Doc# OMA-Template-ChangeRequest-20080101-I.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-Template-ChangeRequest-20080101-I.doc
Change Request

Change Request

	Title:
	SCE DRM – Replay Cache management
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DRM

	Doc to Change:
	OMA-TS-SCE_DRM-V1_0-20081002-D

	Submission Date:
	22 Oct 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Seung-Jae Lee, LG Electronics, seungjae@LGE.COM

	Replaces:
	n/a

1 Reason for Change

This CR address the following AP:
AP 947
David and Seung-Jae to consider how to handle replay of request message (DRM084 and DRM068)

R01: checking of <reqID> element in Replay Cache management section was added.
R02: minor fix to add <nonce> into replay cache entry
2 Impact on Backward Compatibility

none
3 Impact on Other Specifications

none
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

For DRM WG to agree this CR
6 Detailed Change Proposal

Change 1: Add new section 15. Replay Cache management
15. Replay Cache Management

This section describes how a DRM Agent and a RI manage replay cache to prevent replay attack from malicious third party. The DRM Agent and RI MUST support Replay Cache management mechanism defined in [DRM-v2.1].

When a RI receives a request message for Move RO via RI protocol, it SHALL check the <nonce> element in the request message as follows:

· If the <reqID> element and <nonce> element in the request message matches with one of replay cache entry, the RI SHALL send a response message which is generated based on the result information of the request message processing, which is stored in replay cache entry. The RI SHALL NOT regenerate RO for Recipient Device nor send RO to the Recipient Device.

· Else, the RI SHALL process the request message according to processing rules of each specific protocol (see section 9.1.2 and 9.2.2). After that, the RI SHALL store one replay cache entry which is at least composed of <reqID>, <nonce>, <time> and result information of request message processing. The RI must be able to generate the response message based on the result information of requeset message processing in the replay cache entry.

The replay cache entry MUST NOT be removed until when the RI deems the <time> in the replay cache entry is inaccurate by comparing to it’s DRM Time. (e.g. If RI allows 1 hour time window for DRM Time check and the present is 3’o clock, then the replay cache entry that has <time> value as later than 2’o clock must not be removed.)

Change 2: In section 9.1

9.1 Moving Device RO

9.1.1 Sending MoveDeviceRORequest

ROAP-MoveDeviceRO protocol can be initiated either by receiving a ROAP-MoveDeviceRO Trigger or by user interaction with the Device (e.g. the user of the Source Device can select RI-issued Rights to Move using a built-in menu in the phone).

To package a ROAP-MoveDeviceRORequest message, the DRM Agent MUST proceed as follows:

1. The Device lets the user select Rights Objects that are issued by an RI, a.k.a. RI-issued RO, to be Moved. The Source Device MUST ensure that the selected Rights Object has a <move> permission containing no <system> constraint or a <move> permission containing a <system> constraint which identifies Move Device RO via RI protocol. Further details of this step are beyond the scope of this specification.

2. The DRM Agent marks the selected Rights Objects as unusable. If the Rights Object is stateful and just a portion of the Rights Object is being Moved, then it marks the portion being Moved as unusable.

3. The DRM Agent generates a ROAP-MoveDeviceRORequest message. Generation of <rightsInfo> element (of sceroap:RightsInfo type) conforms to section 5.4.1. If the RO included in the <rightsInfo> element is created by an RI, the DRM Agent MUST ensure that the RI (as peer entity of recipient of MoveDeviceRORequest message) is the same RI which is indicated in the <signature> element in the <rightInfo> element. If the RO included in the <rightsInfo> element is created by an LRM, the DRM Agent MUST ensure that the RI (as peer entity of recipient of MoveDeviceRORequest message) is one of RI that is indicated as being eligible to provide move service in the RO.

4. If there was a preceding trigger, the DRM Agent sends the request message using the roapURL in the trigger message. Else, the DRM Agent sends the request message to the riURL which is stored in the RI Context.

If any error occurred during sending the request message, the DRM Agent MAY resend the request message. When resending the request message, the DRM Agent SHALL use same nonce with previous request message. How many times the DRM Agent retries is left to implementation. In case of final failure, the DRM Agent MUST mark the Rights Object as usable.

9.1.2 Processing MoveDeviceRORequest

When an RI receives a MoveDeviceRORequest message, the RI MUST process the request message as follows:

1. it checks if it has valid Device Context with the Device sending the request message by checking the value of <reqID> element of the ROAP-MoveDeviceRORequest message. If the Device Context is unavailable or invalid e.g. expired, the RI MUST respond with NotRegistered error.

2. it verifies the <signature> element in the request message. The signature verification conforms to [DRM-DRM-v2.1]. If the verification is not successful, the RI MUST respond with appropriate error i.e. SignatureError, NoCertificateChain, InvalidCertificateChain or TrustedRootCertificateNotPresent.

3. it checks the <nonce> element in the request message according to section 15 (editor’s note: this is a section for Replay Attack)

4. it checks the value of <time> element in the request message. Processing of the value of <time> element conforms to [DRM-DRM-v2.1]. If the DRM Agent has invalid DRM Time, the RI MUST respond with DeviceTimeError error.

5. it verifies the <rightsInfo> element in the request message. In addition to what is specified in 5.4.1. It MUST check that the <rights> element has a <move> permission that does not preclude Moving via the RI (i.e. having no <system> constraint on the <move> permission or having a <system> constraint which identifies Move RO via RI protocol on the <move> permission). If it does not, the RI MUST respond with MovePermissionNotPresent error.
6. if all above steps were successful, it responds with a MoveRIRightsResponse that contains the <status> element that has “success” value.
7. it generates Rights Object(s) cryptographically bound to the Recipient Device, based on the received <rights> element and their corresponding State Information.
When the RI generates the Rights Object(s) for the recipient Device, the RI SHALL modify constraints value from the received <rights> element, incorporating state information in the request message. If the <rights> element has “count” constraint under “move” permission, the RI SHALL decrease the value of the <o-dd:count> element under “move” permission by 1. The RI SHALL use new RO Encryption Key to encrypt Content Encryption Key constructing the <KeyInfo> element (under <asset> element). In case that the received RO is created by an LRM, the RI removes the indication that tells list of RI who is eligible to provide move service. After that, the RI MUST add a <signature> element which contains signature value over the <rights> element.

8. it conducts a typical 1-pass or 2-pass RO acquisition protocol or 4-pass confirmed RO acquisition protocol ([DRM-DRM-v2.1]) to issue generated RO to the Recipient Device. In case of 2-pass RO acquisition protocol or 4-pass confirmed RO acquisition protocol, the RI sends an ROAP trigger to the recipient device in order to instruct the recipient device to download the Rights Object generated by RI which is based on the one previously transferred from the source device.
How the RI handles for the case that RI fails to issue the Rights Objects to the Recipient Device is beyond the scope of this specification.
Change 3: In section 9.2

9.2 Moving <userDomain>-constrained RO

9.2.1 Sending MoveUserDomainConstrainedRORequest

The Move <userDomain>-constrained RO protocol can be initiated either by receiving a MoveUserDomainConstrainedROTrigger or by user interaction with the Device (e.g. the User of the Source Device can select RO(s) to Move using a built-in menu in the phone).

To package a MoveUserDomainConstrainedRORequest message, the DRM Agent MUST proceed as follows:

1. let the User select <userDomain>-constrained RO(s) to be Moved. The DRM Agent MUST ensure that the selected RO(s) have a <move> permission containing no <system> constraint or a <move> permission containing a <system> constraint which identifies the Move <userDomain>-constrained RO via RI protocol. The DRM Agent MUST also ensure the RI´s ID is present in the <moveIndication> element.
2. mark the selected RO(s) as unusable. For stateful RO, if only a portion of the Rights is to be Moved, only that portion is marked as unusable.
3. generate a MoveUserDomainConstrainedRORequest message. For each of the User Domains the selected RO(s) are bound to, a corresponding <sourceDeviceUserDomainAuthorization> element MUST be included.

4. if there was a preceding MoveUserDomainConstrainedRO trigger, the DRM Agent sends the request message using the reqURL in the trigger. Else, the DRM Agent sends the request message to the riURL which is stored in the RI Context.

If any error occurred during sending the request message, the DRM Agent MAY resend the request message. When resending the request message, the DRM Agent SHALL use same nonce with previous request message. How many times the DRM Agent retries is left to implementation. In case of final failure, the DRM Agent must mark the RO(s) as usable.

9.2.2 Processing MoveUserDomainConstrainedRORequest

When an RI receives a MoveUserDomainConstrainedRORequest message, the RI MUST process the request message as follows:

1. check if there is a valid Device Context by checking the value of <reqID> element of the request message. If the Device Context is unavailable or invalid e.g. expired, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “NotRegistered”.

2. verify the <signature> element in the request message. If the verification is not successful, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “SignatureError”.

3. it checks the <nonce> element in the request message according to section 15 (note for editor: this is a section for Replay Attack)

4. verify the <mac> element as follows:
a. unwrap <enc_REK> to recover KMAC (see section 13.1.2).
b. calculate a MAC on the canonical version of the <reqInfo> element (excluding the <mac> element) using the KMAC. The MAC algorithm to use is defined in the Device Context.
c. check the calculated MAC value against the <mac> element. If the calculated value is not equal to the value of the <mac> element, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “MACError”.
5. for each <userDomainConstrainedROInfo> element in the request message:
a. the RI SHOULD check for the presence of its own ID in the <moveIndication> element. If not present, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “MoveServiceNotProvided”.
b. verify the <signature> sub-element and check whether the signature has been generated by the RI/LRM that is identified by the <userDomainAuthorization> element under <rights>
c. validate the <userDomainAuthorization> element under <rights>
d. check if the <rights> sub-element has the <move> permission that does not preclude the use of the Move <userDomain>-constrained RO via RI protocol (i.e. having no <system> constraint on the <move> permission or having a <system> constraint which identifies the Move <userDomain>-constrained RO via RI protocol)

e. if the <stateInfo> sub-element is present, validate that the state information contained in <stateInfo> is consistent with the original state in the <rights> element
If any of the b-e checks fails, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “InvalidRO”. Note the RI May provide more detailed error information in the response by using the <errorMessage> attribute.

If for some reason (e.g. the RI doesn’t trust some RI/LRM(s) identified by the <moveIndication> element, the RI decides to not provide the Move service, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “MoveServiceNotProvided”.
6. for each <sourceDeviceUserDomainAuthorization> element in the request message:
a. verify the DEA signature
b. check whether the <entityId> sub-element matches the <reqID> element in the request
c. check the <notBefore> and <notAfter> sub-elements to see if the authorization is valid
d. check whether the generation number in the <userDomainId> element is the same as the one in RI’s User Domain Context for that particular User Domain. If the Source Device’s generation is lower than RI’s, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “LowUserDomainGeneration”. If the Source Device’s generation is higher than RI’s, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “UserDomainNotSupported”.

If any of the above checks fails, the RI MUST send to

 the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “InvalidUserDomainAuthorization”. Otherwise, the RI checks whether itself has a valid User Domain Authorization issued by the DEA for this User Domain. If not the RI MUST send a response with the status attribute set to “UserDomainNotSupported”.
If in the request message there is no <sourceDeviceUserDomainAuthorization> element for a User Domain to which one or more of the RO(s) being Moved are bound, the RI MUST send a response with the status attribute set to “UserDomainAuthorizationRequired”.
If all the above steps are successful, the RI SHALL set the status attribute in the MoveUserDomainConstrainedROResponse message to “Success”. In this case, the RI SHALL also include a list of <RIUserDomainAuthorization> elements in the response message, one per User Domain the ROs being Moved are bound to.
When and only when all the <userDomainConstrainedROInfo> elements in the request have been successfully validated (including checking of the required User Domain Authorizations), the RI generates corresponding ROs for the Recipient Device. The RI SHALL use the key received in the <enc_REK> element as the RO Encryption Key (see section 13.1.2). If the RO is stateful, the RI SHALL set the value of stateful constraint in the <rights> element to the value given by the corresponding <stateInfo> element in the request message. If the <rights> element has a “count” constraint under the “move” permission, the RI SHALL decrease the value of the <o-dd:count> element by 1. The RI SHALL also put a <userDomainAuthorization> element into the <rights> element proving that it is authorized by the DEA for managing the User Domain. After that, the RI MUST generate a signature over the <rights> element. The RI SHALL put into the new RO the <moveIndication> element that was received in the request.
The RI conducts a 1-pass or 2-pass RO Acquisition protocol or a 4-pass Confirmed RO Acquisition protocol ([DRM-DRM-v2.1]) to issue generated RO(s) to the Recipient Device.
How the RI handles the case that it failed to issue the Rights Objects to the Recipient Device is beyond the scope of this specification.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

