[image: image16.wmf]
OMA-AD_DLOTA-V2_0-20050202-D
Page 30 V(30)

	Download Over the Air Architecture

Draft Version 2.0 – 02 February 2005

	

	Open Mobile Alliance

OMA-AD_DLOTA-V2_0-20050202-D

	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Introduction

1.1
Use Cases
5
1.2
Requirements
6
1.3
Planned Phases
6
2.
References
7
2.1
Normative References
7
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
8
4.
Architecture Model
9
4.1
Dependencies
9
4.2
Architectural Diagram
9
4.3
Funtional Components and Interfaces
9

Flows
10
4.4
10
5.
DLOTAv2.0 Delivery Methods
11
6.
Example Flow of Use Cases
12
6.1
Basic Download
12
6.2
Combined Delivery
13
6.3
Updating Media Objects
14
6.4
Removing Media Objects
15
6.5
Download from Multiple Servers
15
6.6
Download of Multiple Objects
17
6.7
Download of Compound Objects
19
6.8
Download of chuncked media objects
21
6.9
Control of User Confirmation Prompt
22
6.10
Support for Resumable Download Session
23
6.11
Authentication of Trusted Entity and Content Integrity Check
23
6.12
Pre-downloading of Media Objects
23
6.13
Server Initiated Automatic Download
25
6.14
Download Timing Reservation
25
6.15
Progressive Download
27
6.16
Download OTA over Broadcast Protocols
28
Appendix A
Change History
30
A.1
Approved Version History
30
A.2
Draft/Candidate Version 2.0 History
30

Figures
9Figure 1: Functional architecture

12Figure 2: Basic download

13Figure 3: Basic download

14Figure 4: Updating Media Objects

15Figure 5: Removing Media Objects

16Figure 6: Download of Multiple Objects

18Figure 7: Download from Multiple Servers

19Figure 8: Download of Compound Objects

20Figure 9: Download of Chunked Media Objects

22Figure 10: Control of User Confirmation Prompt

23Figure 11: Pre-downloading of media objects

25Figure 12: Download Timing Reservation

26Figure 13: Progressive Download

28Figure 14: Download OTA over Broadcast Protocols

1. Introduction
OMA Download Over-the-Air (DLOTA) provides a flexible mechanis for downloading media objects of any type and size from a network. A typical media object targeted by OMA DLOTA is downloaded and stored in the device, for example, in order to personalise the device or enhance its functionality. Examples of such media objects are ring-tones, background images, music/video files and applications.

Concering the download of applications, DLOTA version 2.0 improves the previous version [DLOTAv1.0] by removing the contrains on the download of Java™ MIDlets [MIDPOTA] and thus specifying a truly execution environment neutral protocol.

OMA DLOTA version 2.0 is also acgnoisic of the proctection mechanism, i.e. OMA DRM [OMADRM2.0] or others, used to protect the media object.

Use Cases
While OMA DLOTA version 1.0 [DLOTAv1.0] provides a general framework for downloading media objects, OMA DLOTA version 2.0 extends OMA DLOTA version 1.0 to support following new use cases.

· Functions that are already provided by OMA DLOTA version 1.0:

1. Basic download
2. Combined delivery
· New functions that extends OMA DLOTA version 1.0:

3. Updating and removing media objects

4. Download from multiple servers

5. Download of compound objects and multiple objects

6. Download of chuncked media objects

7. Control of user confirmation prompt

8. Support for resumable download session

9. Authentication of trusted entity and content integrity check
· New major functions that satisfy market’s requirements:

10. Pre-downloading of media objects
11. Download timing reservation
12. (Server initiated automatic download)
Editor’s Note: Can the Server initiated automatic download use case be subset of the download timing reservation use case?
13. Progressive download
14. Download OTA over broadcast protocols
Details of these new use cases and the requirements are specified in the OMA DLOTA version 2.0 requirements specification [DLREQ].

Requirements
Requirements that satisfy the use cases listed above are defined in the OMA DLOTA version 2.0 requirements specification [DLREQ].
Planned Phases
This architecture specification targets phase 2.0 of OMA DLOTA.

OMA DLOTA version 1.0 provides a mechanism for user-initiated download of content, such as ringtones, images, and applications. While OMA DLOTA provides much of the functionality needed to provide for a more reliable download solution than basic HTTP, other protocols exist in the mobile industries that provide functionality beyond that of OMA DLOTA.

OMA DLOTA version 2.0 is an evolution of the OMA DLOTA version 1.0 protocol. The purpose of OMA DLOTA version 2.0 is to add functionality that was missing from the previous version of the protocol and at the same time to guarantee backward compatibility.
2. References

2.1 Normative References

No normative references.

2.2 Informative References
Editor’s Note: Followings are needed to be sorted in alphabetical order.

	[DLREQ]
	To be added

	[MIDPOTA]
	To be added

	[DLOTAv1.0]
	To be added

	[OMADRM1.0]
	To be added

	[OMADRM2.0]
	To be added

	[HTTP]
	To be added

	[MBMS]
	To be added

3. Terminology and Conventions

3.1 Conventions
This is an informative document, which is not intended to provide testable requirements to implementations.

3.2 Definitions
Editor’s Note: Followings are needed to be sorted in alphabetical order.

	Download Agent
	A user agent in the device responsible for downloading a media object described by a download descriptor.

	Download Descriptor
	Metadata about a media object and instructions to the download agent for how to download it.

	Download Server
	A Web server hosting media objects available for download using the DLOTA protocol

	Media Object
	A resource on a Web server that can be downloaded.

	Content Handler
	An entity in the mobile device responsible for the processing of a particular media type. The content handler typically handles issues related to installation of content, in addition to execution of content. The actual processing of retrieved content is outside the scope of this specification.

	
	

3.3 Abbreviations
Editor’s Note: Followings are needed to be sorted in alphabetical order.

	DRM
	Digital Rights Management

	OTA
	Over The Air

	OMA
	Open Mobile Alliance

	DLOTA
	Download Over The Air

	MIDP
	Mobile Information Device Profile

	MBMS
	Multimedia Broadcast Multicast Service

	
	

	
	

4. Architecture Model

1.
10.
·
·
11.

5. Dependencies
6. Editor’s Note: DLOTAv2.0 may have dependency on following enabler releases and specifications.
 - HTTP or WSP
 - WAP TLS or WTLS
 - MBMS (or the other broadcast bearer)
 - OMA DRM
 - Security Algorithms (e.g. RSA, SHA-1, etc.)
 - XML specs (e.g. XML Schema, XML Signature, etc.)
 - FUMO (Firmware Update Management Object) ?
7. Architectural Diagram
8. Figure 1 shows functional architecture of OMA DLOTAv2.0.

[image: image1]
9. Figure 1: Functional architecture
10. Funtional Components and Interfaces
This section defines actors and entities of the OMA DLOTA system. Since some entities are logical, two or more entities may be accommodated in one equipment in fact.
· User (End User)

User or End User is the human user of media objects.
· Download Agent (Download User Agent)

Download Agent or Download User Agent is a user agent in the device responsible for downloading a media object described by a Download Descriptor. It is responsible for the download transaction from the client perspective. It is triggered by the reception or activation of a Download Descriptor.
· Content Provider

Content Provider is the entity making content available to the Download Agent.
· Presentation Server

Presentation Server is a Web server presenting a download service to the user. It is one of the possible discovery mechanisms. The client device may browse a Web or WAP page at the presentation server and be redirected to the Download Server for the OMA Download transaction.
· Download Server

Download Server is a Web server hosting media objects available for download. It is responsible for the download transaction from the server perspective. It handles download session management including actions triggered by the installation status report.
· Status Report Server

A Web server accepting status reports from the download agent.
Flows

An example of the communication procedure between each entity which constitutes the functional architecture (Figure 1) is explained below. REF _Ref82956494
1) Discovery Document

A User discovers a media object on the network by using a discovery application. For example, a picture editor may discover pictures, a melody composer may discover melodies, and an application manager may discover applications (e.g. games) on dedicated Web sites; an email message may contain Web addresses to media objects available for downloading, a Web browser may be used to discover the media object over the a network. These types of applications are collectively referred to as a discovery application.
2) Negotiation

The Download Agent downloads a descriptor file of the media object from the Download Server called the Download Descriptor [DD]. The DD contains metadata about the media object it refers to. The DD also includes instructions to the Download Agent how to download the media object. The Download Descriptor can be located on either the Presentation Server or the Download Server.
3) Downloading Media Object

The Download Agent downloads the media object from the Download Server according to the information provided in the DD. Example of these information are the URI where to download the media object from and the protocol to be used, e.g. HTTP.
4) Notification

The Download Agent may be required to post notifications to the Notification Server. The notifications include information about the outcome of the download transaction.

11. DLOTAv2.0 Delivery Methods
12. Since DLOTA is an application layer protocol and it is bearer independent, the Download Descriptor and the Media Object are delivered to the Download Agent by using any underlying transport protocol such as HTTP [HTTP] and WSP [WSP]. The Download Descriptor and the Media Object can also be delivered by using a push protocol such as MMS, WAP Push [WAP Push] and MBMS [MBMS]. Therefore; there are four different scenarios where the Download Descriptor and the Media Object are provided to the Download Agent (Table 1).
13. Table 1: DLOTAv2.0 Delivery Methods
	
	Media Object delivery method

	
	Pull
	Push

	DD delivery method
	Pull
	Case 1: Pull-Pull Scenario
	Case 2: Pull-Push Scenario

	
	Push
	Case 3: Push-Pull Scenario
	Case 4: Push-Push Scenario

1. Case1: Pull-Pull Scenario
14. This is the most typical scenario where the Download Descriptor and the Media Object are delivered by using a pull method such as HTTP and WSP.
2. Case2: Pull-Push Scenario
15. The Download Descriptor is delivered by using a pull method such as HTTP and WSP, and then the Media Object is delivered by using a push method such as WAP Push and MBMS. In MBMS, Media Objects are delivered over a broadcast bearer. This scenario is cost effective if the size of the Media Object is large and only limited bandwidth is available.
3. Case3: Push-Pull Scenario
16. The Download Descriptor is pushed to the Download Descriptor, and then the Media Object is delivered by using a pull method such as HTTP and WSP. This scenario is used for the situation where the content provider wants to notifiy available media objects to the user, and then the user decides to download the media object by using a pull method to download it.
4. Case4: Push-Push Scenario
17. The Download Descriptor and the Media Object are pushed to the Download Agent. This scenario is offen used if the network bearer only has a unidirectional bearer. MBMS is offen used over the unidirectional bearer.
18. In case of using push, it might be possible to enable unwanted content to be downloaded and installed into a target terminal. For example, a malicious back-end entity may push a Download Descriptor or hide a Download Descriptor under a hidden hyper-link, thus to trigger the download of a large (and/or malicious) media object to the user terminal. Any solutions that resolve such security issues should be taken into account.
19. Example Flow of Use Cases
20. In this section, example flows of each use case are explained. Details of the use cases and the requirements are specified in the OMA DLOTA version 2.0 requirements specification [DLREQ].
20.1 Basic Download

20.2 This use case describes the basic functionality provided in OMA DLOTA version 1.0 [DLOTAv1.0]. The user gets a Download Descriptor, downloads a media object, and the Download Server is notified when the download is complete.

20.3 Figure 2 shows an example of the download process of the basic download by using a pull mehtod.

[image: image3]
Figure 2: Basic download
1. While using the Discovery Application, the user is typically presented with a reference to the Download Descriptor. The reference may be on a Web page, or inside an email or MMS message, or stored in memory or in an accessory attached to the phone. How to find the URI to the Download Descriptor is outside the scope of DLOTA.
2. The Download Agent selects a URI that points to the Download Descriptor in the Download Server.
3. The Download Descriptor is delivered to the Download Agent.The Download Descriptor includes a URI that refers to the Media Object.

4. The Download Agent analyses the Download Descriptor and checks the capability of device (e.g. available memory size, content type of the Media Object, etc.).

5. The Download Agent notifys the user whether to initiate the download transaction or not with the information included in the Download Descriptor.

6. The User decides to initiate the download transaction.

7. The Download Agent selects the URI that refers to the Media Objects and the Download Agent starts the download transaction.
8. The Download Agent retrieves the Media Object from the Download Server.
9. The Download Agent installs the Media Object and makes it available to the User.

10. The Download Agent reports the status of the download transaction to the Download Server.
20.4 Combined Delivery
Combined delivery is a delivery method where a Media Object and a Download Descriptor are downloaded at the same time. Because the Media Object and the Download Descriptor are both delivered together, the user is unable to initiate the download based on information in the Download Descriptor. However, this use case does support the installation notification.
Figure 3 shows an example of the download process of the combined delivery by using a pull mehtod.

[image: image4]
Figure 3: Basic download

1. While using the Discovery Application, the user is typically presented with a reference to the Download Descriptor and the Media Object. The reference may be on a Web page, or inside an email or MMS message, or stored in memory or in an accessory attached to the phone. How to find the URI to the Download Descriptor and the Media Object is outside the scope of DLOTA.
2. The Download Agent selects a URI that points to a multipart entity composed of the Download Descriptor and the Media Object.

3. The multipart entity is delivered to the Download Agent.
4. The Download Agent analyses the Download Descriptor and checks the capability of the device (e.g. available memory size, content type of the Media Object, etc.).

5. The Download Agent notifys the user whether to consume the Media Object or not with the information included in the Download Descriptor.

6. The User decides to consume the Media Object.

7. The Download Agent installs the Media Object and makes it available to the User.

8. The Download Agent reports the status of the download transaction to the Download Server.
8. Updating Media Objects
This use case describes updating a Media Object that is already resident on the device.
Figure 4 shows an example of the download process of the updating Media Objects use case by using a pull mehtod.

[image: image5]
Figure 4: Updating Media Objects
1. The Download Agent downloads the Download Descriptor from the Download Server. The download transaction may be triggered by the User or by the timer set to the Download Agent.
2. The Download Descriptor is delivered to the Download Agent. The Download Descriptor includes the version information of the new Media Object.

3. The Download Agent analyses the Download Descriptor and checks if the new Media Object is available or not. The Download Agent also analyses the capability of device (e.g. available memory size, content type of the Media Object, etc.).

4. The Download Agent notifys the user whether to initiate the download transaction or not with the information included in the Download Descriptor.

5. The User decides to initiate the download transaction.

6. The Download Agent selects the URI that refers to the Media Objects and the Download Agent starts the download transaction.

7. The Download Agent retrieves the Media Object from the Download Server.

8. The Download Agent replaces the old Media Object with the new Media Object and makes it available to the User.

9. The Download Agent reports the status of the download transaction to the Download Server.
9. Removing Media Objects
This use case describes removing a media object that was previously downloaded.
Figure 5 shows an example of the process of the removing media objects use case.

[image: image6]
Figure 5: Removing Media Objects
1. The Content Handler removes a media object (e.g. by the instruction from the User).

2. The Media Object is “uninstalled” on the device (e.g. removed from the filesystem).

3. The Download Agent notifies the Download Server that the removal was a success.

20.5 Download from Multiple Servers

The User chooses content from Content Portal. The Download Agent downloads a Download Descriptor from Content Portal, where the Download Descriptor may include multiple sources for content object(s). Multiple copies of the object(s) may be located on more than one Download Server. The Download Agent uses information in the Download Descriptor to fetch the object(s) from multiple Download Servers simultaneously. The Download Agent reconstructs content object(s) as soon as the Download Agent receives data from a subset of the Download Servers.

Figure 7 shows an example of the download from multiple servers use case by using a pull method.

[image: image7]
Figure 7: Download from Multiple Servers

1. While using the Discovery Application, the user is typically presented with a reference to the Download Descriptor. The reference may be on a Web page, or inside an email or MMS message, or stored in memory or in an accessory attached to the phone. How to find the URI to the Download Descriptor is outside the scope of DLOTA.

2. The Download Agent selects a URI that points to the Download Descriptor in the Download Server.
3. The Download Descriptor is delivered to the Download Agent.The Download Descriptor may include multiple URIs for the Media Object.

4. The Download Agent analyses the Download Descriptor and checks the capability of device (e.g. available memory size, content type of the Media Object, etc.).

5. The Download Agent notifys the user whether to initiate the download transaction or not with the information included in the Download Descriptor.

6. The User decides to initiate the download transaction.

7. and 8. The Download Agent uses information in the Download Descriptor to fetch the Media Object from multiple Download Servers simultaneously.

9. and 10. The Download Agent retrieves the media object from the Download Server. As shown by the break line, the Download Agent does not need to wait the reception of the second Media Object.

11. The Download Agent installs the media object as soon as the Download Agent receives data from a subset of the Download Server and makes it available to the User.

12. The Download Agent reports the status of the download transaction to the Download Server.

10. Download of Multiple Objects
The function of download of multiple objects provides a flexible solution that allows the download of multiple objects from different sources in the same download OTA session and at the same time to guarantee a good end-user experience. Content can be composed by several distinct media objects that need to be downloaded from different sources. This is regarded as a “shopping-cart use case”, where a user selects many pieces of content to be downloaded.
Figure 6 shows an example of the download of multiple objects use case by using a pull method.

[image: image8]
Figure 6: Download of Multiple Objects
1. While using the Discovery Application, the user is typically presented with a reference to the Download Descriptors. The reference may be on a Web page, or inside an email or MMS message, or stored in memory or in an accessory attached to the phone. How to find the URI to the Download Descriptors is outside the scope of DLOTA.

2. The Download Agent selects a URI that points to the Download Descriptors in the Download Server.
3. The Download Descriptors are delivered to the Download Agent. Each Download Descriptor includes a URI. Each URI points to the Media Object.
4. The Download Agent analyses the Download Descriptors and checks the capability of device (e.g. available memory size, content type of the Media Object, etc.).

5. The Download Agent notifys the user whether to initiate the download transaction or not with the information included in the Download Descriptors.

6. The User decides to initiate the download transactions.
7. The Download Agent selects the URI that refers to the Media Object (1) and starts the download transaction.
8. The Download Agent retrieves the Media Object (1) from the Download Server.
9. The Download Agent installs the Media Object (1) and makes them available to the User.

10. The Download Agent reports the status of the download transaction of the Media Object (1) to the Download Server.
11. The Download Agent selects the URI that refers to the Media Object (2) and starts the download transaction.

12. The Download Agent retrieves the Media Object (2) from the Download Server.

13. The Download Agent installs the Media Object (2) and makes them available to the User.

14. The Download Agent reports the status of the download transaction of the Media Object (2) to the Download Server.
20.6 Download of Compound Objects

The function of download of compound objects provides flexible solution that allows the download of multiple objects from different sources in the same download OTA session and at the same time to guarantee a good end-user experience. Content can be composed by several distinct media objects that need to be downloaded from different sources.
Figure 8 shows an example of the download of compound objects use case by using a pull method.

[image: image9]
Figure 8: Download of Compound Objects

1. While using the Discovery Application, the user is typically presented with a reference to the Download Descriptor. The reference may be on a Web page, or inside an email or MMS message, or stored in memory or in an accessory attached to the phone. How to find the URI to the Download Descriptor is outside the scope of DLOTA.

2. The Download Agent selects a URI that points to the Download Descriptor in the Download Server.
3. The Download Descriptor is delivered to the Download Agent.The Download Descriptor includes URIs. In this example, the Download Descriptor includes two URIs. One of which is a music data and the other is its JPEG image data of the CD jacket.
4. The Download Agent analyses the Download Descriptor and checks the capability of device (e.g. available memory size, content type of the Media Object, etc.).

5. The Download Agent notifys the user whether to initiate the download transaction or not with the information included in the Download Descriptor.

6. The User decides to initiate the download transaction.

7. and 9. The Download Agent selects the URIs that refer to media objects and starts the download transaction.

8. and 10. The Download Agent retrieves the compound objects from the Download Servers. In this example, the Download Agent downloads the music data from the Download Server B and the JPEG image from the Download Server C.
11. The Download Agent installs the compound objects and makes it available to the User.

12. The Download Agent reports the status of the download transaction to the Download Server.
20.7 Download of chuncked media objects
The download of chunked media objects use case provides downloading of large media objects (e.g. 1Mbytes～) that are divided into multiple chunks of data, in order to deal with a maximum transfer size that may be imposed by the underlying network.
Figure 9 shows an example of the download of chunked media objects use case by using a pull method.

[image: image10]
Figure 9: Download of Chunked Media Objects
1. While using the Discovery Application, the user is typically presented with a reference to the Download Descriptor. The reference may be on a Web page, or inside an email or MMS message, or stored in memory or in an accessory attached to the phone. How to find the URI to the Download Descriptor is outside the scope of DLOTA.

2. The Download Agent selects a URI that points to the Download Descriptor in the Download Server.
3. The Download Descriptor is delivered to the Download Agent.The Download Descriptor includes information of server’s desired size of the chunked Media Object.
4. The Download Agent analyses the Download Descriptor and checks the capability of device (e.g. available memory size, content type of the Media Object, etc.).

5. The Download Agent notifys the user whether to initiate the download transaction or not with the information included in the Download Descriptor.

6. The User decides to initiate the download transaction.

7. and 9. The Download Agent decides the chunked size, and starts the download transaction issueing several requests.
8. and 10. The Download Agent retrieves the chunked Media Object from the Download Server.

11. The Download Agent concatenates the Media Object from each chunked object and installs it. Then the Download Agent makes it available to the User.

12. The Download Agent reports the status of the download transaction to the Download Server.
11. Control of User Confirmation Prompt
In order to better support the use cases where the download of a media object occurs without the user being aware of it, the DLOTA 2.0 should support a mechanism to control the user confirmation prompt. Moreover, in a pull scenario, where the content is discovered and downloaded during a browsing session, the user confirmation prompt may represent an unnecessary step. In the push scenario, where the content provider pushes the download descriptor to a device, security issues must be considered. Removing the user confirmation prompt may allow malicious content providers to push malicious content to a target device, therefore a level of trust between the content provider and the user’s device must exist prior the download of a media object could occur without asking for the user’s confirmation.
Figure 10 shows an example of the control of user confirmation prompt use case by using a pull method.

[image: image11]
Figure 10: Control of User Confirmation Prompt
1. While using the Discovery Application, the user is typically presented with a reference to the Download Descriptor. The reference may be on a Web page, or inside an email or MMS message, or stored in memory or in an accessory attached to the phone. How to find the URI to the Download Descriptor is outside the scope of DLOTA.

2. The Download Agent selects a URI that points to the Download Descriptor in the Download Server.
3. The Download Descriptor is delivered to the Download Agent.The Download Descriptor includes a flag to disable user confirmation.
4. The Download Agent analyses the Download Descriptor and checks the capability of device (e.g. available memory size, content type of the Media Object, etc.).

5. The Download Agent selects the URI that refers to the Media Objects and starts the download transaction.

6. The Download Agent retrieves the Media Object from the Download Server.

7. The Download Agent installs the Media Object and makes it available to the User.
8. The Download Agent reports the status of the download transaction to the Download Server.
12. Support for Resumable Download Session
With the media objects becoming larger in size, the time needed to download them increase as well as it increases the probability for the OTA transaction to be interrupted at some point before completion. Temporary lack of coverage, lack of resources within the device or some other event may occur with the result of breaking the download. Therefore the DLOTA 2.0 should support a mechanism to pause and then to resume a download session.
13. Editor’s Note: Is there any messages that needs to be defined for DLOTAv2.0 to achieve the use case? The Editor’solicits inputs for this use case.
14. Authentication of Trusted Entity and Content Integrity Check
For some types of media objects, the Download Agent will need to authenticate that the media object is coming from a trusted Download Server. For instance, the media object being downloaded might be software that affects the functioning of the device, it might be an application that needs special access to device or user information such as the phonebook or calendar, or it might be static content that needs to be stored in a secure or access-controlled location. In all these cases where the device can trust the Download Server, the device behaviour may be subject to the permission that is specified by the Download Server.
15. Editor’s Note: Is there any messages that needs to be defined for DLOTAv2.0 to achieve the use case? The Editor’solicits inputs for this use case.
12. Pre-downloading of Media Objects
The Download Agent downloads a number of media objects for later use by using a network bearer that is economical and/or has an adequate bandwidth. Afterward, the User decides to consume some of the media objects that have already been downloaded to the device.

To let the Download Server know the media objects are correctly downloaded or not, the Download Agent may notify the Download Server completion of downloading. The Download Agent may also notify the Download Server what media objects are selected by the User and whether each of the selected media objects is installed correctly or not.

Figure 11 shows an example of the pre-downloading of media objects use case by using a pull method. In this example, the Download Agent downloads three media objects.

[image: image12]
Figure 11: Pre-downloading of media objects

1. While using the Discovery Application, the user is typically presented with a reference to the Download Descriptor. The reference may be on a Web page, or inside an email or MMS message, or stored in memory or in an accessory attached to the phone. How to find the URI to the Download Descriptor is outside the scope of DLOTA.

2. The Download Agent selects a number of URIs that points to the Download Descriptor in the Download Server.
3. The Download Descriptors are delivered to the Download Agent.Each Download Descriptor includes a URI that refers to the Media Object.

4. The Download Agent analyses the Download Descriptors and checks the capability of device (e.g. available memory size, content type of the Media Object, etc.).

5. The Download Agent selects the URIs that refer to the Media Objects and the Download Agent starts the download transactions. The download transaction may be executed either in serial or parallell.
6. The Download Agent retrieves the Media Objects from the Download Server.

7. The Download Agent may notify that the download transaction was successful.

8. The Download Agent notifys the user that there are available media objects residents on the device. This transaction may take place after a long time has passed from the completion of the download.

9. The User decides to consume the media object. In this example, the user decides to consume the Media Object A.

10. The Download Agent installs the Media Object and makes it available to the User. In this example, the Download Agent installs the Media Object (1).

11. The Download Agent reports the instllation of the Media Object to the Download Server.
20.8 Server Initiated Automatic Download

This use case describes DLOTA v2.0 automatic download. The Download Server pushes Download Descriptor to the Download Agent. When the Download Agent receives the Download Descriptor, it checks Download Descriptor and automatically downloads the Media Object. This use case may be used on contents subscription scenario.
Editor’s Note: This use case is close to the Download Timing Reservation use case except for the situation where the DD is pushed to the Download Agent. Can the Server initiated automatic download be subset of the download timing reservation use case?
20.9 Download Timing Reservation

Download timing reservation provides a flexible solution that enables users to make reservations for downloading of media objects and performs downloading automatically afterward.

Usually, the communication during early morning and late at night cost less on the Users because network traffic during these hours is typically lighter than that of daytime. Download reservation allows the Users and the Network operators to use network traffic effectively, and is beneficial for both.

Figure 12 shows an example of the download timing reservation use case by using a pull method.

[image: image13]
Figure 12: Download Timing Reservation

1. While using the Discovery Application, the user is typically presented with a reference to the Download Descriptor. The reference may be on a Web page, or inside an email or MMS message, or stored in memory or in an accessory attached to the phone. How to find the URI to the Download Descriptor is outside the scope of DLOTA.

2. The Download Agent selects a URI that points to the Download Descriptor in the Download Server.
3. The Download Descriptor is delivered to the Download Agent.The Download Descriptor contains a list of candidate time for automatic downloading.

4. The Download Agent analyses the Download Descriptor and checks the capability of device (e.g. available memory size, content type of the Media Object, etc.).

5. The Download Agent may ask the User the execution time for the automatic downloading.

6. The User selects the time for the automatic downloading.

7. The Download Agent set the timer.

8. The Download Agent selects the URI that references the Media Objects and starts download transaction when the time expires.

9. The Download Agent retrieves the Media Object from the Download Server.

10. The Download Agent installs the Media Object and makes it available to the User.

11. The Download Agent reports the status of the download transaction to the Download Server.
20.10 Progressive Download

In order to improve the user experience DLOTA 2.0 should support the reproduction of Media Objects when they are being still downloaded. The term "progressive download" is intended to describe this kind of functionality. If progressive download is allowed and supported by the device, the Download Agent can start to rendering the content while the download is in progress. The downloading process continues without any interruption and at the end, the Media Object remains complete in the Terminal, this is, the User can use it whenever he wants.
Figure 13 shows an example of the progressive download use case by using a pull method.

[image: image14]
Figure 13: Progressive Download

1. While using the Discovery Application, the user is typically presented with a reference to the Download Descriptor. The reference may be on a Web page, or inside an email or MMS message, or stored in memory or in an accessory attached to the phone. How to find the URI to the Download Descriptor is outside the scope of DLOTA.

2. The Download Agent selects a URI that points to the Download Descriptor in the Download Server.
3. The Download Descriptor is delivered to the Download Agent.The Download Descriptor includes a URI that references the Media Object. The Download Descriptor shows that the Media Object is a continuous media object (i.e. progressive downloable).

4. The Download Agent analyses the Download Descriptor and checks the capability of device (e.g. available memory size, content type of the Media Object, etc.).

5. The Download Agent notifys the user whether to initiate the download transaction or not with the information included in the Download Descriptor.

6. The User decides to initiate the download transaction.

7. The Download Agent selects the URI that references the Media Objects and starts download transaction.

8. The Download Agent retrieves a part of the Media Object from the Download Server.

9. The Download Agent temporally installs the part of the Media Object to make it available to the User.

10. The Download Agent continues to retrieve a part of the Media Object from the Download Server.

11. The Download Agent completes to install the part of the Media Object and makes it available to the User.

12. The Download Agent reports the status of the download transaction to the Download Server.

20.11 Download OTA over Broadcast Protocols

In this use case the download of a media object occurs through a broadcast bearer. The OMA DLOTA download descriptor (DD) is used to carry the necessary information for starting the broadcast session. This information can be carried within the DD itself or the DD can be used to download a session descriptor file. Regardless of the mechanism, the DLOTA session and the relative transaction outcome will be relative to the download of the media object itself and not of the DD or any other session descriptor.
Figure 14 shows an example of the download OTA over broadcast protocols. In this example, the download descriptor is provided by using a pull method, and the Media Object is provided by using a push method.

[image: image15]
Figure 14: Download OTA over Broadcast Protocols
1. While using the Discovery Application, the user is typically presented with a reference to the Download Descriptor. The reference may be on a Web page, or inside an email or MMS message, or stored in memory or in an accessory attached to the phone. How to find the URI to the Download Descriptor is outside the scope of DLOTA.

2. The Download Agent selects a URI that points to the Download Descriptor in the Download Server.
3. The Download Descriptor is delivered to the Download Agent.The Download Descriptor shows that the Media Object is delivered over broadcast protocols.

4. The Download Agent receives the Media Object thorough a broadcast protocol such as FLUTE. How to download the Media Object through a broadcast protocol is outside the scope of DLOTA version 2.0.

5. The Download Agent installs the Media Object and makes it available to the User.

6. The Download Agent reports the status of the download transaction to the Download Server.
Appendix A Change History

A.1 Approved Version History

	Reference
	Date
	Description

	OMA-Download-ARCH-V1_0-20040625-A
	25 Jun 2004
	Approved version 1.0

	
	
	

A.2 Draft/Candidate Version 2.0 History
	Document Identifier
	Date
	Sections
	Description

	OMA-DLOTA-ARCH-v2_0-20041007-D
	7 October 2004
	n/a
	First draft

	OMA-AD-DLOTA-V2_0-20050202-D
	2 Feburary 2005
	all
	Second draft (approved in Frankfurt)

	
	
	
	

� EMBED MS_ClipArt_Gallery.5 ���

Download Agent

User

Content Provider

Download Server

3) Downloading Media Object

4) Notification �(Download completion, Installation, Delation)

Presentaiton Server

1) Discovery Document �(XHTML, URL)

2) Negotiation �(Download Descriptor)

Content Strage

Status Report Server

6) Ok

5) User confirmation

DD

3) Response Download Descriptor

8) Response Media Object

1) Content discovery

DD

Download Server

4) Device capability checking

User

Download Agent

� EMBED MS_ClipArt_Gallery.5 ���

7) Request Media Object

10) Install-Notification

9) Instllation

7) Response New Media Object

2) Request Download Descriptor and Media Object

8) Instllation

9) Install-Notification

9) Instllation

10) Install-Notification

1) Request Download Descriptor

6) Ok

5) User confirmation

4) Device capability checking

3) Response Download Descriptor and Media Object

DD

1) Content discovery

Download Server

6) Request New Media Object

5) Initiate Update MO

4) Inform the User (New MO is available)

3) Analyze DD (Update is necessary or not)

2) Response Download Descriptor �(MO version)

2) Request Download Descriptor

DD

Old MO

Download Server

User

User

Download Agent

� EMBED MS_ClipArt_Gallery.5 ���

Download Agent

� EMBED MS_ClipArt_Gallery.5 ���

JPEG

10) Response Media Object

9) Request Media Object

Download Server C

2) Media Object removed

removed

3) Delete Notification

Download Server B

DD

1) Delete

8) Response Media Object

Download Server

Content�Handler

Download Agent

� EMBED MS_ClipArt_Gallery.5 ���

2) Request Download Descriptor

11) Instllation

12) Install-Notification

7) Request Media Object

6) Ok

5) User confirmation

4) Device capability checking

3) Response Download Descriptor

DD

1) Content discovery

Download Server A

User

Download Agent

� EMBED MS_ClipArt_Gallery.5 ���

1) Content discovery

10) Response Media Object (2)

Broadcast �session

8) Request Media Object (2)

Download Server B

9) Response Media Object (1)

2) Request Download Descriptor

11) Instllation

12) Install-Notification (1)

7) Request Media Object (1)

6) Ok

5) User confirmation

4) Device capability checking

3) Response Download Descriptor �(with multiple servers’ URIs)

DD

Download Server A

User

Download Agent

� EMBED MS_ClipArt_Gallery.5 ���

� EMBED MS_ClipArt_Gallery.5 ���

Download Agent

User

Download Server

1) Content discovery

DD

3) Response Download Descriptor �(User Confirmation Disabled)

4) Device capability checking

4) Download over broadcast protocol

2) Request Download Descriptor

5) Request Media Object

8) Install-Notification

7) Instllation

2) Request Download Descriptor

6) Response Media Object

5) Instllation

6) Install-Notification

3) Response Download Descriptor �(A list of candidate time)

DD

1) Content discovery

Download Server

User

Download Agent

� EMBED MS_ClipArt_Gallery.5 ���

11) Installation

10) Response Partial Media Object

9) Partial �installation

8) Response Partial Media Object

2) Request Download Descriptor

12) Install-Notification

7) Request Media Object

6) Ok

5) User confirmation

4) Device capability checking

3) Response Download Descriptor �(Progressive downloadable objects)

DD

1) Content discovery

Download Server

User

Download Agent

� EMBED MS_ClipArt_Gallery.5 ���

6) Select time

5) Candidate time

7) Set timer

9) Response Media Object

2) Request Download Descriptor

10) Instllation

11) Install-Notification

8) Request Media Object

4) Device capability checking

3) Response Download Descriptor �(A list of candidate time)

DD

1) Content discovery

Download Server

User

Download Agent

� EMBED MS_ClipArt_Gallery.5 ���

1) Content discovery

New MO

10) Response Media Object (chunk 2)

9) Request Media Object (size)

8) Response Media Object (chunk 1)

2) Request Download Descriptor

11) Instllation

12) Install-Notification

7) Request Media Object (size)

6) Ok

5) User confirmation

4) Device capability checking

3) Response Download Descriptor �(with chunk size info)

DD

Download Server

User

Download Agent

� EMBED MS_ClipArt_Gallery.5 ���

(3)

(2)

Media Object (1)

7) Download Completion Notification

DD

DD

DD

6) Response Media Objects

2) Request Download Descriptors

9) Instllation

10) Install-Notification of media object (1)

5) Request Media Objects

8) Select Media Object (1)

7) User confirmation

4) Device capability checking

3) Response Download Descriptors

1) Content discovery

Download Server

User

Download Agent

� EMBED MS_ClipArt_Gallery.5 ���

� EMBED MS_ClipArt_Gallery.5 ���

Download Agent

User

Content Provider

Download Server

3) Downloading Media Object

4) Notification �(Download completion, Installation, Delation)

Presentaition Server

1) Discovery Document �(XHTML, URL)

2) Negotiation �(Download Descriptor)

Content Strage

Status Report Server

DD

1) Content discovery

12) Response Media Object (2)

11) Request Media Object (2)

Download Server C

Download Server B

8) Response Media Object (1)

2) Request Download Descriptor

9) Instllation

10) Install-Notification (1)

7) Request Media Object (1)

6) Ok

5) User confirmation

4) Device capability checking

3) Response Download Descriptor

DD

Download Server A

User

Download Agent

� EMBED MS_ClipArt_Gallery.5 ���

13) Instllation

14) Install-Notification (2)

DD

(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20030824]
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20030824]

[image: image17.wmf][image: image18.wmf][image: image19.wmf][image: image20.wmf][image: image21.wmf][image: image22.wmf][image: image23.wmf][image: image24.wmf][image: image25.wmf][image: image26.wmf][image: image27.wmf][image: image28.wmf][image: image29.wmf][image: image30.wmf][image: image31.wmf][image: image32.wmf][image: image33.wmf][image: image34.jpg]_1094904166

