)

5210.
User Domain related operations

529.1 Out-of-band delivery to Devices in a User Domain

529.2 Move between Devices in a User Domain

539.3 Copy to Devices in a User Domain

54Appendix A.
Change History (Informative)

54A.1
Approved Version History

54A.2
Draft/Candidate Version 0.8 History

55Appendix B.
Static Conformance Requirements (Normative)

55B.1
SCR for XYZ Client

55B.2
SCR for XYZ Server

56Appendix C.
Certificate Profiles (Normative)

56C.1
Domain Authority Certificates

57C.2
Domain Enforcement Agent Certificates

Figures

15Figure 1 - 4-pass DRM Agent-DEA Registration Protocol

26Figure 5 - The 4-pass RI-DEA Registration Protocol

34Figure 6 - v2.x DRM Agent indirectly joins a User Domain

38Figure 7 - v2.x DRM Agent indirectly and partially leaves a User Domain

42Figure 8 - DEA indirectly triggers v2.x DRM Agent leave a User Domain

Tables

9Table 1 - User Domain Authorization Types

10Table 2 - <id> element choices

18Table 3 - Join User Domain Trigger Message Parameters

19Table 4 - Join User Domain Request Message Parameters

20Table 5 - Join User Domain Response Message Parameters

21Table 6 – Leave User Domain Trigger Message Parameters

22Table 7 – Leave User Domain Request Message Parameters

23Table 8 – Leave User Domain Response Message Parameters

28Table 9 - Get User Domain Authorization Trigger Message Parameters

29Table 10 - Get User Domain Authorization Request Message Parameters

30Table 11 - Get User Domain Authorization Response Message Parameters

31Table 12 – Drop User Domain Authorization Trigger Message Parameters

32Table 13 - Drop User Domain Authorization Request Message Parameters

33Table 14 - Drop User Domain Response Message Parameters

34Table 15 - Proxy Join User Domain Request Message Parameters

35Table 16 - Proxy Join User Domain Response Message Parameters

36Table 17 - Proxy Join User Domain Response Message Parameters

38Table 18 - Proxy Leave User Domain Request Message Parameters

39Table 19 - Drop User Domain Response Message Parameters

40Table 20 - ProxyLeaveUserDomainResponse Message Parameters

43Table 21 - Proxy Join User Domain Trigger

1. Scope

Open Mobile Alliance (OMA) specifications are the result of continuous work to define industry-wide interoperable mechanisms for developing applications and services that are deployed over wireless communication networks.

The scope of OMA “Digital Rights Management” (DRM) is to enable the distribution and consumption of digital content in a controlled manner. The content is distributed and consumed on authenticated Devices per the usage rights expressed by the content owners. OMA DRM work addresses the various technical aspects of this system by providing appropriate specifications for content formats, protocols, and a rights expression language.

A number of DRM specifications have already been defined within the OMA. The latest accepted release of the OMA DRM enabler ([DRM-v2.1], including [DRM-DRM-v2.1], [DRM-DCF-v2.1], [DRM-REL-v2.1]), is referred to within this document as “OMA DRM v2.1”.

This specification defines the mechanisms and protocols necessary to implement a central domain management function, as required per [SCE-RD]. More specifically, this specification will specify the interfaces SCE-2-DMP and SCE-3-RDP as defined in [SCE-AD].

2. References

2.1 Normative References

	[DRM-v2.1]
	The OMA DRM 2.0 enabler as described in “Enabler Release Definition for DRM V2.0,
Approved Version 2.0”, OMA-TS-DRM-DRM-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRM-DRM-v2.1]
	“DRM Specification, Approved Version 2.0”,
OMA-TS-DRM-DRM-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRM-REL-v2.1]
	“DRM Rights Expression Language, Approved Version 2.0”,
OMA-TS-DRM-REL-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRM-DCF-v2.1]
	“DRM Content Format, Approved Version 2.0”,
OMA-TS-DRM-DCF-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[SCE-RD]
	“Secure Content Exchange Requirements, Draft Version 1.0”,
OMA-RD-SCE-V1_0-20060908-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[SCE-AD]
	“Secure Content Exchange Architecture, Draft Version”,
OMA-AD-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[SCE-DRM]
	“DRM Specification – SCE Extensions, Draft Version”,
OMA-TS-DRM-DRM-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[SCE-REL]
	“DRM Rights Expression Language – SCE Extensions, Draft Version”,
OMA-TS-DRM-REL-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[SCE-LRM]
	 “DRM Local Rights Management, Draft Version”,
OMA-TS-DRM-LRM- SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[SCE-DOM]
	“DRM User Domains, Draft Version”,
OMA-TS-DRM-DOM-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[SCE-A2A]
	“DRM Agent-to-Agent transfer, Draft Version”,
OMA-TS-DRM-REL- SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[SCE-GEN]
	"SCE Generic Mechanisms",
OMA-TS-SCE_GEN-Vx-y-D, Open Mobile AllianceTM
URL:http://www.openmobilealliance.org/

	
	

	
	

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	
	

	
	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	v2.x DRM Agent
	A DRM Agent that is conformant to either [DRM-DRM-v2.0] or [DRM-DRM-v2.1].

	
	

	
	

3.3
Abbreviations

	A2A
	Agent to Agent

	DA
	Domain Authority

	DEA
	Domain Enforcement Agent

	LRM
	Local Rights Manager

	MK
	Message Integrity Key

	N/A
	Not Applicable

	OMA
	Open Mobile Alliance

	RI
	Rights Issuer

	RI/LRM
	RI or LRM

	RO
	Rights Object

	SA
	Security Association

	SK
	Session Key

	UDK
	User Domain Key

	
	

	
	

4. Introduction

A User Domain is a set of v2.x and/or SCE DRM Agents that can share ROs created for the User Domain. DRM Agents can join multiple User Domains managed by one or more DEAs.

The DEA defines the User Domain, manages the key material, and controls which and how many DRM Agents are included and excluded from the User Domain. The DEA also controls which entities (RIs and/or LRMs) are authorized to create User Domain ROs.

4.1 User Domain Authorization

Before a DEA, RI or LRM can participate in any User Domain functionality, it must be authorized to do so. Before a DRM Agent can receive a User Domain RO with the <userDomain> constraint ([SCE-REL]) from an RI, it must prove that it is a member of the User Domain. The mechanism to do so is via a “User Domain Authorization” data structure. The User Domain Authorization is used to provide proof of authorization related to a User Domain.
The following table summarizes the types of User Domain Authorizations.
	Entity
	Signer

	
	DA
	DEA

	DEA
	DEA is authorized to manage a User Domain
	N/A

	RI/LRM
	RI/LRM is associated with a DEA
	RI/LRM can create (or import) ROs for a User Domain

	Device
	Device is associated with a DEA
	Device is a member of a User Domain

Table 1 - User Domain Authorization Types

The following XML schema fragment defines a User Domain Authorization:

<element name=”userDomainAuthorization” type=”dom:UserDomainAuthorizationType”/>

<complexType name=”UserDomainAuthorization”>

<sequence>

<element name=”body” type=”dom:UserDomainAuthorizationBody”/>

<element name=”signature” type=”base64Encoded”/>

<element name=”certChain” type=”gen:CertificateChain” minOccurs=”0”/>

</sequence>
</complexType>
<complexType name=”UserDomainAuthorizationBody”>

<sequence>

<element name=”dadeaId” type=”gen:Identifier”/>

<element name=”dadeaURL” type=”gen:Identifier” minOccurs=”0”/>

<element name=”userDomainId” type=”dom:UserDomainIdentifier” minOccurs=”0”/>

<element name=”entityId” type=”gen:Identifier”/>

<element name=”isDea” type=”gen:Empty” minOccurs=”0”/>

<element name=”isRIorLRM” type=”gen:Empty” minOccurs=”0”/>

<element name=”isDRMAgent” type=”gen:Empty” minOccurs=”0”/>

<element name=”policyInfo” type=”dom:PolicyInfo”/>

<element name=”notBefore” type=”gen:dateTime” minOccurs=”0”/>

 <element name=”notAfter” type=”gen:dateTime” minOccurs=”0”/>

<any minOccurs=”0” maxOccurs=”unbounded” processContents=”lax”/>

</sequence>

</complexType>

<complexType name=”PolicyInfo”>

<sequence>

<element name=”policyId” type=”string” minOccurs=”0”/ maxLength=”40”>

<element name=”daRiAuthorizationRequired” type=”gen:Empty” minOccurs=”0”/>

<element name=”daDeviceAuthorizationRequired” type=”gen:Empty” minOccurs=”0”/>

<element name=”allowProxyJoin” type=”gen:Empty” minOccurs=”0”/>

<any minOccurs=”0” maxOccurs=”unbounded” processContents=”lax”/>

</sequence>

</complexType>

<simpleType name="UserDomainIdentifier">

<restriction base="string">

<pattern value="{1,24}\d{3}"/>

</restriction>

</simpleType>
body: This element contains information about a User Domain Authorization. Its child elements are described below.

signature: This element contains the digital signature over the <body> element. TBD: explain more about the signature.
certChain: This element, if present, contains the certificate chain of entity that signed the User Domain Authorization, i.e. either a DA or a DEA. It has a schema of CertificateChain as described in [SCE-GEN].
dadeaId: This element contains the ID of the entity by which this User Domain Authorization is provided. It has a schema of Identifier as described in [SCE-GEN]. The valid entity types are DA or DEA. The User Domain Authorization is said to be signed by this entity.
dadeaURL: This element contains a URL from which a DRMTrigger or XHTML document can be acquired that enables a DRM Agent to receive a new User Domain Authorization. Typically this may be used in case a User Domain Authorization has become invalid.
userDomainId: This element identifies for which User Domain the authorization is valid. Some authorizations apply to any User Domain, in which case this element is not present.
Isdea, isRIorLRM, isDRMAgent: These elements signal the role that the entity identified by entityID is authorized to fulfil. More than one can be present.
entityId: This element contains the ID of the entity for which this User Domain Authorization is being provided. It has a schema of Identifier as described in [SCE-GEN]. The valid entity types are DEA, RI, LRM or DRM Agent. The User Domain Authorization is said to be signed for the entity or said to associate the entity with the DEA.
notBefore: This element specifies the date/time before which the User Domain Authorization is not valid. It has a schema of dateTime as described in [SCE-GEN].

notAfter: This element specifies the date/time after which the User Domain Authorization is not valid. It has a schema of dateTime as described in [SCE-GEN].

	
	

	
	
	

	
	
	

	
	
	

	
	
	

policyInfo: This element contains information about domain policy of the User Domain. Its sub-elements are described below.
policyId: This element is used to identify the Domain Policy associated with the particular User Domain. This field MUST be present when a DA signs the authorization for an RI/LRM.
daRiAuthorizationRequired: This element, if present, indicates that an RI/LRM MUST get from the DEA (if the RI/LRM does not already have one) a User Domain Authorization signed by the DA associating the RI or LRM with the DEA. This element MAY be present in a User Domain Authorization signed by a DA for a DEA and MUST NOT be present in other User Domain Authorization types.
daDeviceAuthorizationRequired: This element, if present, indicates that a Device MUST get from the DEA (if the Device does not already have one) a User Domain Authorization signed by the DA associating the Device with the DEA. This element MAY be present in a User Domain Authorization signed by a DA for a DEA and MUST NOT be present in other User Domain Authorization types.
allowProxyJoin: This element, if present, indicates that this User Domain allows DRM v2.x Devices to become members via the Proxy Join User Domain Protocol (see section 7.4). If this element is not present, then the DEA MUST NOT allow Proxy Join User Domain protocol for the particular User Domain. This element MAY be present in a User Domain Authorization signed by a DA for a DEA or in a User Domain Authorization signed by a DEA for an RI/LRM and MUST NOT be present in other User Domain Authorization types.
4.2 Acquiring User Domain RO’s

A DRM Agent can acquire User Domain ROs from an RI, from an LRM or from another DRM Agent. The SCE enabler defines the following mechanisms to transport User Domain RO’s:

· The SCE-1-ROAP protocol ([SCE-DRM]). This mechanism may be used to deliver a User Domain RO from an RI to a DRM Agent. In the case of an LRM, the SCE-6-LRMP protocol will re-use the RO Acquistion protocol from SCE-1-ROAP.

· The SCE-7-A2AP protocol ([SCE-A2A]). This mechanism may be used to transport a User Domain RO from one DRM Agent to another.

· The SCE-8 interface (“out-of-band”, section xxx). This data specification allows the distribution of User Domain ROs via other protocols or mechanisms not defined in the SCE Enabler. For example, a User Domain RO can be delivered inside a (P)DCF file, as a separate standalone MIME object, or as part of a MIME multipart/related message [RFC2387]. This mechanism may be used to transport User Domain ROs to a DRM Agent from any source. However this mechanism MUST NOT be used to transport User Domain ROs that have the <userDomain> constraint ([SCE-REL]).

The DRM Agent MUST support receiving a User Domain RO in a ROAP-ROResponse message.

The DRM Agent MUST support receiving a User Domain RO as a separate object.

As a general principle, the processing rules for inbound User Domain ROs are agnostic to the origin of the User Domain RO or the mechanism by which is was transported, i.e. it does not matter whether the User Domain RO was delivered OTA from an RI using ROAP or copied from another DRM Agent using SCE-8. There is no binding to a specific transport mechanism or transport protocol.

The process of checking the validity of inbound User Domain ROs and storing them is called installation
of the User Domain RO. After the RO has been installed, a User may request the DRM Agent to grant any of the permissions related to a specific Content. This process is called consumption of the User Domain RO. To render the media objects inside the associated DCF the DRM Agent MUST process the User Domain RO as defined in section xyx.

5. User Domain Management

This section describes the processes used by a DEA to manage a User Domain.

5.1 Devices
5.1.1 Registration with a DEA

Prior to being able to install and consume a User Domain RO, a DRM Agent needs to register with the DEA that manages the User Domain that the RO refers to and subsequently become a member of that User Domain. As a result of the successful execution of the Registration protocol (section 6.1) with a DEA, a DRM Agent will establish a logical DEA Context for the given DEA. At a minimum, the DEA Context consists of the following:

· The identity of the DEA

· An indication of verification of the DEA’s certificate chain

· The negotiated protocols
· A Session Key - used to encrypt data between the Device and the DEA

· A MAC Key - used to provide integrity of certain data exchanged between the Device and the DEA
5.1.2 Joining a User Domain

After registering with a DEA, a DRM Agent MUST become a member of the User Domain by joining the User Domain. As a result of the the successful execution of the Join User Domain protocol (section 6.2) with a DEA, the DRM Agent will establish a logical User Domain Context for the given User Domain. At a minimum, the User Domain Context consists of:

Identity of the User Domain (which includes the User Domain generation)

An indication of the verification of the User Domain Authorization for the DEA (signed by a DA)

Expiry time of the User Domain Context (which MUST be the same or earlier than the <notAfter> element in the DEA’s User Domain Authorization)
The alias of the User Domain – used in communication with the User to refer to the User Domain

The User Domain Key (UDK)
The DRM Agent’s User Domain Authorization (signed by the DEA)

A DRM Agent MAY join multiple User Domains managed by one or more DEAs.

Even though a DRM Agent is a member of a User Domain, it MAY have to renew its membership for one of the following reasons:

· The DEA has upgraded the UDK of the User Domain.

· The DRM Agent’s User Domain Authorization has expired. If the User Domain Authorization for a DRM Agent has expired, the DEA MUST treat the DRM Agent as if the DRM Agent has left the User Domain.
5.1.3 Leaving a User Domain

At the behest of the User, a DRM Agent MAY leave a User Domain at any time. As a result of the succesful execution of the Leave User Domain protocol (section 6.3) with a DEA, the DRM Agent will no longer have a User Domain Context for the given User Domain. Without the User Domain Context, ROs issued for that User Domain MUST NOT be consumed. After leaving a User Domain a DRM Agent MAY, but is not required to, remove the corresponding User Domain ROs and associated DRM Content. The DRM Agent SHOULD obtain User confirmation before deleting User Domain ROs and associated DRM Content.

Prior to sending a Leave User Domain Request, the DRM Agent MUST disable the corresponding User Domain Context. After receiving the Leave User Domain Response with ‘Success’ as the status, the DRM Agent MUST delete the corresponding User Domain Context.
5.2 RIs and LRMs
5.2.1 Registration with a DEA

Prior to being able to create User Domain ROs, an RI/LRM needs to register with the DEA that manages the User Domain that the RO refers to and subsequently get a User Domain Authorization for that User Domain. As a result of the successful execution of the RI-DEA Registration Protocol (section 7.1) of an RI/LRM with a DEA, the RI/LRM will establish a logical DEA Context for the given DEA. At a minimum, the DEA Context consists of the following:

· The identity of the DEA

· An indication of verification of the DEA’s certificate chain

· The negotiated protocols

· A Session Key – used to encrypt data between the RI/LRM and the DEA

· A MAC Key – used to provide integrity of certain data exchanged between the RI/LRM and the DEA

5.2.2 Getting Authorized for a User Domain

After registering with a DEA, an RI/LRM MUST get the authorization to create User Domain ROs for a particular User Domain from the DEA. As a result of the successful execution of the Get User Domain Authorization Protocol (section 7.2) with a DEA, the RI/LRM will establish a logical User Domain Context for the given User Domain. At a minimum, the User Domain Context consists of:

· Identity of the User Domain (which includes the User Domain generation)

· An indication of the verification of the DEA’s User Domain Authorization (signed by a DA)

· Expiry time of the User Domain Context (which MUST be the same or earlier than the <notAfter> element in the DEA’s User Domain Authorization)

· The RI/LRM’s User Domain Authorization (signed by the DEA)

An RI/LRM MAY get authorized for multiple User Domains managed by one or more DEAs.

5.3 Memberships and Authorizations

A DEA will enforce certain limits when allowing DRM Agents to join a User Domain. It can for example enforce a maximum on the number of concurrent members. This means it should be possible to remove a DRM Agent as member of a User Domain. Or a DEA MAY request that a DRM Agent leave a User Domain, e.g. no longer be a member of the User Domain.
For reasons related to its business or to the trust management, a DEA MAY NOT renew the User Domain Authorization for a RI/LRM.

A DEA can upgrade the User Domain (see section xxx), which forces all DRM Agents to re-join and RI/LRMs to get re-authorized for the User Domain.

5.4 Compatibility with DRM v2.x Domains

The functionality provided by the Domain mechanism defined in [DRM-DRM-v2.1] is subset of the SCE User Domain functionality. User Domain RO’s that do not use any new features can be used by DRM v2.x DRM Agents. Specifically, User Domain ROs that meet the criteria below are compatible with v2.x Domains:

· The RO does not contain a <userDomain> constraint ([SCE-REL])

· The RO is signed by an RI or by an LRM that has the oma-kp-rightsIssuer key purpose
User Domain ROs meeting the criteria above can be delivered to v2.x DRM Agents via any mechanism allowed in [DRM–DRM-v2.1]. The installation and consumption of this User Domain RO on a v2.x DRM Agent will cause the DRM Agent to attempt to join the domain using the ROAP protocol as specified in [DRM-DRM-v2.1]. This will cause the RI/LRM that signed the RO to execute the Proxy Join User Domain protocol (see section xxx). If this protocol is successful, the DRM Agent will receive the information required to access the User Domain RO.

6. The Domain Management Protocol Suite (SCE-2-DMP)

The Domain Management Protocol Suite (SCE-2-DMP) is the interface provided by a DEA to Devices. It provides the following protocols:

· DRM Agent-DEA Registration Protocol – used by Devices to register with a DEA
· Join User Domain Protocol – used by Devices to join a User Domain
· Leave User Domain Protocol – used by Devices to lease a User Domain
In the message parameter tables below, "M" stands for "parameter is mandatory" and "O" stands for "parameter is optional". If a parameter is not listed in the table, then that parameter MUST NOT be present in the mssage.
6.1 DRM Agent-DEA Registration Protocol

The DRM Agent-DEA Registration Protocol is a complete security information exchange and handshake between the DRM Agent and the DEA and is generally only executed at first contact, but may also be executed when there is a need to update the exchanged security information. This protocol includes negotiation of protocol parameters and protocol version, cryptographic algorithms, exchange of certificate preferences, optional exchange of certificates, mutual authentication of DRM Agent and DEA, and integrity protection of protocol messages.

Successful completion of the Registration protocol results in the establishment of a DEA Context in the DRM Agent containing DEA-specific security related information such as agreed protocol parameters, protocol version, and certificate preferences. A DEA Context is necessary for execution of the other protocols in the SCE-2-DMP suite. Figure 1 depicts the 4-pass DRM Agent-DEA Registration Protocol.
[image: image2.png]DRM Agent

DRMAgent-DEARegistrationTrigger

DRM Agent-DEAHelloRequest

DEA

DRMAgent-DEAHelloResponse

DRM Agent-DEAHelloRequest

DRMAgent-DEAHelloResponse

Figure 1 - 4-pass DRM Agent-DEA Registration Protocol
6.1.1 DRM Agent-DEA Registration Trigger

The DRM Agent-DEA Registration Trigger message is sent to a DRM Agent to initiate the 4-pass DRM Agent-DEA Registration protocol. The message MUST be a <gen:trigger> element as defined in the following XML schema fragment:

<element ref=”gen:trigger”/>

A DRM Agent-DEA Registration trigger MUST be formatted as specified in the table below:

	element / attribute
	usage
	value

	id
	O
	Default, as specified in [SCE-GEN]

	type
	M
	“dmpDRMAgent-DEARegistration”

	version
	M
	“1.0”

	resID
	M
	DEA’s ID

	resAlias
	O
	Default, as specified in [SCE-GEN]

	nonce
	O
	Default, as specified in [SCE-GEN]

	reqURL
	M
	Default, as specified in [SCE-GEN]

	body
	M
	Specified below

The DRM Agent-DEA Registration Trigger contains a <body> element that MUST NOT have a <trgInfo> child element.

6.1.2 DRM Agent-DEA Hello Request

The DRM Agent-DEA Hello Request message is sent from the DRM Agent to the DEA to initiate the 4-pass Registration protocol. This message expresses DRM Agent information and preferences. The message is defined by the following XML schema fragment:

<element ref=”gen:helloRequest”/>

The message MUST be formatted as specified in [SCE-GEN].
Upon receipt of a DRM Agent-DEA Hello Request message, the DEA MUST perform the default processing specified in [SCE-GEN] and then it MUST return a DRM Agent-DEA Hello Response message.
6.1.3 DRM Agent-DEA Hello Response

The DRM Agent-DEA Hello Response message is sent from the DEA to the DRM Agent in response to a DRM Agent-DEA Hello Request message. The message expresses DEA preferences and decisions based on the values supplied by the DRM Agent. The message is defined by the following XML schema fragment:

<element ref=”gen:helloResponse”/>

The messageMUST be formatted as specified in [SCE-GEN].
6.1.4 DRM Agent-DEA Registration Request
A DRM Agent sends the DRM Agent-DA Registration Request message to a DEA to request registration with the DEA after receiving a successful DRM Agent-DEA Hello Response. The message is defined by the following XML schema fragment:

<element ref=”gen:registrationRequest”/>

The message MUST be formatted as specified in [SCE-GEN].

6.1.5 DRM Agent-DEA Registration Response
The DRM Agent-DEA Registration Response message is sent from the DEA to the DRM Agent in response to a DRM Agent-DEA Registration Request message. This message completes the Registration protocol and, if successful, enables the DRM Agent to establish a DEA Context for this DEA. The message is defined by the following XML schema fragment:

<element ref=”gen:registrationResponse”/>

The message MUST be formatted as specified in [SCE-GEN].
6.2 Join User Domain Protocol

The following figure illustrates the Join User Domain Protocol.

6.2.1 [image: image1.jpg]«“+OMa

Open Mobile Alliance

[image: image7.png]DRM Agent DEA

JoinUserDomainTrigger

I
| JoinUserDomainResponse

JoinUserDomainRequest »l
|
|

Join User Domain Trigger

A Join User Domain Trigger message is sent to a DRM Agent to initiate the 2-pass Join User Domain protocol. The message MUST be a <gen:trigger> element as defined in the following XML schema fragment:

<element ref=”gen:trigger”/>

A Join User Domain Trigger message MUST be formatted as specified in the table below:

	element / attribute
	usage
	Value

	id
	O
	Default, as specified in [SCE-GEN]

	type
	M
	“dmpJoinUserDomain”

	version
	M
	“1.0”

	resID
	M
	DEA’s ID

	resAlias
	O
	Default, as specified in [SCE-GEN]

	nonce
	O
	Default, as specified in [SCE-GEN]

	reqURL
	M
	Default, as specified in [SCE-GEN]

	body
	M
	Specified below

	signature
	M
	Specified below

Table 3 - Join User Domain Trigger Message Parameters

The Join User Domain Trigger contains a <body> element that MUST have a <trgInfo> child element which is defined by the following XML schema fragment:
<element name=”trgInfo” type="dom:JoinUserDomainTrgInformation"/>
<complexType name=” JoinUserDomainTrgInformation”>

<sequence>

<element name="userDomainID" type="dom:UserDomainIdentifier"/>

<element name="userDomainAlias" type="String80" minOccurs="0"/>

<any minOccurs=”0” maxOccurs=”unbounded” processContents="lax"/>

</sequence>

</complexType>
userDomainID: This element contains the identification of User Domain, see section 4.1.

userDomainAlias: This element, if present, contains a string value that SHALL be used by the DRM Agent whenever it refers to the domain specified by <userDomainID> in a message to the User. The content of the <userDomainAlias> element SHALL be saved in the User Domain Context. The maximum length of this element SHALL be 80 bytes.

signature: This element contains a MAC value over the trigger besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ReqContext for the DRM Agent.
Upon receipt of a Join User Domain Trigger, the DRM Agent MUST perform the default processing as specified in [SCE-GEN] and if successful post a Join User Domain Request.

6.2.2 Join User Domain Request

A Join User Domain Request message is sent from a DRM Agent to a DEA as the first message of the 2-pass Join User Domain protocol. The message MUST be a <dmpJoinUserDomainRequest> element as defined in the following XML schema fragment:

<element name="dmpJoinUserDomainRequest" type="gen:Request"/>

A Join User Domain Request message MUST be formatted as specified in the table below:

	element / attribute
	usage
	Value

	triggerNonce
	O
	Default, as specified in [SCE-GEN]

	sessionId
	O
	Default, as specified in [SCE-GEN]

	reqID
	M
	DRM Agent’s ID

	resID
	M
	DEA’s ID

	Nonce
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	reqInfo
	M
	Specified below

	Signature
	M
	Specified below

Table 4 - Join User Domain Request Message Parameters

The Join User Domain Request message contains a <reqInfo> element as defined by the following XML schema fragment:

<element name="reqInfo" type="dom:JoinUserDomainRequestInformation"/>

<complexType name="JoinUserDomainRequestInformation">

<sequence>

<element name="userDomainID" type="dom:UserDomainIdentifier" maxOccurs=”unbounded”/>

<element name=”peerKeyIdentifier” type=”gen:KeyIdentifier” minOccurs=”0”/>

<element name="hashChainsSupported" type="gen:Empty” minOccurs=”0”/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>

userDomainID: If the DRM Agent received a Join User Domain Trigger, then the value of the <userDomainID> element MUST be equal to the <userDomainID> received in the trigger. Otherwise, the value MUST be equal to the <userDomainID> from a ProtectedRO that is received out-of-band.

peerKeyIdentifier: An identifier for a DEA public key stored in the DRM Agent. If the identifier matches the stored DEA ID as specified in Section xxx, it means the DRM Agent has already stored the DEA ID and the corresponding DEA certificate chain, and the DEA need not send its certificate chain in its response message.

hashChainsSupported: This element, if present, indicates that the the DRM Agent supports the hash chain mechanism (see section 8.4).

signature: This element contains a MAC value over the message besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ResContext for the DEA.
Upon receipt of a Join User Domain Request, the DEA MUST perform the default processing, as specified in [SCE-GEN] and MUST return a Join User Domain Response.

6.2.3 Join User Domain Response

A Join User Domain Response message is sent from a DEA to a DRM Agent as the last message of the 2-pass Join User Domain protocol. A Join User Domain Response message is also sent from a DEA to a DRM Agent as the first message of the 1-pass Join User Domain protocol. The message MUST be a <dmpJoinUserDomainResponse> element as defined in the following XML schema fragment:
<element name="dmpJoinUserDomainResponse" type="gen:Response"/>

If the processing of the Join User Domain Request message was not successful, then the response MUST be formatted as specified in [SCE-GEN]. Otherwise the response MUST be formatted per the table below:

	element / attribute
	Usage
	Value

	Status
	M
	“Success”

	reqID
	M
	DRM Agent’s ID

	resID
	M
	DEA’s ID

	Nonce
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	resInfo
	M
	Specified below

	Signature
	M
	Specified below

Table 5 - Join User Domain Response Message Parameters

The Join User Domain Response message MUST have a <resInfo> element as defined by the following XML schema fragment:
<element name="resInfo" type="dom:JoinUserDomainResponseInformation"/>

<complexType name=" JoinUserDomainResponseInformation">

<sequence>

<element name="willUsehashChains" type="gen:Empty” minOccurs=”0”/>

<element name="daCertificateChain" type="gen:CertificateChain" minOccurs="0"/>

<element name="userDomainAuthorization" type="dom:UserDomainAuthorization" maxOccurs=”unbounded”/>

<element name="udk" type="base64Binary" maxOccurs="unbounded"/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>

joinUserDomainInfo: This element contains information on the User Domain. Its child elements are described below.
daCertificateChain: This element contains the certificate chain of the DA that authorizes the DEA to managed the User Domain. The DRM Agent MUST verify this certificate chain.
userDomainAuthorization: This element contains User Domain Authorizations.
The DEA MUST include a “DEA” User Domain Authorization for which:

1. The <dadeaId> identifies the DA
2. The <entityId> identifies the DEA
3. The User Domain baseID of the <userDomainId> equals User Domain baseID of the <userDomainId> from the JoinUserDomainRequest
4. An <isDea> element is present.
5. If the <notBefore> element is present, the Current DRM Time is later than the value of the <notBefore > element

6. If the <notAfter> element is present, the Current DRM Time is earlier than the value of the <notAfter> element.
7. The <signature> verification using the DAs public key is successful.
The DRMAgent MUST check that such User Domain Authorization is present. If no such User Domain Authorization is present, then the DRM Agent MUST abort the join domain process.
The DEA SHOULD include the User Domain Authorizations of all RI/LRM’s that are currently authorized to create RO’s for the User Domain. These are required for the installation of User Domain RO’s, as specified in section 8.

udk: This element contains the UDK for the User Domain encrypted by the SK. If Hash Chains are supported by both the Device and the DEA, only the UDK corresponding to the most recent User Domain generation SHOULD be included, otherwise all UDKs for all User Domain generations MUST be included (including their User Domain identifiers as Id attributes).

willUsehashChains: This element, if present, indicates that the DEA will use the hash chain mechanism of section 8.4. This element MUST be omitted if the DRM Agent did not indicate that it supports the hash chain mechanism in the Join User Domain Request.

signature: This element contains a MAC value over the message besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ReqContext for the DRM Agent.
6.3 Leave User Domain Protocol
The following figure illustrates the Join User Domain Protocol.

6.3.1 Leave User Domain Trigger

A Leave User Domain Trigger is delivered to a DRM Agent to initiate the 2-pass Leave User Domain protocol. The message MUST be a <gen:trigger> element as defined in the following XML schema fragment:

<element ref=”gen:trigger”/>

A Leave User Domain Trigger message MUST be formatted as specified in the table below:

	element / attribute
	usage
	value

	id
	O
	Default, as specified in [SCE-GEN]

	type
	M
	“dmpLeaveUserDomain”

	version
	M
	“1.0”

	resID
	M
	DEA’s ID

	resAlias
	O
	Default, as specified in [SCE-GEN]

	nonce
	M
	Default, as specified in [SCE-GEN]

	reqURL
	M
	Default, as specified in [SCE-GEN]

	body
	M
	Specified below

	signature
	M
	Specified below

Table 6 – Leave User Domain Trigger Message Parameters

The Leave User Domain Trigger contains a <body> element that MUST have a <trgInfo> child element which is defined by the following XML schema fragment:

<element name=”trgInfo” type="dom:LeaveUserDomainTrgInformation"/>
<complexType name=”LeaveUserDomainTrgInformation”>

<sequence>

<element name="userDomainID" type="dom:UserDomainIdentifier"/>

<element name="userDomainAlias" type="String80" minOccurs="0"/>

<element name=”deviceID” type=”gen:Identifier" minOccurs="0"/>

<any minOccurs=”0” maxOccurs=”unbounded” processContents="lax"/>

</sequence>

</complexType>

userDomainID: This element identifies the User Domain, see section 4.1.

userDomainAlias: This element contains a string value that SHALL be used by the DRM Agent whenever it refers to the domain specified by <userDomainID> in a message to the User. The maximum length of this element SHALL be 80 bytes.

deviceID: This element, if present, MUST be verified by the DRM Agent as to whether the value of the <deviceID> matches its Device ID. If the deviceID does not match, the DRM Agent MUST discard the trigger.
signature: This element contains a MAC value over the trigger besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ReqContext for the DRM Agent.
Upon receipt of a Leave User Domain Trigger, the DRM Agent MUST perform the default processing, as specified in [SCE-GEN] and if successful send a Leave User Domain Request.

6.3.2 Leave User Domain Request

A Leave User Domain Request message is sent from a DRM Agent to a DEA as the first message of the 2-pass Leave User Domain protocol. The message MUST be a <dmpLeaveUserDomainRequest> element as defined in the following XML schema fragment:

<element name="dmpLeaveUserDomainRequest" type="gen:Request"/>

A Leave User Domain Request message MUST be formatted as specified in the table below:

	element / attribute
	usage
	value

	triggerNonce
	O
	Default, as specified in [SCE-GEN]

	sessionId
	O
	Default, as specified in [SCE-GEN]

	reqID
	M
	DRM Agent’s ID

	resID
	M
	DEA’s ID

	nonce
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	reqInfo
	M
	Specified below

	signature
	M
	Specified below

Table 7 – Leave User Domain Request Message Parameters

The Leave User Domain Request message contains a <reqInfo> element as defined by the following XML schema fragment:

<element name="reqInfo" type="dom:LeaveUserDomainRequestInformation"/>

<complexType name="LeaveUserDomainRequestInformation">

<sequence>

<element name="userDomainID" type="dom:UserDomainIdentifier" maxOccurs=”unbounded”/>

<element name="notAMember" type type="gen:Empty” minOccurs=”0”/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>

userDomainID: This element contains the identity of the User Domain from which the Device is leaving. If the DRM Agent received a Leave User Domain Trigger, then the value of the this element MUST be equal to the <userDomainID> element received in the Leave User Domain trigger (see section 6.3.1).

notAMember: This element, if present, indicates that the DRM Agent does not consider itself a member of this User Domain. This could happen, for example, if the DRM Agent already has left the User Domain, but receives a new trigger to leave it (perhaps because the DEA never received the previous Leave User Domain Request).

signature: This element contains a MAC value over the message besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ResContext for the DEA.
Upon receipt of a Leave User Domain Request, the DEA MUST perform the default processing, as specified in [SCE-GEN] and MUST return a Leave User Domain Response.

6.3.3 Leave User Domain Response

A Leave User Domain Response message is sent from a DEA to a DRM Agent as the last message of the 2-pass Leave User Domain protocol. The message MUST be a <dmpLeaveUserDomainResponse> element as defined in the following XML schema fragment:

<element name="dmpLeaveUserDomainResponse" type="gen:Response"/>

If the processing of the Leave User Domain Request is not successful, then the response MUST be formatted as specified in [SCE-GEN]. Otherwise the response MUST be formatted per the table below:

	element / attribute
	usage
	value

	status
	M
	“Success”

	reqID
	M
	DRM Agent’s ID

	resID
	M
	DEA’s ID

	nonce
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	resInfo
	M
	Specified below.

	signature
	M
	Specified below

Table 8 – Leave User Domain Response Message Parameters

The Leave User Domain Response message MUST have a <resInfo> element as defined by the following XML schema fragment:
<element name="resInfo" type="dom:LeaveUserDomainResponseInformation"/>

<complexType name="LeaveUserDomainResponseInformation">

<sequence>

<element name=”userDomainID” type=”dom:UserDomainIdentifier” maxOccurs=”unbounded”/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>

userDomainID: This element identifies the User Domain from which the DEA removed the DRM Agent. The Domain Generation part of the Domain Identifier SHALL be ignored.

signature: This element contains a MAC value over the message besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ReqContext for the DRM Agent.
The DEA sends the Leave User Domain Response after having deleted the association of this DRM Agent to the User Domain (i.e. updated the User Domain membership status).
7. The Rights Issuer – Domain Enforcement Agent Protocol Suite (SCE-3-RDP)

The Rights Issuer – Domain Enforcement Agent Protocol Suite (SCE-3-RDP) is the interface provided by a DEA to RIs. This interface provides the following functionality:

· RI-DEA Registration - used by RIs to register with a DEA

· Getting User Domain Authorization - used by RIs to get authorization for a User Domain

· Dropping User Domain Authorization - used by RIs to drop authorization for a User Domain

Since DRM v2.x Devices support only DRM v2.x Domains and can not interact with a DEA by any defined protocol, the following protocols are also available to allow DRM v2.x Devices to take advantage of User Domains.
· Proxy Join User Domain - used by RIs to allow a v2.x Device to join a User Domain

· Proxy Leave User Domain - used by RIs allow a v2.x Device to leave a User Domain

All the protocols of the SCE-3-RDP interface are also available to LRMs via the SCE-5-LRMP interface by replacing “RI” with “LRM”.

7.1 RI-DEA Registration Protocol

The RI-DEA Registration Protocol is a complete security information exchange and handshake between the RI and the DEA and is generally only executed at first contact, but may also be executed when there is a need to update the exchanged security information. This protocol includes negotiation of protocol parameters and protocol version, cryptographic algorithms, exchange of certificate preferences, optional exchange of certificates, mutual authentication of RI and DEA, and integrity protection of protocol messages.

Successful completion of the Registration protocol results in the establishment of a DEA Context in the RI containing DEA-specific security related information such as agreed protocol parameters, protocol version, and certificate preferences. A DEA Context is necessary for execution of the other protocols in the SCE-3-RDP suite. Figure 5 depicts the 4-pass RI-DEA Registration Protocol.

[image: image3.emf]DA/DEA RI

D

A/

DE

A

-R

I H

el

loR

e

qu

est

DA

/D

E

A-

RI

 H

el

loR

es

po

ns

e

D

A

/D

EA

-R

I

Re

gis

tra

tio

nR

e

qu

est

D

A/

DE

A

-R

I R

e

gis

tra

tio

nR

es

po

ns

e

DA

/D

E

A-

RI

 R

eg

ist

rat

ion

 T

rig

ge

r

Figure 5 - The 4-pass RI-DEA Registration Protocol
7.1.1 RI-DEA Hello Request
The RI-DEA Hello Request message is sent from the RI to the DEA to initiate the 4-pass Registration protocol. This message expresses RI information and preferences and MUST be formatted as specified in [SCE-GEN].

Upon receipt of a RI-DEA Hello Request, the DEA MUST perform the default processing, as specified in [SCE-GEN] and MUST return a RI-DEA Hello Response.
7.1.2 RI-DEA Hello Response

The RI-DEA Hello Response message is sent from the DEA to the RI in response to a RI-DEA Hello Request message. The message expresses DEA preferences and decisions based on the values supplied by the RI and MUST be formatted as specified in in [SCE-GEN].
7.1.3 RI-DEA Registration Request
An RI sends the RI-DEA Registration Request message to a DEA to request registration with the DEA. The message is sent as the third message in the 4-pass Registration protocol and MUST be formatted as specified in [SCE-GEN] , with the exception of the <reqInfo> element. The <reqInfo> element MUST be based on the following XML schema fragment:

<element name="reqInfo" type="dom:RiDeaRegReqInfo"/>

<complexType name="RiDeaRegReqInfo">

<sequence>

<element name="authorizationServiceQuery" type="gen:Empty" minOccurs="0"/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/

</sequence>

</complexType>

authorizationServiceQuery: This element, if present, is used by the RI to query if the DEA can provide a RightsAuth service (see section xxx).
7.1.4 RI-DEA Registration Response

The RI-DEA Registration Response message is sent from the DEA to the RI in response to a RI-DEA Registration Request message. This message completes the Registration protocol, and if successful, enables the RI to establish a DEA Context and MUST be formatted as specified in [SCE-GEN], with the exception of the <resInfo> element. The <resInfo> element MUST be based on the following XML schema fragment:

<element name="resInfo" type="dom:RegResInfo"/>
<complexType name="RegResInfo">

<sequence>

<element name="resURL" type="anyURI"/>

<element name="encSa" type="base64Encoded"/>

<element name="authorizationServiceProvided" type="gen:Empty" minOccurs="0"/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/

</sequence>
</complexType>
resURL: This element contains the URL that the RI MUST send future requests to the DEA. The value of this element MUST be a URL according to [RFC2396], and MUST be an absolute identifier.

encSa: This element contains an encrypted security association (SA). The SA contains a symmetric key (referred to as the SK) for encrypting data between the RI and DEA, concatenated a Message Integrity Key (MK) for providing integrity protection. For the default algorithms, the SA contains a 128-bit AES key followed by a 160-bit HMAC-SHA1 key. The SA is encrypted using the RI’s public key.

authorizationServiceProvided: This element, if present, indicates to the RI that the DEA can provide a RightsAuth service (see section xxx).
7.2 Get User Domain Authorization Protocol

7.2.1 Get User Domain Authorization Trigger

A Get User Domain Authorization Trigger message is sent to an RI from a DEA to initiate the 2-pass Get User Domain Authorization protocol. The message MUST be a <gen:trigger> element as defined by the following XML schema fragment:

<element ref=”gen:trigger”/>

A Get User Domain Authorization Trigger MUST be formatted as specified in the table below:

	element / attribute
	usage
	value

	id
	O
	Default, as specified in [SCE-GEN]

	type
	M
	“rdpGetUserDomainAuthorization”

	version
	M
	“1.0”

	resID
	M
	DEA’s ID

	resAlias
	O
	Default, as specified in [SCE-GEN]

	nonce
	O
	Default, as specified in [SCE-GEN]

	reqURL
	M
	Default, as specified in [SCE-GEN]

	body
	M
	Specified below

	signature
	M
	Specified below

Table 9 - Get User Domain Authorization Trigger Message Parameters

The Get User Domain Authorization Trigger contains a <body> element that MUST have a <trgInfo> child element which is defined by the following XML schema fragment:

<element name=”trgInfo” type="dom:GetUserDomainAuthorizationTrgInformation"/>
<complexType name=”GetUserDomainAuthorizationTrgInformation”>

<sequence>

<element name="userDomainID" type="dom:UserDomainIdentifier"/>

<element name="userDomainAlias" type="String80" minOccurs="0"/>

<any minOccurs=”0” maxOccurs=”unbounded” processContents="lax"/>

</sequence>

</complexType>
userDomainID: This element identifies the User Domain, see section 4.1.

userDomainAlias: This element contains a string value that SHALL be used by the RI whenever it refers to the domain specified by <userDomainID> in a message to the User. The content of the <userDomainAlias> element SHALL be saved in the User Domain Context. The maximum length of this element SHALL be 80 bytes.
signature: This element contains a MAC value over the trigger besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ReqContext for the RI.
Upon receipt of a Get User Domain Authorization Trigger, the RI MUST perform the default processing as specified in [SCE-GEN] and if successful post a Get User Domain Authorization Request.

7.2.2 Get User Domain Authorization Request
The Get User Domain Authorization Request message is sent from the RI to the DEA to initiate the 2-pass Get User Domain Authorization protocol. The message MUST be a <rdpGetUserDomainAuthorizationTrigger> element as defined by the following XML schema fragment:

<element name=”rdpGetUserDomainAuthorization” type=”gen:Request”/>

A Get User Domain Authorization Request MUST be formatted as specified in the table below:
	element / attribute
	usage
	value

	triggerNone
	O
	Default, as specified in [SCE-GEN]

	sessionId
	O
	Default, as specified in [SCE-GEN]

	reqID
	M
	RI’s ID

	resID
	M
	DEA’s ID

	nonce
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	reqInfo
	M
	Specified below

	signature
	M
	Specified below

Table 10 - Get User Domain Authorization Request Message Parameters
The Get User Domain Authorization Request message contains a <reqInfo> element as defined by the following XML schema fragment:
<element name="reqInfo" type="gen:GetUserDomainAuthorizationRequestInformation"/>

<complexType name="GetUserDomainAuthorizationRequestInformation">

<sequence>

<element name="userDomainID" type="dom:UserDomainIdentifier"/ maxOccurs=”unbounded”/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>

userDomainID: This element contains the identifier for the User Domain the RI wants the User Domain Authorization for.

signature: This element contains a MAC value over the message besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ResContext for the DEA.
Upon receipt of a Get User Domain Authorization Request and processing the message, the DEA MUST return a Get User Domain Authorization Response.

7.2.3 Get User Domain Authorization Response
The Get User Domain Authorization Response message is sent from the DEA to the RI as the last message of the 2-pass Get User Domain Authorization Request protocol. A Get User Domain Authorization Response message is also sent from a DEA to an RI as the first message of the 1-pass Get User Domain Authorization protocol. The message MUST be a <dmpGetUserDomainAuthorizationResponse> element as defined in the following XML schema fragment:
<element name="dmpGetUserDomainAuthorizationResponse" type="gen:Response"/>

If the processing of the Get User Domain Authorization Request message was not successful, then the response MUST be formatted as specified in [SCE-GEN]. Otherwise the response MUST be formatted per the table below:

	element / attribute
	usage
	value

	Status
	M
	”Success”

	reqID
	M
	RI’s ID

	resID
	M
	DEA’s ID

	Nonce
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	resInfo
	M
	Specified below

	Signature
	M
	Specified below

Table 11 - Get User Domain Authorization Response Message Parameters
The Get User Domain Authorization Response message MUST have a <resInfo> element as defined by the following XML schema fragment:

<element name="resInfo" type="dom:GetUserDomainAuthorizationResponsetInformation"/>

<complexType name="GetUserDomainAuthorizationResponsetInformation">

<sequence>

<element name=”getUserDomainAuthInfo” type=”dom:GetUserDomainAuthInfo” maxOccurs=”unbounded”/>

<element name="daCertificateChain" type="gen:CertificateChain" minOccurs="0"/>

<element name="userDomainAuthorization" type="dom:UserDomainAuthorization" maxOccurs=”unbounded”/>

<element name="encUserDomainKeySet" type="base64Binary"/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>

<complexType name=”UserDomainKeySet”>

<sequence>

plaintext MAC

plaintext REK

AES-WRAP(UDK, MAC|REK)

plaintext MAC-leave

AES-WRAP(UDK, MAC-leave)

</sequence>

</complexType>

userUserDomainAuthorization: This element contains a User Domain Authorizations Several of these elements may be included in the response.

The DEA MUST include a User Domain Authorization for which:

1. The <dadeaId> identifies the DA

2. The <entityId> identifies the DEA
3. The User Domain baseID of the <userDomainId> equals User Domain baseID of the <userDomainId> from the getUserDomainAuthorizationRequest.
4. An <isDea> element is present

5. If the <notBefore> element is present, the Current DRM Time is later than the value of the <notBefore > element

6. If the <notAfter> element is present, the Current DRM Time is earlier than the value of the <notAfter> element.
7. The <signature> verification using the DA’s public key is successful.
The RI/LRM MUST check that such User Domain Authorization is present. If no such User Domain Authorization is present, then the RI/LRM MUST abort the get user domain authorization process.
The DEA MUST include a “RI/LRM” User Domain Authorization for which:
1. The <dadeaId> identifies the DEA

2. The <entityId> identified the RI/LRM
3. A <isRIorLRM> elemtent is included.
4. The <signature> verification using the DEA’s public key is successful.
This User Domain Authorization is required for the installation of User Domain ROs, as specified in section 8. The RI/LRM will pass this on to DRM Agents in the ROs. See section 8.
encUserDomainKeySet: This element contains an encrypted set of keys for the User Domain. The set of keys are encrypted using the negotiated algorithm and using the SK of the ReqContext for the RI. The plaintext keys are described in the following table.

	Key
	Description

	KMAC
	A MAC key used by the RI when delivering a User Domain RO.

	KREK
	A REK used by the RI when delivering a User Domain RO.

	AES-WRAP(UDK, KMAC|KREK)
	The AES-WRAP, using the UDK, of the concatenation of KMAC and KREK. Used by the the RI when delivering a User Domain RO.

	KMAC-Leave
	A MAC key used by the RI when a Device is leaving the User Domain.

	AES-WRAP(UDK, KMAC-Leave)
	The AES-WRAP, using the UDK, of KMAC-Leave. Used by the RI when a Device is leaving the User Domain.

signature: This element contains a MAC value over the message besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ReqContext for the RI.
7.3 Drop User Domain Authorization Protocol
7.3.1 Drop User Domain Authorization Trigger

A Drop User Domain Authorization Trigger message is sent to a RI to initiate the 2-pass Drop User Domain Authorization protocol. The message MUST be a <gen:trigger> element as defined in the following XML schema fragment:

<element ref=”gen:trigger”/>

A Drop User Domain Authorization Trigger message MUST be formatted as specified in the following table.
	element / attribute
	usage
	value

	Id
	O
	Default, as specified in [SCE-GEN]

	Type
	M
	“rdpDropUserDomainAuthorization”

	version
	M
	“1.0”

	resID
	M
	DEA’s ID

	resAlias
	O
	Default, as specified in [SCE-GEN]

	Nonce
	O
	Default, as specified in [SCE-GEN]

	reqURL
	M
	Default, as specified in [SCE-GEN]

	Body
	M
	Specified below

	Signature
	O
	Specified below

Table 12 – Drop User Domain Authorization Trigger Message Parameters

The Drop User Domain Authorization Trigger contains a <body> element that MUST have a <trgInfo> child element which is defined by the following XML schema fragment:

<element name=”trgInfo” type="dom:DropUserDomainAuthorizationTrgInformation"/>
<complexType name=” DropUserDomainAuthorizationTrgInformation”>

<sequence>

<element name="userDomainID" type="dom:UserDomainIdentifier"/>

<element name="userDomainAlias" type="String80" minOccurs="0"/>

<any minOccurs=”0” maxOccurs=”unbounded” processContents="lax"/>

</sequence>

</complexType>
userDomainID: This element identifies the User Domain to drop, see section 4.1.

userDomainAlias: This element, if present, contains a string value that SHALL be used by the RI whenever it refers to the domain specified by <userDomainID> in a message to the User. The content of the <userDomainAlias> element SHALL be saved in the User Domain Context. The maximum length of this element SHALL be 80 bytes.
signature: This element contains a MAC value over the trigger besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ReqContext for the RI.
In the case that an RI receives a RDP Trigger where the <rdpTrigger> element carries a <dropUserDomainRequest> element, the RI SHALL initiate Drop User Domain protocol.
7.3.2 Drop User Domain Authorization Request

The Drop User Domain Authorization Request message is sent from a RI to a DEA as the first message of the 2-pass Drop User Domain Authorization protocol. The message MUST be a <rdpDropUserDomainAuthorizationRequest> element as defined in the following XML schema fragment:

<element name="rdpDropUserDomainAuthorizationRequest" type="gen:Request"/>

A Drop User Domain Authorization Request message MUST be formatted as specified in the table below:
	element / attribute
	usage
	value

	triggerNonce
	O
	Default, as specified in [SCE-GEN]

	sessionId
	O
	Default, as specified in [SCE-GEN]

	reqID
	M
	RI’s ID

	resID
	M
	DEA’s ID

	Nonce
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	reqInfo
	M
	Specified below.

	Signature
	M
	Specified below

Table 13 - Drop User Domain Authorization Request Message Parameters
The Drop User Domain Authorization Request message contains a <reqInfo> element as defined by the following XML schema fragment:

<element name="reqInfo" type="dom:DropUserDomainAuthorizationRequestInformation"/>

<complexType name="DropUserDomainAuthorizationRequestInformation">

<sequence>

<element name="userDomainID" type="dom:UserDomainIdentifier" maxOccurs=”unbounded”/>

<element name="notAuthorized" type="gen:Empty"/ minOccurs=”0”>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>

userDomainID: If the RI received a Drop User Domain Authorization Trigger, then the value of the <userDomainID> element MUST be equal to the <userDomainID> received in the trigger. Otherwise, the value contains the ID of the User Domain the RI wishes to drop its authorization for.
notAuthorizaed: This element, if present, indicates that the RI does not have a User Domain Authorization for the User Domain. This could happen, for example, if the RI already has dropped the authorization for a User Domain but receives a new trigger to drop the authorization (perhaps because the DEA never received the previous Drop User Domain Authorization Request or the authorization of the RI has already expired).

signature: This element contains a MAC value over the message besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ResContext for the DEA.
Prior to sending a Drop User Domain Authorization Request message, the RI MUST disable the ability to create any ROs for the User Domain.
7.3.3 Drop User Domain Authorization Response
The Drop User Domain Authorization Response message is sent from the DEA to the RI as the last message of the 2-pass Drop User Domain Authorization protocol. A Drop User Domain Authorization Response message is also sent from a DEA to an RI as the first message of the 1-pass Drop User Domain Authorization protocol. The message MUST be a <rdpDropUserDomainAuthorizationResponse> element as defined in the following XML schema fragment:
<element name="rdpGetUserDomainAuthorizationResponse" type="gen:Response"/>

If the processing of the Drop User Domain Authorization Request message was not successful, then the response MUST be formatted as specified in [SCE-GEN]. Otherwise the response MUST be formatted per the table below:

	element / attribute
	usage
	value

	status
	M
	“Success”

	reqID
	M
	RI’s ID

	resID
	M
	DEA’s ID

	nonce
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	resInfo
	M
	Specified below.

	signature
	M
	Specified below

Table 14 - Drop User Domain Response Message Parameters
The Drop User Domain Authorization Response message MUST have a <resInfo> element as defined by the following XML schema fragment:

<element name="resInfo" type="dom:DropUserDomainAuthorizationResponsetInformation"/>

<complexType name=" DropUserDomainAuthorizationResponsetInformation">

<sequence>

<element name=”userDomainID” type=”dom:UserDomainID”/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>

userDomainID: This element identifies the User Domain for which the RI is dropping its User Domain Authorization.

signature: This element contains a MAC value over the message besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ReqContext for the RI.
If the value of the <status> element is not “Success”, the RI’s User Domain Authorization remains valid..
7.4 Proxy Join User Domain Protocol
By an RI serving as a proxy, a v2.x DRM Agent can indirectly join a User Domain as illustrated in Figure 1.

The v2.x DRM Agent sends the RI a JoinDomainRequest message ([DRM-DRM-v2.1]) to convey the information about the target Domain that it will join. When the RI determines that the target Domain is a User Domain, it sends the DEA a ProxyJoinUserDomainRequest message to forward the v2.x DRM Agent’s request as indicated by the preceding JoinDomainRequest message. After processing the ProxyJoinUserDomainRequest message, the DEA returns a ProxyJoinUserDomainResponse to the RI to convey its reaction to the request, and the RI subsequently returns a JoinDomainResponse to the v2.x DRM Agent to forward the reaction indicated by preceding ProxyJoinUserDomainResponse.

[image: image4.emf]DRM2.x Device

RI DA/DEA

JoinDomainRequest

ProxyJoinUserDomainRequest

ProxyJoinUserDomainResponse

JoinDomainResponse

Figure 6 - v2.x DRM Agent indirectly joins a User Domain

7.4.1 Proxy Join User Domain Request
The Proxy Join User Domain Request message is sent from a RI to a DEA as the first message of the 2-pass Proxy Join User Domain protocol. The message MUST be a <rdpProxyJoinUserDomainRequest> element as defined in the following XML schema fragment:

<element name=" rdpProxyJoinUserDomainRequest " type="gen:Request"/>

A Proxy Join User Domain Request message MUST be formatted as specified in the table below:
	element / attribute
	usage
	value

	reqID
	M
	RI’s ID

	resID
	M
	DEA’s ID

	nonce
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	reqInfo
	M
	Specified below

	signature
	M
	Specified below

Table 15 - Proxy Join User Domain Request Message Parameters
The Proxy Join User Domain Request message contains a <reqInfo> element as defined by the following XML schema fragment:

<element name="reqInfo" type="dom:ProxyJoinUserDomainRequestInformation"/>

<complexType name="ProxyJoinUserDomainRequestInformation">

<sequence>

<element name="joinDomainRequest" type="roap:DomainRequest"/>

<element name="deviceCertificateChain" type="roap:CertificateChain" minOccurs="0"/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>
joinDomainRequest: This element contains the joinDomainRequest message as received by the RI from the DRM Agent.

deviceCertificateChain: This element, if present, contains the certificate chain for the Device. If the <joinDomainRequest> element does not include the <certificateChain> field, this parameter MUST be present. The chain SHALL not include the root certificate. The Device certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it.
signature: This element contains a MAC value over the message besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ResContext for the DEA.
7.4.2 Proxy Join User Domain Response
The Proxy Join User Domain Response message is sent from the DEA to the RI as the last message of the 2-pass Proxy Join User Domain Request protocol. The message MUST be a <rdpJoinUserDomainResponse> element as defined in the following XML schema fragment:
<element name="rdpProxyJoinUserDomainResponse" type="gen:Response"/>

If the processing of the Proxy Join User Domain Request message was not successful, then the response MUST be formatted as specified in [SCE-GEN]. Otherwise the response MUST be formatted per the table below:

	element / attribute
	usage
	value

	status
	M
	“Success”

	reqID
	M
	RI’s ID

	resID
	M
	DEA’s ID

	nonce
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	resInfo
	M
	Specified below

	signature
	M
	Specified below

Table 16 - Proxy Join User Domain Response Message Parameters
The Proxy Join User Domain Response message MUST have a <resInfo> element as defined by the following XML schema fragment:

<element name="resInfo" type="dom:ProxyJoinUserDomainResponseInformation"/>

<complexType name="ProxyJoinUserDomainResponseInformation">

<sequence>

<element name="domainInfo" type= "roap:DomainInfo" minOccurs="0"/>

<element name="deviceID" type="roap:Identifier" minOccurs="0"/>

</sequence>

</complexType>
domainInfo: this element contains (see below).

deviceID: this element contains the ID of the Device TBD.

signature: this element contains a MAC value over the message besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ReqContext for the RI.
After reception of the ProxyJoinUserDomainRequest message, the DEA MUST perform the default processing, as specified in [SCE-GEN], and MUST execute the following procedure:

· Verify the validity of the Device's certificate chain. This certificate chain is contained in either the <certificateChain> element in the <joinUserDomainRequest> element, or in the <deviceCertificateChain> element in the <ProxyJoinUserDomainRequest> message. The certificate chain validation includes verification of the revocation status. If the certificate chain validation fails, the DEA MUST send to the RI a ProxyJoinUserDomainResponse message with the <status> field set to "InvalidCertificateChain".

· Verify the signature in the <signature> element in the <joinUserDomainRequest> element. If the signature verification fails, the DEA MUST send the RI a ProxyJoinUserDomainResponse message with the <status> field set to "SignatureError".

· If the UserDomainIdentifier is unknown to the DEA, the DEA MUST send to the RI a ProxyJoinUserDomainResponse message with the <status> field set to "InvalidDomain".

· If the DRM Agent cannot be joined to the User Domain because the User Domain has already reached the maximum number of devices, the DEA MUST send to the RI a ProxyJoinUserDomainResponse message with the <status> field set to "DomainFull".

· If the DEA wants to reject the DRM Agent joining the User Domain for any other reason than the ones stated above, the DEA MUST send to the RI a ProxyJoinUserDomainResponse message with the <status> field set to "DomainAccessDenied".

When the DEA allows the DRM Agent to join the User Domain, it MUST return a ProxyJoinUserDomainResponse message to the RI to convey the User Domain Information including the Domain Keys and the lifetime of the Domain. The DEA SHOULD record the association of the DRM Agent and the User Domain and the RI. In this case, the ProxyJoinUserDomainResponse message SHALL have the <status> field set to "Success" and the DEA MUST include in the ProxyJoinUserDomainResponse a <rspInfo> element (as defined in [DRMGEN-SCE]), which MUST contain a <proxyJoinUserDomainRspInfo> element. The <proxyJoinUserDomainRspInfo> element contains the following elements:

domainInfo: this field MUST contain the following subfields:

notAfter: this field expresses, in UTC, the expiry time of the User Domain Context. The value "Infinite" indicates infinite lifetime of the User Domain Context.

domainKey: this field contains the following subfields:

encKey: this element contains a MAC key, KMAC, and the DDK associated with the current generation of the User Domain, and the RI over which the ProxyJoinUserDomain protocol is performed. The keys are wrapped as specified in the Key management section 7.2.2 from [DRM-DRM-v2.1], where KD is replaced by the DDK. The value of the <encKey> element's "Id" attribute MUST be equal to the value of the <domainID> element in the <joinUserDomainRequest> element in the ProxyJoinUserDomainRequest message, save for the Domain Generation part. All DDKs for all User Domain Generations MUST be included (including their domain identifiers as Id attributes). The child of the <ds:KeyInfo> element inside the <encKey> element SHALL be the <roap:X509SPKIHash> element, identifying the public key of the DRM agent through the hash of the subjectPublicKeyInfo in its certificate.

riID: this element MUST contain the same value as the <reqID> element in the ProxyJoinUserDomain message.

mac: this element provides key confirmation via a MAC on the canonical version according to Section 5.3.3 of [DRM-DRM-v2.1] of the <domainKey> element (excluding the <mac> element itself) using the MAC key KMAC wrapped in the <encKey> element. The MAC algorithm to use is defined by the DEA.
deviceID: this field MUST contain the same value as the <deviceID> field in the <joinUserDomainRequest> field in the ProxyJoinUserDomainRequest message.

signature: this element MUST contain a signature over this message. The signature method is as follows:

· The message except the Signature element is canonicalized according to Section 5.3.3 from [DRM-DRM-v2.1].

· The result of the canonicalization, d, is considered as input to the signature operation.
· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm..
7.4.2.1 Sending JoinDomainResponse

When receiving a ProxyJoinUserDomainResponse message, the RI MUST verify the included signature. If the signature verification fails, the RI MUST send a ROAP JoinDomainResponse message with only the <status> field, which is set to "DomainAccessDenied". If the <status> field in the ProxyJoinUserDomainResponse message contains "Success", and the signature verification did not fail, the RI MUST return a ROAP JoinDomainResponse to the v2.x DRM Agent to convey the User Domain Information in the ProxyJoinUserDomainResponse message. The JoinDomainResponse message SHALL contain the following fields;
status: this field MUST contain the value "Success".

deviceID: this field MUST contain the same value as the <deviceID> field in the ProxyJoinUserDomainResponse message.

riID: this field MUST contain the RI ID from the sending RI.

nonce: this field MUST contain the same value as the <nonce> field in the JoinDomainRequest message.

domainInfo: this field MUST contain the same value as the <domainInfo> field in the associated ProxyJoinUserDomainResponse message.

certificateChain: this parameter MUST be present unless a preceding JoinDomainRequest message contained the Peer Key Identifier extension, the extension was not ignored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter SHALL be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message (see [DRM-DRM-v2.1]).
ocspResponse: this parameter MAY be present. When present, it SHALL contain a complete set of valid OCSP responses for the RI's certificate chain. This parameter will not be sent if the DRM Agent sent the extension "No OCSP Response" in the preceding JoinDomainRequest (and the RI did not ignore that extension).
extensions: there are currently no extensions defined that can be included in a JoinDomainReponse message for a DRM v2.x device proxy joining a User Domain. Although a DRM v2.x Join Domain Response message allows the use of Hash Chains, these cannot be used when a DRM v2.x device joins a DEA managed User Domain. Therefore, the Hash Chain Support extension SHALL NOT be included in the JoinDomainResponse message.

signature: this field MUST contain the RI signature on this message. The signature is calculated as defined in [DRM-DRM-v2.1], section 5.4.5.2.1.

If the <status> field in the ProxyJoinUserDomainResponse does not contain "Success", but the signature verification over the ProxyJoinUserDomainResponse did not fail, the JoinUserDomainResponse message SHALL only contain the <status> field, which MUST contain the same value as the <status> field in the associated ProxyJoinUserDomainResponse message.
7.5 Proxy Leave User Domain Protocol
A v2.x DRM Agent can indirectly leave via the RI a User Domain as indicated by Figure 7. When the v2.x DRM Agent performs this procedure, the DEA deletes the association of this DRM Agent to the User Domain. However, a v2.x DRM Agent may have been joined to this User Domain via multiple RIs. Therefore, after successfully processing a ProxyLeaveUserDomainRequest, the DEA MUST send an RDP Trigger {ProxyLeaveUserDomain} to all RIs that have a valid context for this User Domain related to this v2.x DRM Agent. See section 6.2.4.4 "DEA Indirectly Trigger v2.x DRM Agent Leave User Domain" for more details. The DEA SHALL NOT allow the v2.x DRM Agent to join the User Domain via any RI as long as it has not performed the Proxy Leave User Domain protocol with the v2.x DRM Agent over all RIs for which the v2.x DRM Agent still has a Domain context associated with this User Domain.

To request leaving a Domain, the v2.x DRM Agent sends the RI a LeaveDomainRequest message to convey the information about the target Domain that it will leave. When the RI determines that the target Domain is a User Domain, it sends the DEA a ProxyLeaveUserDomainRequest message to forward the v2.x DRM Agent request as indicated by the preceding LeaveDomainRequest message. After processing the ProxyLeaveUserDomainRequest message, the DEA returns a ProxyLeaveUserDomainResponse to the RI to convey its reaction to the request. The RI subsequently returns a LeaveDomainResponse to the v2.x DRM Agent to forward the reaction indicated by preceding ProxyLeaveUserDomainResponse.

For more detail of this procedure, please refer to the following two sections. Please note, the LeaveDomainRequest and LeaveDomainResponse messages have been described in [DRM-DRM-v2.1].

[image: image5.emf]DRM2.x Device

RI DA/DEA

LeaveDomainRequest

ProxyLeaveUserDomainRequest

ProxyLeaveUserDomainResponse

LeaveDomainResponse

Figure 7 - v2.x DRM Agent indirectly and partially leaves a User Domain

7.5.1 Proxy Leave User Domain Request

The Proxy Leave User Domain Request message is sent from a RI to a DEA as the first message of the 2-pass Proxy Leave User Domain protocol. The message MUST be a <rdpProxyLeaveUserDomainRequest> element as defined in the following XML schema fragment:

<element name=" rdpProxyLeaveUserDomainRequest " type="gen:Request"/>

A Proxy Leave User Domain Request message MUST be formatted as specified in the table below:
	element / attribute
	usage
	value

	reqID
	M
	RI’s ID

	resID
	M
	DEA’s ID

	nonce
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	reqInfo
	M
	Specified below

	signature
	M
	Specified below

Table 17 - Proxy Leave User Domain Request Message Parameters
The Proxy Leave User Domain Request message contains a <reqInfo> element as defined by the following XML schema fragment:

<element name="reqInfo" type="dom:ProxyLeaveUserDomainRequestInformation"/>

<complexType name="ProxyLeaveDomainRequestInformation">

<sequence>

<element name="leaveDomainRequest" type="roap:DomainRequest"/>

<element name="deviceCertificateChain" type=" roap:CertificateChain " minOccurs="0"/>

</sequence>

</complexType>
leaveDomainRequest: this field MUST contain the leaveDomainRequest message as received by the RI from the DRM Agent.

deviceCertificateChain: if the joinDomainRequest message does not include the <certificateChain> field, this parameter MUST be present. The value of the <deviceCertificateChain> parameter SHALL be a certificate chain including the Device's certificate. The chain SHALL not include the root certificate. The Device certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it.
signature: This element contains a MAC value over the message besides the <signature> element itself. It is made using the negotiated algorithm and using the MK of the ResContext for the DEA.
7.5.2 Proxy Leave User Domain Response

The Proxy Leave User Domain Response message is sent from the DEA to the RI as the last message of the 2-pass Proxy Leave User Domain Request protocol. The message MUST be a <rdpLeaveUserDomainResponse> element as defined in the following XML schema fragment:
<element name="rdpProxyLeaveUserDomainResponse" type="gen:Response"/>

If the processing of the Proxy Join User Domain Request message was not successful, then the response MUST be formatted as specified in [SCE-GEN]. Otherwise the response MUST be formatted per the table below:

	element / attribute
	usage
	value

	status
	M
	“Success”

	reqID
	M
	RI’s ID

	resID
	M
	DEA’s ID

	nonce
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	resInfo
	M
	Specified below

	signature
	M
	Specified below

Table 18 - Drop User Domain Response Message Parameters
The Proxy Join User Domain Response message MUST have a <resInfo> element as defined by the following XML schema fragment:
<element name="resInfo" type="dom:ProxyLeaveUserDomainResponseInformation"/>

<complexType name="ProxyLeaveDomainResponseInformation">

<sequence>

<element name="userDomainId" type="roap:DomainIdentifier"/>

<element name="deviceId" type="roap:Identifier"/>

</sequence>

</complexType >
userDomainId: This element contains TBD.

deviceID: This element contains the ID of the Device TBD.

7.5.2.1 Sending ProxyLeaveUserDomainResponse

After reception of the ProxyLeaveUserDomainRequest message, the DEA MUST perform the default processing, as specified in [SCE-GEN], and MUST perform the following checks:
· Verify the validity of the Device's certificate chain. This certificate chain is contained in either the <certificateChain> element in the <leaveDomainRequest> element, or in the <deviceCertificateChain> element in the <ProxyLeaveUserDomainRequest> message. The certificate chain validation includes verification of the revocation status. If the certificate chain validation fails, the DEA MUST send to the RI a ProxyLeaveUserDomainResponse message with the <status> field set to "InvalidCertificateChain".

· Verify the signature in the <signature> element in the <leaveDomainRequest> element. If the signature verification fails, the DEA MUST send the RI a ProxyLeaveDomainResponse message with the <status> field set to "SignatureError".

· If the UserDomainIdentifier is unknown to the DEA, the DEA MUST send to the RI a ProxyLeaveUserDomainResponse message with the <status> field set to "InvalidDomain".

· If present, the field <signature> SHALL be ignored by the DEA.
When the DEA allows the DRM Agent to leave the User Domain, it MUST return a ProxyLeaveUserDomainResponse message to the RI to convey its reaction to the request. Before sending the ProxyLeaveUserDomainResponse message the DEA MUST delete the association of this DRM Agent to the User Domain. The <status> field in the proxyLeaveUserDomainResponse message SHALL be set to "success".

	Parameter
	Proxy Leave User Domain Response

	
	Status = “Success”
	Status ≠ “Success”

	status
	M
	M

	reqID
	M
	M

	resID
	M
	M

	Nonce
	M
	M

	certificateChain
	O
	O

	userDomainIdentifier
	M
	-

	deviceID
	M
	-

	Signature
	M
	-

Table 19 - ProxyLeaveUserDomainResponse Message Parameters

Each ProxyLeaveUserDomainResponse message MUST contain the following fields:

reqID: this field MUST contain the RI ID.

resID: this field MUST contain the DEA ID.

nonce: this field MUST contain the same value as the <nonce> element in the preceding ProxyLeaveUserDomainRequest message.

The DEA MUST include in the proxyLeaveUserDomainResponse message a <rspInfo> element (as defined in [DRMGEN-SCE]), which MUST contain a <proxyLeaveUserDomainRspInfo> element. The <proxyLeaveUserDomainRspInfo> element contains the following fields:

userDomainIdentifier: this field MUST contain the User Domain Identifier of the User Domain from which the DRM Agent is removed.

deviceID: this field MUST contain the Device ID of the Device that is to be removed from the User Domain.

signature: this element MUST contain a signature over this message. The signature method is as follows:

· The message except the Signature element is canonicalized according to Section 5.3.3 from [DRM-DRM-v2.1].

· The result of the canonicalization, d, is considered as input to the signature operation.
· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

7.5.2.2 Sending LeaveDomainResponse

When receiving a ProxyLeaveUserDomainResponse, the RI MUST return a ROAP LeaveDomainResponse to the v2.x DRM Agent to forward the reaction from the DEA.
If the <status> field in the ProxyLeaveUserDomainResponse does not contain "Success", the LeaveDomainResponse message SHALL only contain the <status> field, which MUST be set to the same value as the <status> field in the associated ProxyLeaveUserDomainResponse message.

When receiving a ProxyLeaveUserDomainResponse including the <status> field set to "Success", the RI MUST verify the included DEA signature. If the signature verification fails, the RI MUST send a ROAP LeaveDomainResponse message including only the <status> field, which MUST be set to "DomainAccessDenied". If the signature verification was successful, the parameters in the ProxyLeaveUserDomainResponse message SHALL be set to the following value:

status: this field MUST contain the value "Success".

nonce: this field MUST contain the same value as the <nonce> field in the LeaveDomainRequest message.

domainIdentifier: this field MUST contain the same value as the <UserDomainIdentifier> field in the preceding ProxyLeaveUserDomainResponse message.

extensions: there are currently no extensions defined.
7.6 DEA Indirectly Trigger a v2.x DRM Agent Leave User Domain

A DEA can indirectly trigger a v2.x DRM Agent indirectly leave a User Domain as indicated by Figure xxx.

The DEA sends a RDP Trigger {ProxyLeaveUserDomain} to the RI, so that the RI knows to trigger which DRM Agent to leave which User Domain. After some necessary process on the trigger, the RI subsequently sends a ROAP Trigger {LeaveDomain} to the v2.x DRM Agent. Then the v2.x DRM Agent conducts a procedure as indicated by section 6.2.4.2 to leave indirectly the target User Domain.

For more detail of this procedure, please refer to the following section. Please note, the message other than the RDP Trigger {ProxyLeaveUserDomain} has been described by [DRM-DRM-v2.1] and section 6.2.1.4 above.

[image: image6.emf]DRM2.x Device

RI

DA/DEA

RDP Trigger {ProxyLeaveUserDomain}

ROAP Trigger{leaveDomain}

LeaveDomainRequest

LeaveDomainResponse

ProxyLeaveUserDomainRequest

ProxyLeaveUserDomainResponse

Figure 8 - DEA indirectly triggers v2.x DRM Agent leave a User Domain
7.6.1 RDP Trigger {Proxy Leave User Domain}

<element ref="gen:trigger"/>

<element name="proxyLeaveUserDomainTrgInfo" type="rdp:ProxyLeaveDomainTrgInformation" substitutionGroup="gen:trgInfo"/>

<element complexType name="ProxyLeaveDomainTrgInformationwhoLeave">

 <complexContent>

 <sequence>
 <element name="userDomainIdentifier" type= "dom:DomainIdentifier"/>

 <element name="userDomainAlias" type="string" minOccurs="0"/>

 <element name="deviceIdD" type="roap:Identifier" maxOccurs="unbounded"/>
 </sequence>

 </complexContent>
</element>
	Proxy Join User Domain Trigger

	Parameter
	Mandatory/Optional

	Responder ID
	M

	Responder Alias
	-

	Nonce
	M

	Requestor URL
	M

	User Domain Identifier
	M

	User Domain Alias
	O

	Device ID
	M

Table 20 - Proxy Join User Domain Trigger
The <body> element in the <proxyLeaveUserDomainTrigger> SHALL include <whoLeave> element.

The ProxyLeaveUserDomainTrigger is of the gen:trigger type. This type has the following elements:

resID: this element MUST contain the DEA ID.

resAlias: this element SHOULD not be included.

nonce: this element SHALL be included, and SHALL contain a nonce chosen by the DEA.

reqURL: this element contains an URL, which SHALL be used by the RI to post the ProxyLeaveUserDomainRequest message to.

The proxyLeaveUserDomainTrigger MUST contain a <trgInfo> element (as defined in [DRMGEN-SCE]), which MUST contain a <proxyLeaveUserDomainTrgInfo> element. The <proxyLeaveUserDomainTrgInfo> element has the following subelements:

userDomainIdentifier: the User Domain ID.

userDomainAlias: if present, the <userDomainAlias> element contains a String value that will be used by the DRM Agent whenever it refers to the User Domain in a message to the User.

deviceID: this element SHALL contain the Device ID of the v2.x Device that is to leave the User Domain.

7.6.2 SendingProcessing ROAP Leave Domain Trigger RDP Trigger {Proxy Leave User Domain}
Upon reception of a RDP Trigger {ProxyLeaveUserDomain} Trigger from the DEA, the RI subsequently sends a ROAP Leave Domain Trigger {LeaveDomain} to the v2.x DRM Agent indicated by the <deviceId> element in the RDP Trigger {ProxyLeaveUserDomain} Trigger to trigger the v2.x DRM Agent to leave the User Domain. The <domainID> element in the ROAP Leave Domain Trigger {LeaveDomain} MUST be identical to the <userDomainIdentifier> element in the preceding RDP Trigger {ProxyLeaveUserDomain}. Trigger. When the v2.x DRM Agent receives the ROAP Leave Domain Trigger {LeaveDomain}, it indirectly leaves the target User Domain as specified in section 6.2.4.2.
The elements in the ROAP Leave Domain Trigger SHALL contain the following elements:

riID: this element SHALL contain the RI identifier of the RI that sends the Leave Domain Trigger.

riAlias: this element MAY be included. If included, it SHALL contain the RI Alias (as specified in [DRM-DRM-V2.1]) from the RI that sends the Leave Domain Trigger.

nonce: this element SHALL contain the same value as the <nonce> element in the <proxyLeaveUserDomainTrigger>. If the value of the triggerNonce attribute in the subsequent Leave Domain Request from the DRM Agent is not equal to the value of the <nonce> element in the Leave Domain Trigger, the RI MUST discard the received Leave Domain Request. RIs MUST follow the guidelines for nonces as expressed in Section 5.3.10 of [DRM-DRM-V2.1].

roapURL: this element SHALL contain the URL which the DRM Agent is to use the when initiating the ROAP Leave Domain protocol.

domainID: this element SHALL contain the same value as the <userDomainIdentifier> element in the proxyLeaveUserDomainTrigger.

domainAlias: this element MUST only be included if the <userDomainAlias> element is included in the proxyLeaveUserDomainTrigger. If included, it MUST contain the same value as the <userDomainAlias> element in the proxyLeaveUserDomainTrigger message.

version: this element SHALL be as included specified in [DRM-DRM-V2.1].

proxy: this element SHALL be included as specified in [DRM-DRM-V2.1].

enckey: TBD
this element SHALL be included and SHALL contain a MAC key wrapped with the current DDK. The value of the "Id" attribute of this element SHALL equal the value of the "URI" attribute of the <ds:RetrievalMethod> child element of the <signature> element.

signature: this element and its subelements SHALL be included as is specified for the Leave Domain Trigger in [DRM-DRM-V2.1].

The Leave Domain Trigger SHALL have an "Id" attribute. The value of the "Id" attribute is chosen by the RI. The value of the "URI" attribute of the <ds:RetrievalMethod> child element of the <signature> element SHALL be the same as the value of the "Id" attribute.
<element ref="gen:trigger"/>

<element name="whoJoin">

 <complexContent>

 <sequence>
 <element name="userDomainIdentifier" type= "dom:DomainIdentifier"/>

<element name="deviceId" type="roap:Identifier" maxOccurs="unbounded"/>

 </sequence>

 </complexContent>
</element>
The <body> element SHALL include <whoJoin> element.
8. User Domain RO Processing

To render the protected media objects inside a DCF the DRM Agent MUST execute the following procedure:

1. Install the associated User Domain RO, as specified in section 8.2.

2. Consume the User Domain RO, as specified in section xxx.

[TBD Is this installation procedure applicable ALSO if the RO was created by an LRM?]
8.1 User Domain RO format

A User Domain RO is formatted as a <protectedRO> element as specified in [DRM-DRM-v2.1] and more specifically as a domainRO. This means that the <ro> element in the <protectedRO> element SHALL contain the <encKey> element, which SHALL have a child <ds:KeyInfo> element, which SHALL have a child <roap:domainID> element. Also the “domainRO”-attribute SHALL be present and set to “true”.

When the RI/LRM executed the Get User Domain Authorization protocol, it RI/LRM has chosen a value for the <roap:domainID> element in the <protectedRO> as specified in [DRM-DRM-v2.1]. Note that this value is not equal to the value of the <dom:userDomainId> element that is received from the DEA as part of the Get User Domain Authorization protocol (see section7.2). A v 2.x DRM Agent , if it initiates the [DRM-DRM-v2.1] joinDomainProtocol upon receipt of the User Domain RO , will use the <roap:domainID> element in the <protectedRO> in the joinDomainRequest call. In this case, the RI will need to use this identifier to determine which UserDomain the [DRM-DRM-v2.1] Agents requests to join and subsequently execute the Proxy Join User Domain Protocol (section 7.4) with the DEA that managed this User Domain.
To show that the RI or LRM is authorized to create (or import) ROs for the User Domain, the RI/LRM MUST include a <party> element in the <agreement> element. The <party> element MUST contain a <context> element with a <userDomainAuthorization> element (see [SCE-REL]). The <userDomainAuthorization> MUST equal the “RI/LRM” <userDomainAuthorization> element that was received from the DEA via the Get User Domain Authorization protocol (see section 7.2.3.

8.2 Installing a User Domain RO that is received out-of-band
To install a User Domain RO that is received out-of-band, the DRM Agents MUST execute the following procedure:

1. The DRM Agent MUST ensure that it is a valid member of the User Domain to which the User Domain RO is bound, as specified in 8.2.1
2. The DRM Agent MUST ensure that the User Domain RO is valid, as specified in 8.2.2
3. The DRM Agent SHOULD perform the post-processing as specified in 8.2.3.

8.2.1 Ensuring User Domain membership

To ensure that the DRM Agent is a member of the User Domain to which the User Domain RO is bound, it needs to determine if it has a valid DEA Context with the DEA that manages the User Domain. The DRM Agent MUST compare the value of the User Domains ROs <dadeaID> element (child of <userDomainAuthorization> element in the <party> element) with the DEA Identifiers in all valid DEA Contexts stored in the DRM Agent. If the value of the <dadeaID> element does not match that of a DEA Identifier in a valid DEA Context, the DRM Agent SHALL NOT install the User Domain RO. In this case the DRM Agent MAY keep the User Domain RO and MAY send an HTTP GET to the URL specified in the <dadeaURL> element in the <userDomainAuthorization>. An HTTP GET on this URL SHOULD return either a JoinUserDomain Trigger or a (X)HTML page that starts an interaction with the User which may eventually lead to a JoinUserDomain Trigger. It should be noted that in the event that a JoinUserDomain Trigger is returned and the DRM Agent does not have a valid DEA context then the DRM Agent MUST automatically register with the DEA. prior to sending a JoinUserDomainRequest message.

Next, the DRM Agent MUST compare the <userDomainId> element within the User Domain RO with the User Domain identifiers for any valid User Domain Contexts already established with the DEA, as identified by the <dadeaId> element. There are three possible outcomes of this comparison:

1. The <userDomainId> element matches a User Domain identifier in a valid User Domain Context already established with the DA. The DRM Agent MAY install the User Domain RO.

2. The User Domain baseID of the <userDomainId> element matches the User Domain baseID of a stored User Domain identifier in a valid User Domain Context already established with the DEA, but the User Domain Generation of the RO is greater than the Generation of the stored domain ID. The DRM Agent MAY attempt to upgrade the User Domain by sending a JoinUserDomainRequest message to the daURL in the DA Context associated with the User Domain Context. If the User Domain upgrade is successful, the DRM Agent MAY install the User Domain RO. Otherwise the DRM Agent SHALL NOT install the User Domain RO.

3. The User Domain baseID of the <userDomainId> field does not match a User Domain baseID in any valid User Domain Context already established with the DEA. The DRM Agent MAY attempt to join the User Domain by sending an HTTP GET request to the URL specified in the <dadeaURL>.

At the point where the DRM Agent sends an HTTP GET request to the URL specified in the <deaURL> element the RO installation process as specified within this section is effectively aborted, however, the installation process may be restarted as a result of subsequent user interaction, by some other DRM Agent specific means that is outside the scope of this specification or as a direct result of responding to a subsequent DRM Trigger. As a result of an HTTP GET to this URL the DEA can choose (using its own criteria) whether to allow the DRM Agent to join the User Domain or not and SHOULD return either a JoinUser Domain ROAP Trigger or a (X)HTML page that starts an interaction with the User which may eventually lead to a JoinUser Domain ROAP Trigger.
8.2.2 Ensuring User Domain RO validity

The DRM Agent MUST ensure that the User Domain RO does NOT include a <userDomain> constraint. To further ensure the validity of the User Domain RO the DRM Agent MUST have a valid User Domain Authorization that proves that the RI/LRM is authorized by the DEA to create RO’s for the User Domain. A valid User Domain Authorization will be present in the User Domain RO, but it may also have expired or be otherwise invalid. In this case a valid User DomainAuthorization may be acquired from the DEA through execution of the dmpJoinDomain protocol.
The DRM Agent MUST check that it has a RI/LRM User Domain Authorization for which:

1. The <userDomainId> element equals a domain identifier in a valid DA Context as described in section 8.2.1. (e.g. equal values for <dadeaID> and <userDomainId>, both User Domain baseID and User Domain Generation parts)

(In other words: RI/LRM’s User Domain Authorization is of the same domain generation as the most current one in the DRM Agent)
2. This User Domain Authorization element contains

a. A <deaID> element that equals the <deaID> in the <user Domain Authorization> element in the <party> element in the User Domain RO

b. A <userDomainId> element of which the User Domain baseID equals the User Domain baseID of the <userDomainId> element in the <User Domain Authorization> element in the User Domain RO.

(In other words: the User Domain RO may be created for a different generation of the domain than the most recent)

3. The <entityId> element equals the <riID> element in the User Domain RO

4. An <isRIorLRM> element is present.

5. If the <notBefore> element is present, the Current DRM Time is later than the value of the <notBefore > element
6. If the <notAfter> element is present, the Current DRM Time is earlier than the value of the <notAfter> element

7.
8. The signature verification using the DEA’s Public Key is succesful.
If such <user Domain Authorization> exist, than the DRM Agent MUST verify the signature of the User Domain RO using the RI/LRM public key. Also, the DRM Agent MUST successfully verify the MAC (using the <mac> element of the roap:ProtectedRO). [TBD do we need a mac? When?]
If any of these the verifications fails the DRM Agent SHALL NOT install the User Domain RO. In this case the DRM Agent MAY request a new Rights Object by sending a HTTP GET to the RightsIssuerURL in the relevant DCF.
If the User Domain RO is stateful, then the DRM Agent MUST perform the replay protection related checks defined in [DRM-DRM-v2.1].

If the User Domain Context has expired (indicated by the User Domain Context Expiry Time) the DRM Agent MUST NOT install ROs for this User Domain.

8.2.3 User Domain RO post-processing

There are cases where a DRM Agent installs a User Domain RO that it received separately from the DCF to which it refers. In these cases, the DRM Agent SHOULD insert a copy of the User Domain RO into the corresponding DCF as soon as possible after installation.

In the case where the User Domain RO is received within a DCF, if the DRM Agent cannot verify the signature of the User Domain RO, the DRM Agent MAY leave the User Domain RO as is within the DCF. The DRM Agent MAY request a valid RO for the DCF as described in [DRM-DRM-v2.1].

The DRM Agent MAY insert the User Domain RO into the DCF at a later stage, for example when the User requests to render the DCF or send it out of the DRM Agent. The DRM Agent MAY insert more than one User Domain RO into a single DCF, as long as all of the inserted RO’s are valid and correspond to a User Domain that it is a member of.

When the DRM Agent inserts a User Domain RO into a DCF, it SHOULD remove from the DCF all User Domain RO’s corresponding to User Domains that the DRM Agent is not a member of.

The DRM Agent SHOULD NOT insert a copy of the User Domain RO into the corresponding DCF if it concludes, using an algorithm not defined in this specification, that sending the installed User Domain RO to other DRM Agents does not add value for the end user, for example if the User Domain RO has expired.

If the DRM Agent finds multiple DCF instances bound to the installed User Domain RO, it SHOULD insert a copy of the User Domain RO into each one of them.

8.3 User Domain Upgrade

A DEA may upgrade a User Domain if, for example, a MDK has been compromised or if a DRM Agent in the User Domain has been revoked. This may be necessary to stop DRM Content from leaking out of the system in the clear.

In order to upgrade a User Domain, a DEA MUST change the MDK and MUST increment the Domain Generation by one. If the Domain Generation value reaches 999 the Domain becomes obsolete. An RI MUST NOT issue ROs for an obsolete User Domain and MUST NOT allow new Devices to join an obsolete User Domain.

A User Domain upgrade does not result in any Domain Context being deleted in any DRM Agent. After an upgrade, User Domain ROs issued before the upgrade may still be used and shared. This applies to all Devices (revoked and unrevoked) previously in the User Domain, and to any new Devices added to the User Domain after the upgrade.
A DEA performs a User Domain upgrade using the 2-pass JoinUserDomain protocol with JoinUserDomain Trigger. A DEA MAY initiate this protocol for the purposes of User Domain upgrade by sending a JoinUserDomain trigger to a DRM Agent whose Domain membership it wishes to upgrade. If a DRM Agent receives a JoinUserDomain trigger, it compares the <userDomainID> field in the trigger with the domain ID in the DRM Agent for any User Domains already established with the DEA that sent the JoinUserDomain trigger, with the sending DEA as identified by the <resID> field. There are two possible outcomes of this comparison:
1. If the Domain baseID of the <userDomainID> field matches the Domain baseID of a stored domain ID, then the DRM Agent compares the value of the Domain Generation in the trigger with the value of the Domain Generation in the DRM Agent. If the value of the Domain Generation in the trigger is greater than the value stored in the DRM Agent, then the DRM Agent stores all MDKs (of this User Domain) which are included in JoinUserDomainResponse. If the value of the Domain Generation in the trigger is smaller than or equal to the value stored in the DRM Agent, then the DRM Agent ignores the trigger. If Hash Chains are supported by both the DRM Agent and the DEA, the DEA SHALL insert only the latest MDK into the JoinUserDomainResponse. The incoming trigger represents a User Domain upgrade, as described in this section. The DRM Agent silently upgrades the User Domain using the 2-pass JoinUserDomain protocol with JoinUserDomain Trigger.

2. If the Domain baseID of the <userDomainID> field does not match the Domain baseID of a stored domain ID, then the DRM Agent is not a member of the User Domain. The DRM Agent MUST execute the 2-pass JoinUserDomain protocol with JoinUserDomain Trigger; just as if it was joining the domain for the first time (See section 4.2.1).
As an alternative method for User Domain upgrade, the DEA MAY execute the 1-pass JoinUserDomain protocol to all members of the domain that are still trusted. If a DRM Agent receives a JoinUserDomainResponse, it compares the <userDomainID> field in the JoinUserDomainResponse with the domain ID in the DRM Agent for any domains already established with the DEA. A comparison procedure of the <userDomainID> field is as follows:

1. If the Domain baseID of the <userDomainID> field matches the Domain baseID of a stored domain ID, then the DRM Agent compares the value of the Domain Generation in the JoinUserDomainResponse with the value of the Domain Generation in the DRM Agent. If the value of the Domain Generation in the JoinUserDomainResponse is greater than the value stored in the DRM Agent, then the DRM Agent stores all MDKs (of this User Domain) which are included in JoinUserDomainResponse. If the value of the Domain Generation in the JoinUserDomainResponse is smaller than or equal to the value stored in the DRM Agent, then the DRM Agent ignores the JoinUserDomainResponse. If Hash Chains are supported by both the DRM Agent and the DEA, the DEA SHALL insert only the latest MDK into the JoinUserDomainResponse.

2. If the Domain baseID of the <userDomainID> field does not match the Domain baseID of a stored domain ID, then the DRM Agent is not a member of the User Domain.
8.4 Use of hash chains for Domain key management

To avoid storage of multiple keys per User Domain in the DRM Agent and in the DEA (for the purpose of using old and new User Domain ROs after User Domain upgrade) it is possible to have a relation between the Master Domain Keys using Hash Chains (see section x.x), as illustrated in the example below. The DRM Agent MAY support Hash Chains and the DEA MAY support Hash Chains.

Example1. Without hash chains
When generating a new User Domain, the DEA generates:

· A unique Domain Identifier DI, the Domain Generation is set to 000.

· A random secret Master Domain Key MDK0
At User Domain upgrade the Domain Generation g is increased by 1, which is reflected in the Domain Identifier, and a new Master Domain Key MDKg is generated. The old MDK (s) must be stored in DEA and DRM Agent to allow use of ROs issued before the upgrade. When Devices join a User Domain, all MDKs of this User Domain are sent in the <rspInfo> element of JoinUserDomainResponse (see 6.2.3).

Example 2. With Hash Chains (optional)
When generating a new User Domain, the DEA

· Generates a unique Domain Identifier DI, the Domain Generation is set to 000

· Generates an initial Master Domain Key MDK for the User Domain

· Selects the maximum number of generations n for this User Domain (not larger than 999)

· Defines a sequence of MDKs using the method described in Section x.x

Since old MDKs (with low generation value) are possible to efficiently derive from new MDKs (with higher generation value), it is only necessary to store the newest Master Domain Key in the DRM Agent (and corresponding Domain Identifier so the Domain Generation is known). For the DEA it is sufficient to store MDK, n and the current Domain Identifier.
9. Key management

Two key management mechanisms for the User Domain are specified in this section. The “Shared-Key” mechanism is based on a common Domain Key that is shared by all members of the User Domain. This mechanism is similar to the key management for Domains as defined in DRM-DRM-v2.1, allows for some degree of compatibility with DRM-DRM-v2.1 DRM Agents, and enables some degree of content exchange via out-of-band methods (interface SCE-8). The “Pairing-Keys” mechanism is based on a set of Pairing-Keys, where (not necessarily all) couplets of domain members each share a pair-wise unique Pairing-Key. This mechanism is more secure as it allocates more control to the DEA (via interface SCE-5) and requires the use of secure transfer mechanisms (interface SCE-6 or SCE-7).

The DEA MAY support either key management system or both. It will signal the supported key management system(s) as part of the Domain Policy [to be detailed later].

On a per-RO basis, an RI MAY require either key management system to be used. The required key management system SHALL be signalled in the RO [to be detailed later].

Both mechanisms enable provisioning of ROs which allow User Domain member DRM Agents to share Rights with DRM Agents that are not members of the User Domain. The key management mechanism that must be used for sharing Rights with these “Guest” DRM Agents depends on the key management system that is required for the User Domain.

9.1 Overall key management

A certain device or server MAY implement several roles (DEA, LRM, RI, and/or DRM Agent) defined by the SCE Enabler. In this case the same certificate MAY be used to fulfil more than one role. Especially, co-deployment of the DEA with an RI or co-deployment of a DEA with an LRM is anticipated.
Although the current specification does not specify the protocol between DA and DEA and therefore does not support their separate deployment, this specification does anticipate such separate deployment in the future (or using proprietary protocols based on this specification) and assumes that the DA certificate MAY be different from the DEA certificate. Consistent with this, there MAY exist multiple DEA entities, where either the DA or DEA functionality in a given DEA MAY be suppressed.

When joining a User Domain, the DRM Agent will receive from the DEA, DA-signed data that proves the DEA is authorized by the DA to enforce the Domain Policy on its behalf. As a prerequisite to completing the JoinUserDomain protocol, a DRM Agent MUST successfully verify this DA-signed data identifying the DEA. A DRM Agent MAY communicate directly with a DEA that is subordinate to another DEA in that the latter DEA is responsible for providing the aforementioned DA-signed data.

The DEA will limit, within the bounds specified by the Domain Policy, the number of concurrently joined User Domain members, and/or valid DRM Agent pairings.

9.2 Key Transport Mechanisms

9.2.1 Distributing MDK and KMAC under a Device Public Key

This section applies when provisioning a DRM Agent with a Master Domain Key, MDK, for a User Domain.

MDK is the symmetric key-wrapping key used when protecting KREK and KMAC in a Rights Object issued to a User Domain with Shared-Key management. MDK is a 128-bit long AES key generated randomly by the sender and shall be unique for each User Domain. KMAC is used for key confirmation of the message carrying MDK.

In this case, exactly the same procedure as in [DRM-DRM-v2.1] section 7.2.2 for distribution of the Domain Key KD shall be used, the only difference being the replacement of KD with MDK.

9.2.2 Distributing KMAC and KREK under a Diversified Domain Key (DDK)

This section applies when protecting a Rights Object for a User Domain with Shared-Key management.

The key-wrapping scheme AES-WRAP SHALL be used. KEK in AES-WRAP SHALL be set to DDK and K to the concatenation of KMAC and KREK, i.e.:

C = AES-WRAP(DDK, KMAC | KREK)

After receiving C, the DRM Agent decrypts C using DDK:
KMAC | KREK = AES-UNWRAP(DDK, C)

The following URI shall be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.w3.org/2001/04/xmlenc#kw-aes128
The DRM Agent can derive the DDK used by a certain source entity (RI or LRM) from the MDK by using the first 128 bits of the MAC value over the MDK using the Public Key of the source entity as the MAC-key, i.e:

DDK = first 128 bits of HMAC-SHA1(PubKeySource, MDK)

10. User Domain related operations
[Note from editor: the text below was proposed in CR 2008-108 to replace other text that was previsouly in this chapter. This CR was NOT agreed – but it was agreed to put the text into this draft. The text that is replaced is currently in appendix C – for reference.]
DRM-DRM-v2.1 allows Protected Rights Objects to be embedded into a (P)DCF and exchanged freely between DRM Agents, using any mechanism or protocol. This enabler builds on this functionality and adds mechanisms that provide more fine-grained control over the exchange of content in relation to a User Domain. Rights Issuers are enabled to limit the number of copies that are usable in the User Domain and the system will enforce that the limited number of usable copies are securely moved between devices in the User Domain.

The free exchange of Protected Rights Objects as enabled by DRM-DRM-v2.1 is also possible in SCE. However, not all ProtectedRO’s that are bound to a User Domain can be used simultaneously on all devices in the User Domain. Therefore Rights Issuers will explicitly express content exchange related rights in the Rights Object. This section specifies the syntax and semantics of content exchange related elements of the REL for Rights Objects that are bound to a User Domain. The mechanisms that must be employed to enforce these rights are specified in section xxx.

As in DRM-DRM-v2.1, DRM Agents will not control the exchange of the ProtectedRO itself. Instead, for those cases where more fine-grained control over the exchange of the content must be enforced by the DRM Agent, the DRM Agents will control and secure the exchange of the access and state information . The transfer of the Protected RO, access and state information will be done via the Agent to Agent Put RO Protocol as defined in [DRMA2A-SCE].

A Rights Object is called a “Usable Rights Object for a DRM Agent” if the DRM Agent is cryptographically able to access the CEK, as embedded in the Rights Object and has received the ASI needed for this Rights Object as specified by the REL.

9.1 Out-of-band delivery to Devices in a User Domain

If a Shared-Key User Domain Rights Object does not have a top-level <domain> constraint, it can be delivered out-of-band to any SCE Device and any OMA 2.x DRM Agent that is member of the User Domain to which the RO was issued.

A DRM Agent SHALL NOT accept out-of-band delivery of ROs that have a top-level <domain> constraint.

A User Domain Rights Object that allows the same usage as an OMA DRM v2.x DomainRO, does not have any <copy> or <move> permission and does not have any <domain> constraint, so that out-of-band delivery is allowed.

9.2 Move between Devices in a User Domain

The <move> element grants permission to transfer the access and state information associated with a ProtectedRO to another DRM Agent, in such a way that the RO becomes usable by the recipient DRM Agent and is no longer usable by the source DRM Agent. A Move operation MUST be performed via the Put RO Operation as defined in [DRMA2A-SCE].
A <count> element contained in a <constraint> child element to <move> is used to specify the number of times the <move> permission may be granted.

A <domain> element contained in a top-level <constraint> is used to specify that the DRM Agent is only permitted to make a Usable Rights Object available to other DRM Agents that are members of the same User Domain. Note that the top-level <domain> constraint prevents existing OMA DRM v2.x implementations to use this Rights Object. If a <move> permission is included in a Domain RO, a <domain> element contained in a top-level <constraint> MUST be added.

Note that a single Rights Object may contain multiple <move> elements that are constrained in different ways.

Note that the <move> element relates to the Rights Objects and associated state information as a whole. A DRM Agent may be allowed to perform a Partial Move by “splitting-up” the State Information associated with a Rights Objects into multiple parts and transfer only part of the remaining rights to another device. Note that this results in two Usable Rights Objects.

If a <move> permission is included in a stateful RO (e.g. an RO with a <count> constrained <play> permission), it MUST be enforced that only the available rights at the time of Moving (i.e. available state) are transferred to the recipient DRM Agent during the Move operation, as defined in the PutRO Operation in [DRMA2A-SCE].

If a Rights Isuer wants to enforce the usage model of a DVD, then he may issue a Device Rights Object with an unconstrained <move> permission. If the Rights Issuer would like to restrict the reselling or trading of the content bound to a Device RO, then he may constraint the <move> permission with a <count> constraint. An additional top-level <domain> constraint may be added to limit the Move of the Device RO to Devices belonging to the same User Domain.

9.3 Copy to Devices in a User Domain

The <copy> element grants permission to transfer the access and state information associated with a ProtectedRO to another DRM Agent, in such a way that the RO becomes Usable by the recipient DRM Agent and is still Usable by the source DRM Agent. A Copy operation MUST be performed via the Put RO Operation as defined in [DRMA2A-SCE].
A <count> element contained in a <constraint> child element to <copy> is used to specify the number of times the <copy> permission may be granted. The count MUST be decremented in the source device upon successful completion of a copy process. The source device MUST keep the remaining copies and the recipient DRM Agent, which is receiving a copy of the RO, MUST NOT be able to copy the RO any further.
A <domain> element contained in a top-level <constraint> is used to specify that the DRM Agent is only permitted to make a Usable Rights Object available to other DRM Agents that are members of the same User Domain. The <domain> element also indicates that the Rights Issuer has imposed restrictions on the exchange of the associated rights. Therefore the permission MUST NOT be granted if the DRM Agent has not received the Rights Object directly from a Rights Issuer, or via the Put RO protocol from another DRM Agent. Note that for existing OMA DRM 2.0 or DRM-DRM-v2.1 implementations, the top-level <domain> constraint is unknown, which means that these DRM Agents will not grant any permission with this constraint. The top-level <userDomain> constraint can therefore also be used to prevent existing OMA DRM v2.x implementations to use this Rights Object.

A <copy> permission MAY be granted to both Device ROs or Domain ROs. If a <copy> permission is granted for a Domain RO, a top-level <domain> constraint MUST be included to limit the Copy within the User Domain.

If a <copy> permission is included in a stateful RO (e.g. an RO with a <count> constrained <play> permission), the original Rights as stated in the ROPayload MUST be transferred to the recipient DRM Agent during the Move operation.

Note that a single Rights Object may contain multiple <copy> elements that are constrained in different ways.
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	
	
	

	
	
	

A.2 Draft/Candidate Version 0.8 History

	Document Identifier
	Date
	Sections
	Description

	OMA-TS-SCE_DOM-V0_1-20070620-D
	20 Jun 2007
	
	Initial version per 2007-0284

	OMA-TS-SCE_DOM-V0_2-20070924-D
	24 Sep 2007
	6.2
8
Error! Reference source not found.
All
	Implemented CR 2007-398R01

Implemented CR 2007-401

Implemented CR 2007-300R03

Update of all internal cross-references

	OMA-TS-SCE_DOM-V0_3-20071025-D
	25 Oct 2007
	7.

1.

6.2.4.
	Implemented CR 2007-0448R03

Implemented CR 2007-0449R01

Implemented CR 2007-0488R01

	OMA-TS-SCE_DOM-V0_4-20071109-D
	9 Nov 2007
	8.2
	Implemented CR 2007-0485

	OMA-TS-SCE_DOM-V0_5-20080214-D
	14 Feb 2008
	
	Implemented:

2007-0533R03
2007-0537
2007-0538
2008-0021R02
2008-0022R03

	OMA-TS-SCE_DOM-V0_6-20080314-D
	14 Mar 2008
	
	Implemented:

2008-0016
2008-0029R01

2008-0030R05
2008-0038R01
2008-0050R02

2008-0051R02

2008-0052R01

2008-0073R01
2008-0075R02
2008-0089R01

	OMA-TS-SCE_DOM-V0_7-20080320-D
	20 Mar 2008
	
	Implemented

2007-0326R02

	OMA-TS-SCE_DOM-V0_8-20080325-D
	25 Mar 2008
	
	Implemented:

2008-108 – CR was not agreed – but it was agreed to put it into the draft

	OMA-TS-SCE_DOM-V0_8_1-20080611-D
	25 Mar 2008
	
	Implemented:

2008-0155R04 – Addr DOM 069, 070,124, 125

2008-0156R04 – Addr. DOM 131

2008-0157R01 – Addr. DOM 119

2008-0159 – Addr. DOM 133

2008-0191R01– Addr. DOM 136

2008-0228R01 – Addr. DOM 128

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for XYZ Client

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF

B.2 SCR for XYZ Server

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF

Appendix C. Certificate Profiles (Normative)

C.1 Domain Authority Certificates
The profile for DA certificates follows the profile for "X.509-compliant server certificate" in [CertProf] with the following modifications:

	Signature
	MUST be RSA with SHA-1

	Serial Number
	MUST be less than, or equal to, 20 bytes in length

	Issuer Name
	MUST be present and MUST use a subset of the following naming attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and stateOrProvinceName.

	Subject Name
	MUST be present and MUST use a subset of the following naming attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and serialNumber.

The structure and contents of a DA subject name shall be as follows:

[countryName=<Country of manufacturer>]

[organizationName=<Manufacturer company name>]

[organizationalUnitName=<Manufacturing location>]

[commonName=<Model name>]

serialNumber=<Unique identifier for DA, as assigned by the Certificate Issuer.
The serialNumber attribute MUST be present. The countryName, organizationName, organizationalUnitName, and commonName may be present. Other attributes are not allowed and must not be included. For all naming attributes of type DirectoryString, the PrintableString or the UTF8String choice must be used.

Note that the maximum length (in octets) for values of these attributes is as follows: countryName – 2 (country code in accordance with ISO/IEC 3166), organizationName, organizationalUnitName, commonName, and serialNumber – 64.
Example:

C="US";O="DRM Devices 'R Us"; CN="DRM Device Mark VI"; SN="1234567890"

	Extensions
	The extKeyUsage extension SHALL be present, and contain (at least) the oma-kp-domainAuthority key purpose object identifier:

oma-kp-domainAuthority OBJECT IDENTIFIER ::= {oma-kp <tba>}
CAs MUST set this extension to critical.

If the keyUsage extension is present (recommended), then the digitalSignature bit shall be set. When present, this extension shall be set to critical.

CAs MAY include the certificatePolicy extension, indicating the policy the certificate has been issued under, and possibly containing a URI identifying a source of more information about the policy.

CAs are recommended to not include any other extensions, but may, for compliance with [RFC3280], include the authorityKeyIdentifier extension.

CAs MUST NOT include any other critical extensions.

SCE DRM Agents processing DA certificates MUST meet the requirements on clients processing "X.509-compliant server certificates" defined in [CertProf]. In addition, SCE DRM Agents:

· MUST be able to process DA certificates up to 1500 bytes long;

· MUST be able to process DA certificates with serial numbers 20 bytes long; and

· MUST recognize the presence of the oma-kp-domainAuthority object identifier defined above in the extKeyUsage extension in DA certificates. If the extensioin is present, then the SCE DRM Agent MUST consider the subject certified by the certificate to be a DA while processing information received from it.

(Editor’s note: the oma-kp-domain object identifier needs to be assigned by a naming authority.)
C.2 Domain Enforcement Agent Certificates
The profile for DEA certificates follows the profile for "X.509-compliant server certificate" in [CertProf] with the following modifications:

	Signature
	MUST be RSA with SHA-1

	Serial Number
	MUST be less than, or equal to, 20 bytes in length

	Issuer Name
	MUST be present and MUST use a subset of the following naming attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and stateOrProvinceName.

	Subject Name
	MUST be present and MUST use a subset of the following naming attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and serialNumber.

The structure and contents of a DEA subject name shall be as follows:

[countryName=<Country of manufacturer>]

[organizationName=<Manufacturer company name>]

[organizationalUnitName=<Manufacturing location>]

[commonName=<Model name>]

serialNumber=<Unique identifier for Domain Enforcement Agent, as assigned by the Certificate Issuer.
The serialNumber attribute MUST be present. The countryName, organizationName, organizationalUnitName, and commonName may be present. Other attributes are not allowed and must not be included. For all naming attributes of type DirectoryString, the PrintableString or the UTF8String choice must be used.

Note that the maximum length (in octets) for values of these attributes is as follows: countryName – 2 (country code in accordance with ISO/IEC 3166), organizationName, organizationalUnitName, commonName, and serialNumber – 64.
Example:

C="US";O="DRM Devices 'R Us"; CN="DRM Device Mark VI"; SN="1234567890"

	Extensions
	The extKeyUsage extension SHALL be present, and contain (at least) the oma-kp-domainEnforcementAgent-Local or the oma-kp-domainEnforcementAgent-Network key purpose object identifier:

oma-kp-domainEnforcementAgent-Local OBJECT IDENTIFIER ::= {oma-kp <tba>}
oma-kp-domainEnforcementAgent-Network OBJECT IDENTIFIER ::= {oma-kp <tba>}
CAs MUST set this extension to critical.

If the keyUsage extension is present (recommended), then the digitalSignature bit shall be set. When present, this extension shall be set to critical.

CAs MAY include the certificatePolicy extension, indicating the policy the certificate has been issued under, and possibly containing a URI identifying a source of more information about the policy.

CAs are recommended to not include any other extensions, but may, for compliance with [RFC3280], include the authorityKeyIdentifier extension.

CAs MUST NOT include any other critical extensions.

The oma-kp-domainEnforcementAgent-Local indicates that the DEA is an entity in a local location such as a home or office. It is assumed that these types of DEA are owned and managed by a User. The oma-kp-domainEnforcementAgent-Network indicates that the DEA is an entity in a remote location that is accessible via a network such as the Internet. It is assumed that these types of DEA are not owned or managed by a User. A DEA certificate MUST have only one of these key purposes.

SCE DRM Agents processing DEA certificates MUST meet the requirements on clients processing "X.509-compliant server certificates" defined in [CertProf]. In addition, SCE DRM Agents:

· MUST be able to process DEA certificates up to 1500 bytes long;

· MUST be able to process DEA certificates with serial numbers 20 bytes long; and

· MUST recognize the presence of the oma-kp- domainEnforcementAgent-Local and oma-kp-domainEnforcementAgent-Network object identifiers defined above in the extKeyUsage extension in DEA certificates. If one of these is present, then the SCE DRM Agent MUST consider the subject certified by the certificate to be a DEA while processing information received from it.

(Editor’s note: the oma-kp-domainEnforcementAgent-Local and oma-pk-domainEnforcementAgent-Network object identifiers need to be assigned by a naming authority.)
Figure � SEQ Figure * ARABIC �2� - Join User Domain Protocl

Figure � SEQ Figure * ARABIC �3�

Figure � SEQ Figure * ARABIC �4� - Leave User Domain Protocol

�Is this really installation?

�Text was only moved...

(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060925-I]
(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060925-I]

_1253797194.vsd
�

�

DRM2.x Device

RI

DA/DEA

LeaveDomainRequest

ProxyLeaveUserDomainRequest

ProxyLeaveUserDomainResponse

LeaveDomainResponse

_1269930719.vsd
DA/DEA

RI

DA/DEA-RI RegistrationResponse

DA/DEA-RI HelloResponse

DA/DEA-RI RegistrationRequest

DA/DEA-RI HelloRequest

DA/DEA-RI Registration Trigger

_1253795025.vsd
�

�

DRM2.x Device

RI

DA/DEA

JoinDomainRequest

ProxyJoinUserDomainRequest

ProxyJoinUserDomainResponse

JoinDomainResponse

_1253627399.vsd
�

�

DRM2.x Device

RI

DA/DEA

RDP Trigger {ProxyLeaveUserDomain}

ROAP Trigger{leaveDomain}

LeaveDomainRequest

LeaveDomainResponse

ProxyLeaveUserDomainRequest

ProxyLeaveUserDomainResponse

