Doc# OMA-DRM-2009-0073R01-CR_SCE_DRM_Corrections_to_Move_via_RI_of_Device_RO_vs_userDomain_constrained_RO_Protocol_Referencing.doc[image: image2.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-DRM-2009-0073R01-CR_SCE_DRM_Corrections_to_Move_via_RI_of_Device_RO_vs_userDomain_constrained_RO_Protocol_Referencing.doc
Change Request

Change Request

	Title:
	SCE DRM Corrections to Move via RI of Device RO vs userDomain constrained RO Protocol Referencing
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA DRM WG

	Doc to Change:
	OMA-TS-SCE_DRM-V1_0-20090319-D

	Submission Date:
	18 Apr 2009

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	David Kravitz, Motorola

David.Kravitz@Motorola.com

	Replaces:
	n/a

1 Reason for Change

Change 1: The purpose of this CR is to properly distinguish the Move Device RO via RI and Move <userDomain>-constrained RO via RI protocols from each other and from the Move RO transaction and Copy RO operation that are described in the A2A TS. This CR, in particular, deletes outdated references to the Move RI Rights protocol. The CR also clarifies the use of PREK.
Change 2: In addition to correctly referencing the (A2A) Move RO transaction and (A2A) Copy RO operation, reference has been added to the two other A2A operations (namely, Share RO and Lend RO) that involve installation by the (recipient) DRM Agent.

R01 adds Change 3.

Section numbers are highlighted below to indicate that cross-referencing has been suppressed within this CR (and should be handled by the editor in the final SCE DRM TS).
2 Impact on Backward Compatibility

n/a
3 Impact on Other Specifications

n/a
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The author recommends that the OMA DRM WG agrees this CR.
6 Detailed Change Proposal
Change 1: Correct (within various sections of the SCE DRM TS) references to protocols, and clarify the use of PREK. (Note that only modified sections/subsections are included below.)
5.4.1 The 2-pass Move Device RO Protocol
The 2-pass Move Device RO protocol is the protocol by which a Source Device transfers one or more ROs originally issued by an RI or LRM to an RI, and the transferred ROs are intended to be Moved to a Recipient Device. The Source Device MUST be an SCE Device. The Recipient Device MAY be an SCE Device. The Recipient Device MAY alternatively be a v2.x Device.
If the original Issuer of the RO is an RI, the RI as the responder of this protocol MUST be that original Issuer RI. If the RO is originally issued by an LRM, the LRM-created RO MUST contain information specifying which RI(s) it designates to Move the RO (i.e.<moveIndication> element, see [SCE-REL]). An RI SHOULD verify that it has agreed to provide Move service for that LRM in accordance with the result of the LRM-RI registration protocol [SCE-LRM]. If the original Issuer of the RO is an LRM, once the RO is Moved via an RI, the RI as future responder of this protocol MUST be that same RI. This protocol assumes that the Source Device already has a valid RI context for the RI that it requests to Move the RO.
This protocol includes mutual authentication between Device and RI, integrity-protected request and response, and transferring of ROs. This protocol further includes the verification of trust relationship between the RI and the LRM in case that the RO was originally issued by an LRM. This protocol ensures that the RI is able to verify the RI-generated or LRM-generated signature over the RO, so as to determine that the received RO was last issued by the same RI or as originally issued by an LRM trusted by the RI. This protocol MAY involve OCSP protocol between RI and OCSP Responder for checking status of RI’s certificate chain. After successful 2-pass Move Device RO Protocol execution, the RI MUST conduct RO Acquisition Protocol including optional ROAP-ROAcquisition Trigger as per section 8.1, with the Recipient Device.
NOTE: Although the RO Acquisition Protocol itself is not part of the 2-pass Move Device RO protocol, the RI SHOULD NOT include the <signature> element over the <rights> element in the resultant RO if the RO is intended for delivery to a v2.x Device, where a v2.x Device is distinguishable from an SCE-conformant Device by the absence of the oma-kp-sceDrmAgent key purpose in its certificate (see [SCE-A2A]).
.

[image: image1.emf]Source Device Rights Issuer OCSP Responder

MoveDeviceRORequest

OCSP Request

OCSP Response

MoveDeviceROResponse

Recipient Device

Rights Object Acquisition Protocol

MoveDeviceROTrigger

 Figure 1 the 2-pass Move Device RO Protocol
7.1.2 Processing Rules from RI side

In order to verifiy an element of sceroap:RightsInfo type, the RI MUST perform the following checks:

1. Check that the signature of the request message (e.g. ROAP-MoveDeviceRORequest or ROAP-ROUpgradeRequest) is generated by the Device with the same ID as <sourceDeviceID> element. If check fails, the RI sends a response message constaining error status InvalidRO.
2. In case that the RI keeps records of <rights> and <signature> elements, unless there is a <moveIndication> element in the request, check that the ROID in the request message can be found in the RI’s issue history. If check fails, the RI sends a response message containing error status NotFound.
3. If the request is of type Move Device RO and this RI tracks the number of times that it Moves Device ROs that are all derived from a single initial Device RO that it originated or that an LRM originated (possibly in order to limit the number of such Moves), then check for any prior records. (Note that if A2A Move is permitted by the original RO, the RI can not track all Moves relating to the original RO (whether or not the RI or an LRM issued the original RO).)
4. If the current request includes a <moveIndication> element, then the RI sends a response message containing error status InvalidRO if this RI’s ID is not included in the <moveIndication> element or if for some reason it does not trust all of the other RIs included within the <moveIndication> element (since if the 'allowPartial' attribute equals “true” then multiple RIs identified by the <moveIndication> element can legitimately Move Device ROs tracing back to the original Device RO (where each such RI gains access to the REK), and if the 'allowPartial' attribute equals “false” then a rogue Device can nevertheless Move the Device RO via multiple such RIs).
5. If the <rights> element is present, check its sibling <signature> elements is also present. If check fails, the RO sends a response message containing error status InvalidRO.
6. Verify the legitimacy of the <signature> element of step 5 as follows:
· Identify the signer of signature by looking <ds:KeyInfo> child elment. If there is error during identifying signer, the RI sends a response message contaning appropriate error. (i.e. NoCertificateChain, InvalidCertificateChain or TrustedRootCertificateNotPresent. If the signer is neither the RI as a recipient of the request message nor any LRM that has registered to this RI with a request for RO Move service (see [SCE-LRM]), the RI sends a response message containing error status UnknownRO.
· Validate signature value. If the signature validation fails, the RI sends a response message containing error status SignatureError.
7. If any <stateInfo> element is present, verify for all <stateInfo> elements that the state information is consistent with the original stateful <constraint> elements in the <rights> element. If verification fails, the RI sends a response message containing error status InvalidRO.
8. Decrypt KREK and verify KMAC, as follows:
· Unwrap KREK and KMAC (see section 13.1.1).

· Calculate a MAC on the canonical version of the element of sceroap:RightsInfo type (excluding the <mac> element) using the KMAC. The MAC algorithm to use is defined in the Device Context.
· Check the calculated value against the <mac> element of the element of sceroap:RightsInfo type . If the calculated value is not equal to value of the <mac> element, the RI MUST send a response message with error status invalidRO.
9. Do AES-UNWRAP of Content Encryption Key (CEK) using the decrypted KREK. If any error occurred during AES-UNWRAP of CEK, the RI regards that the requesting DRM Agent did not package the KREK properly and sends an response message containing error status InvalidRO.

7.2 State information

The <stateInfo> element is of type o-ex:constraintType [ODRL]and MUST be repeated for every stateful constraint in the original <ro> element that contains an ”id” attribute. A stateful constraint is a <constraint> element that contains one of the following elements: <count>, <timed-count>, <interval> or <accumulated>.

In case of RO Upgrade, <stateInfo> element carries the remaining Rights of the specific RO to be upgraded. For the <count> and <timed-count> elements, the value contains the remaining count value. For the <accumulated> element, the value contains the remaining duration that the Content can be rendered (in the format of the <accumulated> element). The <interval> element is handled differently. If the Content has not been rendered, i.e. the interval has not started, then nothing is placed in the <stateInfo> element. If the Content has been rendered, i.e. the interval has been started, then the <interval> element is transformed into a <datetime><end>xx</end></datetime>, where xx is the end date/time after which the Content can not be rendered.

In case of Move, <stateInfo> element carries the Rights to be Moved to the designated Recipient Device. For the <count> and <timed-count> elements, the value contains the count the Recipient Device can use, which must be equal to or less than the current remaining count value on the Source Device. No other splitting of the RO is allowed.
8.2 Move Device RO Protocol

The ROAP-MoveDeviceRO protocol enables a DRM Agent to Move its remaining Rights (or part of it) bound to a Device that was originally issued by an RI or LRM to another DRM Agent through the interaction with the RI. In this protocol, the physical distance between two DRM Agents does not matter.

While the OMA DRM 2.1 RO Upload Protocol transfers Rights which had been directly issued from the RI to the requesting DRM Agent, the ROAP-MoveDeviceRO protocol transfers Rights that may have been issued directly from the RI or LRM, or may have been received from other DRM Agents.
8.2.1 MoveDeviceRORequest
The ROAP-MoveDeviceRORequest message is sent from a Source Device to the RI for transferring Rights. The root element of the message MUST be a <moveDeviceRORequest> element of type gen:Request, in which the following elements are present:

	element / attribute
	usage
	value

	triggerNonce
	O
	Default, as specified in [SCE-GEN]

	reqID
	M
	Default, as specified in [SCE-GEN]

	resID
	M
	Default, as specified in [SCE-GEN]

	nonce
	M
	Default, as specified in [SCE-GEN]

	time
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	reqInfo
	M
	Specified below

	signature
	M
	Specified below

Table 1 MoveDeviceRORequest Message Parameters
The <gen:reqInfo> element under the <moveDeviceRORequest> element MUST contain a <sceroap:moveDeviceRORequestInformation> child element as defined by the following XML schema fragment:
<element name="moveDeviceRORequest" type="gen:Request" />

 <element name="moveDeviceRORequestInformation">

 <complexType>

 <sequence>

 <element name="rcptDevID" type="gen:Identifier" minOccurs="0" />

 <element name="rightsInfo" type="sceroap:RightsInfo" maxOccurs="unbounded" />

 </sequence>

 </complexType>

 </element>

The <sceroap:moveDeviceRORequestInformation> element in ROAP-MoveDeviceRORequest message includes optional <rcptDevID> element and one or more <rightsInfo> elements.

The <rcptDevID> element represents the identifier of Recipient Device.
The <rightsInfo> element contains information about Rights being transferred to RI.
If there was preceding ROAP-MoveDeviceRO Trigger and its roRequested attribute value was ‘true’, or the request message is sent without preceding ROAP-MoveDeviceRO Trigger, the <rightsInfo> element within <moveDeviceRORequest> element SHALL include one <rights> element and one <signature> elements. If there was no preceding MoveDeviceRO Trigger or the trigger doesn’t include <recipientInfo> element, the <moveDeviceRORequest> element SHALL include one <recipientDeviceID> element. If the trigger includes <recipientInfo> element, since the RI already knows the ID of the Recipient Device, the <moveDeviceRORequest> element SHALL NOT include any <recipientDeviceID> element. For the detail of RightsInfo type, refer to section 7.1.
signature: This element contains a digital signature over the message besides the <signature> element itself. It is made using the negotiated signature algorithm and using the private key of the Source Device.
8.3 Move <userDomain>-constrained RO Protocol

The Move <userDomain>-constrained RO Protocol enables a DRM Agent to Move User Domain RO(s) that have the <userDomain> constraint to another DRM Agent via an RI who is associated to the User Domain.

9.1.1 Sending MoveDeviceRORequest

ROAP-MoveDeviceRO protocol can be initiated either by receiving a ROAP-MoveDeviceRO Trigger or by user interaction with the Device (e.g. the user of the Source Device can select RI-issued Rights to Move using a built-in menu in the phone).

To package a ROAP-MoveDeviceRORequest message, the DRM Agent MUST proceed as follows:

1. The Device lets the user select Device Rights Objects that are issued by an RI or LRM to be Moved. The Source Device MUST ensure that the selected Rights Object has a <move> permission containing no <system> constraint or a <move> permission containing a <system> constraint which identifies Move Device RO via RI protocol. Further details of this step are beyond the scope of this specification.

2. The DRM Agent marks the selected Rights Objects as unusable. If the Rights Object is stateful and just a portion of the Rights Object is being Moved, then it marks the portion being Moved as unusable.

3. The DRM Agent generates a ROAP-MoveDeviceRORequest message which includes one or more <rightsInfo> elements. Generation of <rightsInfo> element (of sceroap:RightsInfo type) conforms to section 7.1. If the RO included in the <rightsInfo> element is created by an RI, the DRM Agent MUST ensure that the RI (as peer entity of recipient of MoveDeviceRORequest message) is the same RI which is indicated in the <signature> element in the <rightInfo> element. If the RO included in the <rightsInfo> element is created by an LRM, the DRM Agent MUST ensure that the RI (as peer entity of recipient of MoveDeviceRORequest message) is one of the RIs that is indicated within the RO as being eligible to provide Move service.

4. If there was a preceding trigger, the DRM Agent sends the request message using the roapURL in the trigger message. Else, the DRM Agent sends the request message to the riURL which is stored in the RI Context.

If any error occurred during sending the request message, the DRM Agent MAY resend the request message. When resending the request message, the DRM Agent SHALL use same nonce with previous request message and use current DRM Time as <time> element. How many times the DRM Agent retries is left to implementation.

9.1.2 Processing MoveDeviceRORequest

When an RI receives a MoveDeviceRORequest message, the RI MUST process the request message as follows:

1. it checks if it has valid Device Context with the Device sending the request message by checking the value of <reqID> element of the ROAP-MoveDeviceRORequest message. If the Device Context is unavailable or invalid e.g. expired, the RI MUST respond with NotRegistered error and abort the process.

2. it verifies the <signature> element in the request message. The signature verification conforms to [DRM-DRM-v2.1]. If the verification is not successful, the RI MUST respond with appropriate error (i.e. SignatureError, NoCertificateChain, InvalidCertificateChain or TrustedRootCertificateNotPresent) and abort the process.

3. it checks the <nonce> element in the request message according to section 15.

4. it checks the value of <time> element in the request message. Processing of the value of <time> element conforms to [DRM-DRM-v2.1]. If the DRM Agent has invalid DRM Time, the RI MUST respond with RequesterTimeError error and abort the process.

5. it verifies each <rightsInfo> element in the request message (see section 7.1.2). Additionally it MUST check that the <rights> element in the <rightsInfo> element has a <move> permission that does not preclude Moving Device ROs via the RI (i.e. having no <system> constraint on the <move> permission or having a <system> constraint which identifies Move Device RO via RI protocol on the <move> permission). If it does not, the RI MUST respond with MovePermissionNotPresent error and abort the process.
6. if all above steps were successful, it responds with a MoveDeviceROResponse that contains the <status> element that has “Success” value.
7. it generates ROs cryptographically bound to the Recipient Device, based on the received <rights> element and their corresponding State Information.
When the RI generates the ROs for the recipient Device, the RI SHALL set the value of stateful constraint in the <rights> element to the value given by the corresponding <stateInfo> element in the request message. If the <rights> element has “count” constraint under “move” permission, the RI SHALL decrease the value of the <o-dd:count> element under “move” permission by 1. The RI SHALL use new RO Encryption Key to encrypt Content Encryption Key constructing the <KeyInfo> element (under <asset> element). The RI SHALL NOT put into the new RO the <moveIndication> element if one was received in the request. (Note: if the original issuer of the RO is an LRM and RO has a LRM signature, then the RO in the request message SHALL contain the <moveIndication> element. If the original issuer of the RO is the RI, then the RO in the request message SHALL NOT contain the <moveIndication> element.) After that, the RI MUST add a <signature> element which contains signature value over the <rights> element.

8. it conducts a typical 1-pass or 2-pass RO acquisition protocol or 4-pass confirmed RO acquisition protocol as per section 8.1 to issue generated ROs to the Recipient Device. In case of 2-pass RO acquisition protocol or 4-pass confirmed RO acquisition protocol, the RI sends an ROAP trigger to the recipient device in order to instruct the recipient device to download the Rights Object generated by RI which is based on the one previously transferred from the source device.
How the RI handles for the case that RI fails to issue the Rights Objects to the Recipient Device is beyond the scope of this specification.
9.1.3 Processing MoveDeviceROResponse

When a DRM Agent receives a ROAP-MoveDeviceROResponse message, the DRM Agent MUST process the response message as follows:

1. it checks if <reqID>, <resID>, <nonce> elements in the response message are same as the preceding request message. If any of these does not match, it terminates the Move Device RO protocol.

2. it verifies <signature> element in the response message. If the verification is failed, it terminates the ROAP-MoveDeviceRO protocol.

3. it checks <status> element in the response message and process as follows:

a. If the status in the response message is “Success”, the DRM Agent MUST:

· In case of Move of full Rights, remove the corresponding ROs and (and their State Information if present) which were identified in the request message.

· In case of Move of partial Rights, update their State Information by amount of transferred rights. E.g. if 3 counts remained before starting the ROAP-MoveDeviceRO protocol and 1 count was transferred to RI, then the DRM Agent decrements the State Information to be 2 counts.

· If the Post Response URL extension is present, the DRM Agent MUST send an HTTP GET request to the URL specified in the value of the <prURL> element of this extension at the first available opportunity. If the request fails with error code 404 Not Found [RFC2616], the Device SHOULD NOT make further requests to the URL. If the request fails with some other error, the Device MAY retry the request at a later time.
b. If the status in the response message is not “Success”, the DRM Agent MUST mark the corresponding ROs as usable and terminate the ROAP-MoveDeviceRO protocol.

13.1.1 Distributing KMAC and KREK under an RI Public Key
This section applies when encrypting RO Encryption Key and MAC Key for the Move Device RO via RI protocol or the RO Upgrade protocol.

KREK ("Rights Object Encryption Key") is the 128-bit wrapping key for the content-encryption key KCEK in Rights Objects. In the Move Device RO and RO Upgrade protocols, the KREK transferred in the <encKey> element of <rightsInfo> MUST be the same as the one from the original Rights Object. KMAC is a 128-bit long key generated randomly by the sender and used for key confirmation of the message carrying KREK.

The asymmetric encryption scheme RSAES-KEM-KWS shall be used with the AES-WRAP symmetric-key wrapping scheme to securely transmit KMAC and KREK to a recipient RI using the RI's RSA public key. An independent random value Z shall be chosen for each encryption operation. For the AES-WRAP scheme, KMAC and KREK are concatenated to form K, i.e.:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

C2 = AES-WRAP(KEK, KMAC | KREK)

C1 = I2OSP(RSA.ENCRYPT(PubKeyRI, Z), mLen)

C = C1 | C2
where kekLen shall be set to 16 (128 bits) and mLen is the length of the modulus of the RI’s RSA public key in octets. In this way, AES-WRAP is used to wrap 256 bits of key data (KMAC | KREK) with a 128-bit key-encryption key (KEK).

After receiving C, the RI splits it into C1 and C2 and decrypts C1 using its private key (consisting of a private exponent d and the modulus m), yielding Z:

C1 | C2 = C

c1 = OS2IP(C1, mLen)

Z = RSA.DECRYPT(PrivKeyRI, c1) = c1d mod m
where OS2IP converts an octet string to a nonnegative integer and is defined in [PKCS-1].

Using Z, the RI can derive KEK, and from KEK unwrap C2 to yield KMAC and KREK.:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

KMAC | KREK = AES-UNWRAP(KEK, C2)

The following URI shall be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsaes-kem-kdf2-kw-aes128
13.1.2 Transporting KMAC and one or more Protected KREK under a RI Public Key

This section applies to the Move <userDomain>-constrained RO via RI protocol.
KREK ("Rights Object Encryption Key") is the wrapping key for the content-encryption key KCEK in Rights Objects. To prevent the RI from getting knowledge of KREK when Moving a <userDomain>-constrained RO via the RI, KREK is protected by using the User Domain Key (UDK) before transferred to the RI.
KMAC is a 128-bit long key generated randomly by the Source Device and used for key confirmation of the message carrying one or more protected KREK.
Let Hash16 denote the first 16 bytes of the SHA-1 hash of the <moveIndication> element. KREK is first XORed with Hash16 and the result then wrapped with the UDK using the AES-WRAP symmetric wrapping scheme [AES-WRAP]. Let PREK denote the protected KREK:
PREK = AES-WRAP(UDK, KREK XOR Hash16)
The asymmetric encryption scheme RSAES-KEM-KWS SHALL be used with the AES-WRAP symmetric-key wrapping scheme to securely transmit KMAC and one or more PREK to a recipient RI using the RI's RSA public key. An independent random value Z SHALL be chosen for each encryption operation. For the AES-WRAP scheme, KMAC and one or more PREK are concatenated to form K, i.e.:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

C2 = AES-WRAP(KEK, KMAC | PREK1 | … | PREKn) (n is the number of ROs being Moved, the PREKs are concatenated in the same order as the corresponding <userDomainConstrainedROInfo> elements appear in the request)
C1 = I2OSP(RSA.ENCRYPT(PubKeyRI, Z), mLen)

C = C1 | C2
where kekLen SHALL be set to 16 (128 bits) and mLen is the length of the modulus of the RI’s RSA public key in octets.
After receiving C, the RI splits it into C1 and C2 and decrypts C1 using its private key (consisting of a private exponent d and the modulus m), yielding Z:

C1 | C2 = C

c1 = OS2IP(C1, mLen)

Z = RSA.DECRYPT(PrivKeyRI, c1) = c1d mod m
where OS2IP converts an octet string to a nonnegative integer and is defined in [PKCS-1].

Using Z, the RI can derive KEK, and from KEK unwrap C2 to yield KMAC and PREK1, …, PREKn.
KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

KMAC | PREK1 | … | PREKn = AES-UNWRAP(KEK, C2)

The following URI SHALL be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsaes-kem-kdf2-kw-aes128
When creating corresponding RO for the recipient Device, the RI SHALL use PREK as the RO Encryption Key to form the <encKey> element of <roPayload> in subsequent RO Acquisition protocol. Note that although PREK (as an AES-WRAP output) is 192 bits, rather than 128 bits as is the (randomly generated) KREK that is used to form the <encKey> element in [DRM-DRM-v2.1], this does not cause a backwards-compatibility problem, in that recipient Devices relative to the Move <userDomain>-constrained RO via RI protocol are SCE DRM Agents.
The recipient Device SHALL check whether the ID of the RI that issued the RO is present in the <moveIndication> element. If not the Device MUST reject the RO.

The recipient Device uses the relevant UDK to unwrap PREK. If the unwrapping fails the recipient Device MUST reject the RO. It then calculates Hash16 using the <moveIndication> element to recover KREK.

15. Replay Cache Management

This section describes how a RI manages replay cache to prevent replay attack from malicious third party and to handle retry of request message from Source Device. The DRM Agent and RI MUST also support Replay Cache management mechanism defined in [DRM-DRM-v2.1].

When a RI receives a request message for Move Device RO via RI protocol or Move <userDomain>-constrained RO protocol, it SHALL check the <reqID> and the <nonce> element in the request message as follows:

· If the <reqID> element and <nonce> element in the request message matches with one of replay cache entry, the RI SHALL check the <time> element in the request message as follows:
· If the <time> element in the request message matches with a <time> in the replay cache entry, the RI SHALL ignore the request message.
· Else, the RI SHALL generate a response message which contains parameters from response information in the matching replay cache entry, and send the generated response message, and then abort the process. The RI SHALL NOT regenerate RO for Recipient Device nor send RO to the Recipient Device..

· Else, the RI SHALL create one replay cache entry which is at least composed of <reqID>, <nonce> and <time> which are copied from the request message, and continue to process the request message according to processing rules of each specific protocol (see section 9.1.2 and 9.2.2). During the processing, whenever the RI generates the response message, the RI SHALL store a response information additionally into the created replay cache entrywhere the response information contains status, errorMessage, errorRedirectURL attributes and any relevant associated data in the response message.

It is strongly RECOMMENDED that the RI does not remove the replay cache entry until when the RI deems that the replay cache entry is old enough so that the source Device will no longer retry with the same nonce. In any case, the RI MUST keep the replay cache entry until the time when the RI would reject the request based on expiration, where the validity time window is RI implementation specific.
Change 2: Correct references to A2A transaction/operations. It appears that mention of the Share RO and Lend RO operations had been inadvertently omitted here, since at the time of writing of section 11.2 of the DRM TS, it had not yet been established if the (recipient) DRM Agent actually installed the RO in the case of Share and Lend – Since the A2A TS now specifically indicates that installation does take place, it seems that the changes suggested herein below are appropriate and necessary. This is true, in particular, because neither an encrypted KMAC (in an <encKey> element) nor a <mac> element of a roap:ProtectedRO is transferred within A2A as part of the Rights Object Container so that the check in section 10.3.1.3 of [DRM-DRM-v2.1] cannot be performed. Note that this does NOT preclude an RO installed as a result of A2A from later being Moved via an RI, since in section 13.1.1 and 13.1.2 of the SCE DRM TS, KMAC is (randomly) generated by the sender/Source Device.
11.2 RO with <party> element

When installing an RO which was not received via a Move RO transaction or Copy RO operation or Share RO operation or Lend RO operation (all of which are described in [SCE-A2A]), the DRM Agent MUST follow the procedures described in [DRM-DRM-v2.1] section 10.3.1 and MUST perform the following checks before installation:

1. If the <agreement> element contains a <party> element, in which the value of an <uid> element in the <context> element has the form "device:x" (without the quotes), the DRM Agent MUST verify that the value of x equals the base64 encoded SHA-1 hash over the concatenation of the ROID and the DRM Agent's Device ID.

2. If the <agreement> element contains a <party> element, in which the value in an <uid> element in the <context> element has the form "dom:x:y" (without the quotes):

a. The DRM Agent MUST verify that the value of x equals the RI ID in the RO.

b. The DRM Agent MUST verify that the value of y equals the SHA-1 hash over the concatenation of the ROID and the Domain ID of the Domain to which the RO is bound.

3. If the <agreement> element contains a <party> element, in which the value in an <uid> element in the <context> element has the form "udom:x:y" (without the quotes):

a. The DRM Agent MUST verify that the value of x equals the DEA ID in the RO.

b. The DRM Agent MUST verify that the value of y equals the SHA-1 hash over the concatenation of the ROID and the User Domain ID of the User Domain to which the RO is bound.

4. If the <agreement> element contains a <party> element with a <date> element, the DRM Agent MUST verify that the value of the <fixed> element in this <date> element equals the value of the <timeStamp> element in the <ro> element.

If check 2 or check 3 failed, the DRM Agent MAY try to join the Domain and perform the check again.

The DRM Agent MUST NOT install the RO if any of the four checks failed.
Change 3: Correct protocol references in section 14.1 and section 5.3.1 of the SCE DRM TS. The original text misses the fact that a stateless RO with a <move> permission can, in particular, also be acquired through an A2A Copy RO operation. Also, a v2.x DRM Agent cannot apply new mechanisms. The SCE A2A TS refers to the A2A protocol (title of section 6), rather than multiple such protocols. It uses the term transaction or operation to refer to particular types of instances of running the A2A protocol (in section 9).
14. Security Considerations

14.1 Replay Protection of Stateless Rights Object (Normative)

The replay cache specified in [DRM-DRM-v2.1] is only applied to stateful ROs. The same replay protection mechanism SHALL be applied to stateless ROs with <move> permission if acquired by an SCE DRM Agent through a method other than 2-pass RO Acquisition or an A2A protocol transaction or operation [SCE-A2A].
5.3 User Domain RO Acquisition

SCE Devices and v2.x Devices can acquire User Domain ROs. An SCE Device is distinguished from a v2.x Device by the inclusion of the oma-kp-sceDrmAgent key purpose in the Device’s certificate [SCE-A2A].

5.3.1 By SCE Devices
SCE Devices can acquire User Domain ROs from either an RI or LRM (with the oma-kp-localRightsManagerDomain key purpose). The acquisition can be by any mechanism allowed by [DRM-DRM-v2.1]. However, if the User Domain RO has the <userDomain> constraint ([SCE-REL]), then the User Domain RO MUST be acquired by the Device initially targeted by the RI or LRM via ROAP and the extensions that are defined in section 8.1. An SCE Device can be targeted by another SCE Device for delivery of a <userDomain>-constrained RO either via an A2A protocol transaction or operation [SCE-A2A], or via the Move <userDomain>-constrained RO via RI protocol defined in section 8.3. In the latter case, the RI delivers the resulting <userDomain>-constrained RO using a ROAP RO response with the UserDomainConstrainedROMoved extension defined in section 8.1 (where the recipient SCE Device need not be a member of the User Domain in order to acquire the RO).
User Domain ROs without the <userDomain> constraint can be acquired by an SCE Device whether or not the Device is a member of the User Domain.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20090101-I]

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 12 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20090101-I]

