Doc# OMA-DRM-2009-0012-CR_Corrections_to_OMA_TS_SCE_A2A_V1_0_20081209_C.doc[image: image2.jpg]
Change Request

Doc# OMA-DRM-2009-0012-CR_Corrections_to_OMA_TS_SCE_A2A_V1_0_20081209_C.doc[image: image3.png]
Change Request

Change Request

	Title:
	Corrections to OMA-TS-SCE_A2A-V1_0-20081209-C
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA DRM WG

	Doc to Change:
	OMA-TS-SCE_A2A-V1_0-20081209-C

	Submission Date:
	17 Jan 2009

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	David Kravitz, Motorola

David.Kravitz@Motorola.com

	Replaces:
	n/a

1 Reason for Change

This CR proposes precisely the same changes as exist within OMA-DRM-2008-0514-INP_Corrections_to_OMA-TS_SCE_A2A_V1_0_20081107_D. Technical changes identified here are specifically presented in 6 (Detailed Change Proposal) below, and additional (editorial) changes are listed in 6 also. Note that the A2A TS reuses "LowUserDomainGeneration" status code from the GEN TS - LowUserDomainGeneration in GEN reads as follows: "The Requester's User Domain generation is lower than the Responder's User Domain generation." "InvalidRO" status code in the GEN TS (which is written as InvalidRightsObject in the A2A TS) reads as follows: "The RO has some invalid fields, or is unknown to the Responder." - This refers to the <party> element within the RO in this case.

1. 9.7 4 h is in error – Instead of “If the LRM’s certificate only has the localRightsManagerDomain extended key purpose (see [SCE-LRM]…” (in order to match 9.7 1 b i) this should say “If the LRM’s certificate does not have the localRightsManagerDevice extended key purpose (see [SCE-LRM])…” because whether or not an LRM has a rightsIssuer extended key purpose is irrelevant to an SCE Device. Note that if an LRM does not have the localRightsManagerDevice extended key purpose then by definition it has the localRightsManagerDomain extended key purpose (since in order to be an LRM at least one of these two extended key purposes is required), and it may or may not also have the rightsIssuer extended key purpose.

2. The phrase “Rights Issuer or LRM that created the original RO” appears several times. But this use of ‘original RO’ conflicts with originalIssuer construct in REL TS and DRM TS since the RO that is used in the A2A TS may have been generated by an RI as a result of a Move via RI, and thus this RO is not necessarily the original RO that was created by the original issuer. Recommendation is to simply remove the word ‘original’ from each occurrence of the phase “Rights Issuer or LRM that created the original RO” since the intent is that an RI or LRM is involved in creation, as opposed to a Device as DRM Requester. This is made concrete in the next suggestion.

3. To avoid ambiguity and potential attack explicitly state the following in 9.7, 9.8, 9.9, and 9.10: “The DRM Agent MUST reject the RO if the <signature> element over the <rights> element has been generated by an entity other than an RI or an LRM.”

4. 9.7 1 c is unnecessarily ambiguous with regard to the User Domain Authorization being that of the RI/LRM within the RO vs. the User Domain Authorization of the Device: “It checks if the RO has a <userDomain> constraint. If the constraint is present, the DRM Requester checks its User Domain Authorization (see [SCE-DOM]). If the User Domain Authorization is expired, the Move RO transaction is terminated.” Suggestion is to add the word ‘own’ (i.e. “…checks its own User Domain Authorization…”) in order to avoid confusion with the User Domain Authorization within the <party> element of the RO.

5. 9.7 4 i viii is in error – Rather than as it appears in the A2A TS draft, “If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets MoveRoResponse.Status to LowUserDomainGeneration and proceeds to step 5.” – to conform to CR0419 against the DOM TS (which was not agreed since it was decided to put these checks into A2A rather than DOM) and to not contradict the immediately previous step 9.7 4 i vii, it should say “If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the DRM Agent’s User Domain Authorization. If not, the DRM Agent sets MoveRoResponse.Status to LowUserDomainGeneration and proceeds to step 5.” For Copy, 9.8 4 m is wrong and the check of User Domain generation that needs to be done regardless of whether or not the DRM Agent is already a member of the User Domain is actually missing.

6. 9.8 1 a ii is in error: “However, when the state information is sent in the CopyRoRequest, the current copy count MUST be set to zero” – State information is not sent in the CopyRoRequest. Recommendation is to simply remove this sentence. Note that the current A2A TS draft addresses the prohibition of further copying as follows (within 9.8 4 o): “… When installed, this RO loses the <copy> permission, i.e. the DRM Agent, acting as a DRM Requester, SHALL NOT Copy the RO to another DRM Agent…”

2 Impact on Backward Compatibility

n/a
3 Impact on Other Specifications

n/a
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The author recommends that the OMA DRM WG agree this CR.
6 Detailed Change Proposal

Change 1: Add cited reference RFC 3280 to section 2.1. ([RFC3280] is cited in section 8.17.)
2.1 Normative References

	[AES-MODES]
	“Recommendation for Block Cipher Modes of Operation”, NIST Special Publication 800-38A, 2001. URL:http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

	[AES-WRAP]
	Advanced Encryption Standard (AES) Key Wrap Algorithm. RFC 3394, J. Schaad and R. Housley, September 2002. URL:http://tools.ietf.org/html/rfc3394

	[DRM-v2.1]
	The OMA DRM 2.1 enabler as described in “Enabler Release Definition for DRM V2.1,
Approved Version 2.1”, OMA-TS-DRM-DRM-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRM-DCF-v2.1]
	“DRM Content Format, Approved Version 2.1”,
OMA-TS-DRM-DCF-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRM-DRM-v2.1]
	“DRM Specification, Approved Version 2.1”,
OMA-TS-DRM-DRM-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRM-REL-v2.1]
	“DRM Rights Expression Language, Approved Version 2.1”,
OMA-TS-DRM-REL-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[ISO8601]
	“Data elements and interchange formats -- Information interchange -- Representation of dates and times”, ISO 8601:2004, URL:http://www.iso.org

	[RFC2104]
	“HMAC: Keyed-Hashing for Message Authentication”, H. Krawczyk, M. Bellare, and R. Canetti, February 1997. URL:http://tools.ietf.org/html/rfc2104

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://tools.ietf.org/html/rfc2119

	[RFC3280]
	“Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile”, R. Housley, W. Polk, W. Ford, and D. Solo, April 2002, http://tools.ietf.org/html/rfc3280

	[RFC3447]
	“Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1”, J. Jonsson, B. Kaliski, February 2003, URL:http://tools.ietf.org/html/rfc3447

	[SCE-AD]
	“Secure Content Exchange Architecture, Draft Version”, OMA-AD-SCE-Vx_y-D, Open Mobile AllianceTM, URL:http://www.openmobilealliance.org/

	[SCE-DOM]
	“SCE User Domains”, OMA-TS-SCE-DOM-Vx_y-D, Open Mobile AllianceTM, URL:http://www.openmobilealliance.org/

	[SCE-LRM]
	“Local Rights Manager for Secure Content Exchange”, OMA-TS-SCE-LRM-Vx_y-D, Open Mobile AllianceTM, URL:http://www.openmobilealliance.org/

	[SCE-RD]
	“Secure Content Exchange Requirements, Draft Version 1.0”,
OMA-RD-SCE-V1_0-20060908-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[SCE-REL]
	“DRM Rights Expression Language – SCE Extensions”, OMA-TS-SCE-REL-Vx_y-D, Open Mobile AllianceTM, URL:http://www.openmobilealliance.org/

	[SCR-RULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[SHA1]
	NIST FIPS 180-2: Secure Hash Standard. August 2002. URL:http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

	[SRM-TS]
	“Secure Removable Media Specification, Candidate Version 1.0”, OMA-TS-SRM-V1_0-20080128-C, Open Mobile AllianceTM, URL:http://www.openmobilealliance.org/

	[XC14N]
	Exclusive XML Canonicalization: Version 1.0, John Boyer, Donald E. Eastlake 3rd and Joseph Reagle, W3C Recommendation 18 July 2002. URL:http://www.w3.org/TR/xml-exc-c14n/

Change 2: Editorial corrections to section 9.2.6 and 9.2.7 (“negociated” corrected to “negotiated”). Typo in caption of Table 9 (should be “Initial” instead of “Intial”).
9.2.6 SAC Context

Once a SAC has been established, a logical SAC context will exist. At a minimum, the context consists of the following information:

· Trust Anchor – this contains the trust anchor under which the SAC was established. Used when multiple SACs are available and the DRM Requester wants to switch to a different SAC as specified in section Error! Reference source not found..
· Entity ID – for the DRM Requester, this contains the DRM/Render Agent’s ID (under the trust anchor); for the DRM/Render Agent, this contains the DRM Requester’s ID (under the trust anchor).

· Selected Algorithms – this contains the algorithms that were negotiated during the MAKE transaction.

· MAC Key (MK) – this contains the derived key for the negotiated HMAC algorithm.

· Session Key (SK) – this contains the derived key for the negotiated symmetric encryption algorithm.

· CtrCounter – this contains the current message counter when a symmetric algorithm in counter mode has been negotiated.

· currentReplayCounterR – this contains the current replay counter when acting as a DRM Requester. Its use is described in section Error! Reference source not found.. This counter is set to 0 when the SAC context is established.

· currentReplayCounterA – This contains the current replay counter when acting as a DRM/Render Agent. Its use is described in section Error! Reference source not found.. This counter is set to 0 when the SAC context is established.

The SAC context exists until a new SAC with the same DRM Requester and DRM/Render Agent, and under the same trust model, is established. By using the A2A Hello operation, a DRM Requester can determine if it is communicating with the same DRM/Render Agent. If it is communicating with the same DRM/Render Agent, the DRM Requester can reuse the SAC context. If the DRM Requester reuses the SAC context, sends a protected request and gets back an IntegrityVerificationFailed error, this probably indicates that the SAC context is no longer valid. In this case, the DRM Requester SHOULD establish a new SAC.
9.2.7 Data Encryption

Any portion of a protected message that needs confidentiality must be encrypted using the symmetric key algorithm that was negotiated during the MAKE transaction. The key used to encrypt is the key derived using the KDF per section Error! Reference source not found..

The default encryption algorithm is AES in counter mode. The initial value of the AES counter is shown in the following table.

Table 9: Initial AES Counter Value

	Counter Portion
	Bits
	Description

	CtrCounter
	80
	The msb’s of the counter. Taken from the KDF.

	CtrR
	32
	A copy of the replayCounter of the message being sent.

	CtrB
	16
	The lsb’s of the counter. Initially set to 0 and then incremented for each block.

Because the least significant bits of the counter are used for the blocks, the maximum field size that can be encrypted is 1048576 bytes, although EncryptedData only allows for a maximum field size of 65535 (see section Error! Reference source not found.).

Change 3: Corrections to section 9.7 and section 9.7.1
9.3 Move RO Transaction

The Move RO transaction is used by the DRM Requester to Move a Rights Object (RO) with a <move> permission to a DRM Agent. This transaction MUST take place using a SAC. This transaction MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section Error! Reference source not found.). The DRM Agent MUST reject the RO if the <signature> element over the <rights> element has been generated by an entity other than an RI or an LRM. The following figure illustrates the Move RO transaction.

Figure 8: Move RO Transaction
In order for this transaction to take place, the following MUST be performed:

1. The DRM Requester performs the following:

a. It checks if the RO has the <move> permission. The “allowPartial” attribute MUST be “true” if a Partial Move is to be performed. If the <move> permission is not present, the Move RO transaction is terminated. Otherwise, the following is performed:

i. If there is a <system> constraint, then it checks the <context> child element(s) of the <system> constraint. If no <context> child element identifies the SCE protocol, then the Move RO transaction is terminated.
ii. If there is a <count> constraint, then it checks the current count value in the state information of the RO. If the current move count is 0, then the Move RO transaction is terminated. Otherwise, the DRM Requester decrements the current move count value in the state information of the RO.

b. It checks the entity type that created the RO. If the RO was created by an RI, the DRM Requester proceeds to step 1.c. Otherwise, the following is performed:

i. If the LRM’s certificate does not have the localRightsManagerDevice extended key purpose (see [SCE-LRM]), then the RO MUST have a <userDomain> constraint. If the constraint is not present, the Move RO transaction is terminated.
ii. If the LRM’s certificate has the localRightsManagerDevice extended key purpose, the RO MUST be a Device RO. If it is not a Device RO, the Move RO transaction is terminated.
c. It checks if the RO has a <userDomain> constraint. If the constraint is present, the DRM Requester checks its own User Domain Authorization (see [SCE-DOM]). If the User Domain Authorization is expired, the Move RO transaction is terminated.

d. It marks the RO being Moved as unusable. If the RO is stateful and just a portion of the RO is being Moved (Partial Rights, see section Error! Reference source not found.), then that portion being Moved is marked as unusable.

e. It generates a random moveHandle and creates a Move context with the moveHandle, the REK of the RO being Moved, and the DRM Agent ID.
2. The DRM Requester generates a MoveRoRequest with the information for the RO (or portion) being Moved or Copied to the DRM Agent and MoveRoHandle (from step 1.d).

3. The DRM Requester sends the MoveRoRequest to the DRM Agent, applying the replay protection mechanism described in section Error! Reference source not found..

4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section Error! Reference source not found..

b. It verifies the integrity of the request. If the integrity check fails, it sets MoveRoResponse.Status to IntegrityVerificationFailed and proceeds to step 5.

c. It validates the fields of the MoveRoRequest. If any field is invalid, it sets MoveRoResponse.Status to InvalidField and proceeds to step 5.

d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications fails, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

e. It checks that the RO has the <move> permission. If it does not, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

f. If the RO is stateful, it validates that the StateInformation is consistent with the original state in the RO (see section 5.5). If any state is invalid, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

g. It checks the entity that created the RO. If the RO was created by an RI, the DRM Requester proceeds to step 4.i.

h. If the LRM’s certificate does not have the localRightsManagerDevice extended key purpose (see [SCE-LRM]), then the RO MUST have a <userDomain> constraint. If the constraint is not present, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

i. It checks whether the RO has a <userDomain> constraint. If not, the DRM Agent proceeds to step 4.j. Otherwise, the DRM Agent performs the following checks:

i. It checks whether the RO has a <copy> permission. If not, the DRM Agent proceeds to step 4.i.iii.

ii. It checks if it has a current record (whether installed or waiting to be installed) of an RO with the same ROID. If the duplicate RO exists, the DRM Agent sets MoveRoResponse.Status to DuplicateRightsObject and proceeds to step 5.
iii. It checks if an LRM created the RO. If an LRM created the RO, the DRM Agent checks if the LRM’s certificate has the localRightsManagerDomain extended key purpose. If the certificate does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
iv. It validates the UserDomainAuthorization for the DRM Requester. If the validation fails, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5. Validation MUST include the following:

a. Verifying the signature

b. User Domain Authorization is not expired

c. Entity ID of User Domain Authorization matches ID of DRM Requester
v. It checks that the User Domain Authorization of the <party> element of the RO corresponds to the RI/LRM that signed the <rights> element. If <party> element does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
vi. It checks that the User Domain baseID of the <userDomainID> element within the User Domain Authorization in the <party> element of the RO is the same as the User Domain baseID of the <userDomainID> element within the UserDomainAuthorization field. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.
vii. It checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

viii. If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the DRM Agent’s User Domain Authorization. If not, the DRM Agent sets MoveRoResponse.Status to LowUserDomainGeneration and proceeds to step 5.
j. It checks if it has enough room to install the RO. If it does not, it sets MoveRoResponse.Status to NotEnoughSpace and proceeds to step 5.

k. It saves MoveRoHandle and associates MoveRoHandle with the RO (which must be installed yet).

l. It sets MoveRoResponse.Status to Success.
5. The DRM Agent sends the MoveRoResponse to the DRM Requester, applying the replay protection mechanism described in section Error! Reference source not found..

6. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section Error! Reference source not found..

b. If the integrity verification of the response fails or MoveRoResponse.Status is not Success, it determines if it can restart the Move RO transaction at step 2. If it does not restart the transaction, the DRM Requester performs the following:

i. It marks the RO (or portion) as usable.

ii. If the <move> permission had a <count> constraint, it increments the current move counter of the state information.
iii. It terminates the Move RO transaction.

c. It deletes the RO (or portion) that was Moved (but still keeps the corresponding Move context). Note: if the RO being Moved has been backed up, the Backed Up RO MUST NOT be restored.

7. The DRM Requester generates a MoveRekRequest with the data from the Move context.

8. The DRM Requester sends the MoveRekRequest to the DRM Agent, applying the replay protection mechanism described in section Error! Reference source not found..

9. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section Error! Reference source not found..

b. It validates the fields of the MoveRekRequest. If any field is invalid, it sets MoveRoResponse.Status to InvalidField and proceeds to step 10.
c. It verifies the integrity of the request. If the integrity check fails, it sets MoveRekResponse.Status to IntegrityVerificationFailed and proceeds to step 10.

d. It checks if it has an RO that corresponds to the moveHandle. If it does not have a corresponding RO, it set MoveRekResponse.Status to UnknownHandle and continues with step 10.

e. It decrypts MoveRekRequest.Body.EncryptedMoveRoHandleAndRek. Note: if the RO is a User Domain RO with a <userDomain> constraint, and the DRM Agent is not yet a member of the User Domain (i.e. it does not have the UDK), the DRM Agent MUST join the User Domain to receive a copy of the UDK in order to fully decrypt the REK.

f. It checks whether the RO has a <contextRequired> constraint element. If not, it proceeds to step 9.h.

g. It tags the RO that corresponds to the MoveRoHandle as ‘pending RI/LRM Context verification’, and proceeds to step 9.i.

h. It marks the RO that corresponds to the MoveRoHandle as usable.

i. It sets MoveRekResponse.Status to Success.

10. The DRM Agent sends the MoveRekResponse to the DRM Requester, applying the replay protection mechanism described in section Error! Reference source not found..

11. If the RO that corresponds to the MoveRoHandle has been tagged as ‘pending RI/LRM Context verification’, upon successful verification of an active/current Context with the RI or LRM that generated the <signature> element of the RO, the DRM Agent removes the tag and marks the RO as usable. If the RO has a ‘pending RI/LRM Context verification’ tag, the DRM Agent MUST NOT grant any permissions other than <move>.
12. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section Error! Reference source not found..
b. It verifies the integrity of the response. If the integrity check failed, the DRM Requester determines if it can restart the Move RO transaction at step 2 or step 7. If it does not restart the transaction, the DRM Requester MUST leave the RO marked as unusable and terminate the Move RO transaction.
c. If MoveRekResponse.Status is not Success, it determines if it can restart the Move RO transaction at step 2 or step 7. If it does not restart the transaction, the DRM Requester performs the following:

i. It marks the RO (or portion) as usable.

ii. If the <move> permission had a <count> constraint, it increments the current move counter of the state information.
iii. It terminates the Move RO transaction.

d. It removes the cached corresponding Move context.
e. At this point the Move RO transaction has successfully completed.

9.3.6 MoveRoRequest

A MoveRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 timeStampPresent
1
bslbf
 stateInfoPresent
1
bslbf
 udaPresent
1
bslbf
 rfu
5
bslbf
 moveHandle
64
uimsbf
 RoAlias()
 SourceAlias()
 SourceID()
 if(timeStampPresent){
 SourceTimeStamp()
 }
 RightsObjectContainer()
 if(stateInfoPresent){
 StateInformation()
 }

 CertificateChain()
 if(udaPresent){
 UserDomainAuthorization()
 }
}

RoAlias(){
 String80()
}

DomainAlias(){
 String80()
}

SourceAlias(){
 String80()
}

SourceID(){
 EntityID()
}

TimeStamp(){
 year
14
uimsbf

 month
4
uimsbf

 day
5
uimsbf

 hour
5
uimsbf

 minute
6
uimsbf

 second
6
uimsbf

}

UserDomainAuthorization(){
 OctetString16()
}

The fields are defined as follows:

· timeStampPresent – this is a boolean field, that if true, indicates that the source (RI or LRM) TimeStamp field is present.

· stateInfoPresent – this is a boolean field, that if true, indicates that the StateInformation field is present.

· rfu – this is a 5 bit field that is reserved for future use. When sending the request, this field MUST be set to 0. When processing this field, its value MUST be ignored.
· moveRoHandle – this field contains a random 64 bit unsigned integer that is used to correlate the MoveRoRequest with the MoveRekRequest.
· RoAlias – this field contains an optional alias for the RO. It is of type String80 which is defined in section Error! Reference source not found..

· DomainAlias – this field contains an optional alias for the domain if the RO is a domain RO. It is of type String80 which is defined in section Error! Reference source not found..

· SourceAlias – this field contains an optional alias for the Rights Issuer or LRM that created the RO. It is of type String80 which is defined in section Error! Reference source not found..

· SourceID – this field contains the identity of the Rights Issuer or LRM that created the RO. It is of type EntityID which is defined in section Error! Reference source not found..

· RightsObjectContainer – this field contains a RO as defined in section Error! Reference source not found..

· StateInformation – this field, if present, contains the state information for the Rights being Moved. This field is defined in section Error! Reference source not found.. This field MUST be present if the RO is stateful.

· year – this field contains the year – 2000 of the timestamp. Range is 0 – 16383, corresponding to the years 2000 – 18,383.

· month – this field contains the month of the timestamp, with 0 representing January. Range is 0 – 11.

· day – this field contains the day – 1 of the month of the timestamp. Range is 0 – 30.

· hour – this field contains the hour of the timestamp. Range is 0 – 23.

· minute – this field contains the minute of the timestamp. Range is 0 – 59.

· second – this field contains the seconds of the timestamp. Range is 0 – 59.

· CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the RO. This field is defined in section Error! Reference source not found..
· MoveRoHandle – this field contains a 10 byte random handle that is used to correlate the REK in this transaction.
· UserDomainAuthorization – this field, if present, contains the User Domain Authorization for the DRM Requester. This field MUST be present if the RO being Moved has a <userDomain> constraint.
Change 4: Corrections to section 9.8 and section 9.8.1
9.4 Copy RO Operation

The Copy RO operation is only used by a DRM Requester to Copy a <userDomain>-constrained Rights Object (RO) with a <copy> permission to a DRM Agent. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section Error! Reference source not found.). The DRM Agent MUST reject the RO if the <signature> element over the <rights> element has been generated by an entity other than an RI or an LRM. The following figure illustrates the Copy RO operation.

[image: image1.png]
Figure 9: Copy RO Operation
In order for this operation to take place, the following MUST be performed:

1. The DRM Requester performs the following:

a. It checks if the RO has the <copy> permission. If the <copy> permission is not present, the Copy RO operation is terminated. Otherwise, the following is performed:

i. If there is a <system> constraint, the DRM Requester checks the <context> child element(s) of the <system> constraint. If no <context> child element identifies the SCE protocol, the Copy RO operation is terminated.
ii. If there is a <count> constraint, then it checks the current count value in the state information of the RO. If the current copy count is 0, the DRM Requester terminates the Copy RO operation. Otherwise, it decrements the current copy count value in the state information of the RO.
b. It checks the entity type that created the RO. If an RI created the RO, the DRM Requester proceeds to step 1.d.

c. If the LRM’s certificate does not have the localRightsManagerDomain extended key purpose (see [SCE-LRM]), the Copy RO operation is terminated.
d. It checks its User Domain Authorization ([SCE-DOM]). If the User Domain Authorization is expired, the Copy RO operation is terminated.

e. It checks if the RO contains a <userDomain> constraint. If there is no <userDomain> constraint, it terminates the Copy RO operation.
2. The DRM Requester generates a CopyRoRequest with the information for the RO being Copied to the DRM Agent.

3. The DRM Requester sends the CopyRoRequest to the DRM Agent, applying the replay protection mechanism described in section Error! Reference source not found..

4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section Error! Reference source not found..

b. It verifies the integrity of the request. If the integrity check fails, the DRM Agent sets CopyRoResponse.Status to IntegrityVerificationFailed and proceeds to step 5.

c. It validates the fields of the CopyRoRequest. If any field is invalid, the DRM Agent sets CopyRoResponse.Status to InvalidField and proceeds to step 5.

d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications fails, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

e. It checks if it has a current record (whether installed or waiting to be installed) of an RO with the same ROID. If the duplicate RO exists, the DRM Agent sets CopyRoResponse.Status to DuplicateRightsObject and proceeds to step 5.
f. It checks that the RO has the <copy> permission. If it does not, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

g. It checks the entity that created the RO. If the RO was created by an RI, the DRM Requester proceeds to step 4.h.

h. If the LRM’s certificate does not have the localRightsManagerDomain extended key purpose (see [SCE-LRM]), the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

i. It checks if the RO has a <userDomain> constraint. If the constraint is not present, the DRM Agent sets CopyROResponse.Status to InvalidRightsObject and proceeds to step 5.
j. It validates the UserDomainAuthorization for the DRM Requester. If the validation fails, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5. Validation MUST include the following:

a. Verifying the signature

b. User Domain Authorization is not expired

c. Entity ID of User Domain Authorization matches ID of DRM Requester
k. It checks that the User Domain Authorization of the <party> element of the RO corresponds to the RI/LRM that signed the <rights> element. If it does not, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.
l. It checks that the User Domain baseID of the <userDomainID> element within the User Domain Authorization in the <party> element of the RO is the same as the User Domain baseID of the <userDomainID> element within the UserDomainAuthorization field. If not, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.
m. It checks that the User Domain generation of the UserDomainAuthorization field is greater or equal to the User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.
n. If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of the UserDomainAuthorization field is greater than or equal to the User Domain generation of the DRM Agent’s User Domain Authorization. If not, the DRM Agent sets CopyRoResponse.Status to LowUserDomainGeneration and proceeds to step 5.
o. It checks if it has enough room to install the RO. If it does not, it sets CopyRoResponse.Status to NotEnoughSpace and proceeds to step 5.

p. If the DRM Agent is already a member of the User Domain, it installs the RO per [DRM-v2.1] except that the replay cache is not considered. When installed, this RO loses the <copy> permission, i.e. the DRM Agent, acting as a DRM Requester, SHALL NOT Copy the RO to another DRM Agent. Note: if the DRM Agent is not a member of the User Domain, it will not be able to decrypt the REK and install the RO until it joins the User Domain and receives a copy of the UDK.

q. It sets CopyRoResponse.Status to Success.
5. The DRM Agent sends the CopyRoResponse to the DRM Requester, applying the replay protection mechanism described in section Error! Reference source not found..

6. The DRM Requester processes the response as follows:

d. It processes the response for replay as described in section Error! Reference source not found..

e. If CopyRoResponse.Status is not Success, it determines if it can restart the Copy RO operation at step 2. If it does not restart the operation, the DRM Requester performs the following:

i. If the <copy> permission had a <count> constraint, it increments the current move counter of the state information.
ii. It terminates the Copy RO operation.

f. At this point the Copy RO operation has successfully completed.

9.4.6 CopyRoRequest
A CopyRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 timeStampPresent
1
bslbf
 rfu
7
bslbf
 RoAlias()
 SourceAlias()
 SourceID()
 if(timeStampPresent){
 TimeStamp()
 }
 RightsObjectContainer()
 EncryptedRek()
 CertificateChain()
 UserDomainAuthorization()
}

EncryptedRek(){
 EncryptedData() //Contains an encrypted REK
}

The fields are defined as follows:

· timeStampPresent – this is a boolean field, that if true, indicates that the source (RI or LRM) TimeStamp field is present.

· rfu – this is a 7 bit field that is reserved for future use. When sending the request, MUST be set to 0. When processing this field, its value MUST be ignored.
· RoAlias – this field contains an optional alias for the RO. It is defined in section 9.7.1.

· DomainAlias – this field contains an optional alias for the domain if the RO is a domain RO. It is defined in section 9.7.1.

· SourceAlias – this field contains an optional alias for the Rights Issuer or LRM that created the RO. It is defined in section 9.7.1.

· SourceID – this field contains the identity of the Rights Issuer or LRM that created the RO. It is defined in section 9.7.1.

· RightsObjectContainer – this field contains an RO as defined in section Error! Reference source not found..

· EncryptedRek – this field contains an REK that has been encrypted twice. The REK is first encrypted with the UDK (for the User Domain) using [AES-WRAP] and then the wrapped REK is encrypted with the SK using the negotiated algorithm. The field is of type EncryptedData which is defined in section Error! Reference source not found.. A Rek field is defined in section 9.7.1.

· TimeStamp – this field constains the timestamp of the Rights Issuer or LRM that created the RO. It is defined in section 9.7.1.
· CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the RO. This field is defined in section Error! Reference source not found..
· UserDomainAuthorization – this field contains the User Domain Authorization for the DRM Requester.

Change 5: Corrections to first part of section 9.9

9.5 Share RO Operation

The Share RO operation is used by the DRM Requester to do Ad Hoc Sharing of a RO. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section Error! Reference source not found.). The DRM Agent MUST reject the RO if the <signature> element over the <rights> element has been generated by an entity other than an RI or an LRM. The following figure illustrates the Share RO operation.
Change 6: Corrections to first part of section 9.10

9.6 Lend RO Operation

The Lend RO operation is used by the DRM Requester to do Lending of a RO. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section Error! Reference source not found.). The DRM Agent MUST reject the RO if the <signature> element over the <rights> element has been generated by an entity other than an RI or an LRM. The following figure illustrates the Lend RO operation.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20090101-I]

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 13 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20090101-I]

