OMA-TS-DRM-XBS-V1_0-20050317-D
Page 10 V(36)

	[image: image1.jpg]
	

	OMA DRM v2.0 Extensions for Broadcast Support

	Draft Version 1.0 – 17 Mar 2005

	Open Mobile Alliance

	OMA-TS-DRM-XBS-V1_0-20050317-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
5.
Broadcast Device and Domain Management
9
5.1
Device Registration
9
5.1.1
Off-line Registration
9
5.1.2
Broadcast Registration
9
5.2
Domain Management
9
5.2.1
Domain Join
9
5.2.2
Domain Leave
9
6.
Broadcast Rights
10
6.1
Broadcast Rights Objects
10
6.1.1
Goals and Constraints
10
6.1.2
Design Considerations and Decisions
10
6.2
Format of the Broadcast Rights Object
11
6.2.1
Format of the OMADRMBroadcastRightsObject class
11
6.2.2
Format of the OMADRMAsset class
15
6.2.3
Format of the OMADRMPermission class
17
6.2.4
Format of the OMADRMAction class
17
6.2.5
Format of the OMADRMConstraint class
18
6.3
Usage Metering
21
7.
Subscriber Groups
29
7.1
Introduction
29
7.2
Addressing
29
7.2.1
Addressing Modes
29
7.2.2
Subscriber Group Identifier
30
7.3
Confidentiality of Message Content
30
7.3.1
Introduction
30
7.3.2
Exponential Scheme
31
7.3.3
Linear Scheme
31
7.3.4
Logarithmic Scheme
32
8.
Broadcast Service Support
34
8.1
Referencing Broadcast Service as Content
34
8.2
Re-Keying
34
Appendix A.
Change History (Informative)
35
A.1
Approved Version History
35
A.2
Draft/Candidate Version V1_0 History
35
Appendix B.
Static Conformance Requirements (Normative)
36

Figures

21Figure 1: Token-based Metering

23Figure 2: Token Acquisition Trigger

23Figure 3: Token Request Message Description

24Figure 4: Token Response

25Figure 5: Reporting Trigger

26Figure 6: ROAP Report Request

30Figure 1: Addressing modes

Tables

Error! No table of figures entries found.
1. Scope

Open Mobile Alliance (OMA) specifications are the result of continuous work to define industry-wide interoperable mechanisms for developing applications and services that are deployed over wireless communication networks.

The scope of OMA “Digital Rights Management” [DRM-v2] is to enable the consumption of digital content in a controlled manner. The content is consumed on authenticated devices per the usage rights expressed by the content owners. The OMA DRM work addresses the various technical aspects of this system by providing appropriate specifications for content formats, protocols, and the rights expression language.

The scope for this specification is the application of the OMA “Digital Rights Management” specifications in a typical broadcast environment in which devices might only be capable of receiving information broadcast over a shared medium. It refers to the general OMA “Digital Rights Management” [DRM-v2] documents as its foundation. The causes defined in this document take precedence over those specified by the foundation documents, thus creating a broadcast interpretation of the OMA Digital Rights Management standard.

2. References

2.1 Normative References

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

2.2 Informative References

	[DRM-v2]
	“Digital Rights Management”, Open Mobile Alliance(, OMA-DRM-DRM-V2_0, URL:http://www.openmobilealliance.org/

	[DRMARCH-v2]
	”OMA DRM Architecture Overview”, Open Mobile Alliance™, OMA-DRM-ARCH-V2-0, URL:http://www.openmobilealliance.org/

	[DRMCF-v2]
	“DRM Content Format”, Open Mobile Alliance(, OMA-DRM-DCF-V2_0, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Receiver Device
	A OMA DRM Device without explicit return channel, capable only of receiving broadcast material.

Note that a receiver device can still have an implicit return channel: it may present information, triggers and dialogs to the user who may “implement” the return channel in various ways (e.g. telephone, web portal, service desk).

	Enhanced Device
	A OMA DRM Device with bi-directional communications channel, but also suited to receive information via the broadcast channel.

	
	

3.3 Abbreviations

	OMA
	Open Mobile Alliance

	xxx
	Xxx

	
	

4. Introduction

Digital Rights Management [DRM-v2] defines the mechanisms to deliver DRM Content and Rights Objects to a consuming device. In the existing specification suite, devices are assumed to be capable of two-way interaction with other entities, such as a Rights Issuer. In a typical broadcast environment, this may not be the case and devices may exists that can only receive information broadcast over a shared medium.

In general the need for adaptations, extensions and guidelines has been identified for the following OMA Digital Rights Management [DRM-v2] items:

· ROAP Protocol

The ROAP protocol is specified assuming a bi-directional communication mechanism between Device and Rights Issuer. A broadcast (i.e. uni-directional) equivalent for the functionality provided by the ROAP protocol is required. Bandwidth usage is very important in broadcast and protocol messages should be optimised for size.

· Rights Expression Language

There is a need for additional types of usage that are typical to the broadcast model, e.g. time-shift, record, edit. These may also have non-standard constraints such as impulse-pay-per-view, prepaid.

· Subscription Group Addressing

This is a feature that allows – per instance of content protection – to define the exact group of broadcast receivers that will be capable of accessing the protected content. It is required for fine-grained management of broadcast subscription services.

· Authentication of broadcast Rights Objects and broadcast content

The bandwidth efficiency requirements of broadcast systems may necessitate a broadcast specific authentication scheme for rights objects and content.

· Broadcast Service Support

· Usage Metering

This specification is not stand-alone; it must be interpreted in the context of the existing OMA DRM v2.0 suite of specifications. Its goal is to provide alternative mechanisms for those parts of the standard that do not comply to the specific constraints of broadcast systems: one-way communication and bandwidth efficiency. Next to that, it also defines support for additional broadcast concepts such as ‘broadcast service’, (frequent) re-keying of broadcast content protection and broadcast usage models.

5. Broadcast Device and Domain Management

5.1 Device Registration

5.1.1 Off-line Registration

This does not require any formal message encoding specification, but we do need to specify what we want to be made available to a Rights Issuer (regarding the device) and the device (regarding the Rights Issuer).

5.1.2 Broadcast Registration

How to encode all relevant registration details in a broadcast efficient message.

What information is required to be present in a device to enable reception and recognition of such messages?

What device information must be made available to Rights Issuers via other means?

5.2 Domain Management

It does not seem clear whether this is actually going to required? It may be enough to support subscription group addressing?

5.2.1 Domain Join

Efficient message encoding for an invitation to join a domain.

5.2.2 Domain Leave

Efficient message encoding for an invitation to leave a domain. This typically requires a domain upgrade: all remaining devices get invited to re-join the domain (and be provisioned with a new domain key). Because of the difficult nature of broadcast messages (no reception guarantee), it seems that this is a rather weak concept.

Perhaps here we need to define some way of extracting confirmation messages that a user can communicate back to a rights issuer’s service desk / web portal to ‘prove’ the device has received an instruction to leave the domain.

6. Broadcast Rights

6.1 Broadcast Rights Objects

6.1.1 Goals and Constraints

The delivery of rights objects over a Broadcast network without return channel necessitates some changes to the current ROAP because of the following reasons:

· the XML encoding according to the ROAP schema is not optimised for size

· the current ROAP does not support a subscription group addressing mechanism

· the current ROAP uses signatures based on the RSA PKI scheme that yield large signatures.

This chapter defines a new format for the delivery of authenticated and integrity protected rights objects, in which content encryption keys are cryptographically protected with either:

· domain key

· subscription group addressing group key

· subscription group addressing subset key (derived key)

· subscription group addressing device key

The primary design goal is to offer the same or equivalent cryptographic protection on Broadcast Rights Objects as is available for Rights Objects obtained via the standard ROAP protocol. This includes authentication, integrity checking and confidentiality of encryption keys.

The secondary design goal is optimisation of message size. This is motivated by the fact that these rights objects may have to be Broadcast repeatedly, as no return path is available to confirm reception. It is assumed that an out-of-band mechanism is available to perform an equivalent of a RORequest, i.e. the initiation of rights object acquisition.

6.1.2 Design Considerations and Decisions

The Broadcast Rights Objects (BCRO) are intended to be Broadcast to receivers in a well-defined repetitive manner. The particular means of delivery is to be defined in the context of the Broadcast system. It is the intention to support devices without a return channel (next to more capable devices), which implies that Broadcast rights object will be transmitted repeatedly to increase the chance of a receiver to capture rights objects addressed to that device.

The key-wrapping technique used in standard ROAP to cryptographically bind a MAC and REK to a device or domain will not be used. Instead the domain key or subscription group key is directly used to protect the content encryption keys in the Broadcast Rights Object. The motivation for this is that a REK adds little or no extra security, but adds significant size to a Broadcast Rights Object.

Because subscription group addressing offers the possibility to address a single unique device, BCROs will offer only addressing subscription groups or domains. Addressing a device using its device ID will not be supported with a BCRO.

RSA signatures on Broadcast rights objects would contribute very significantly to the size of each BCRO. Instead, each BCRO is protected with a MAC, based on an authentication key that is registered in the rights issuer context in a device. At registration, this authentication key is provided along with the subscription group addressing key material.

The broadcast content is protected with a varying encryption key. The encryption keys associated with assets in the BCRO will be applied to decrypt the key stream messages on the key stream layer. Besides decryption, such messages should also be authenticated. To avoid using the rights issuer authentication key for these frequent messages, the BCRO also carries an authentication key to be used for authenticating key stream messages. [This is subject to specifications of the key stream layer in OMA BCAST.]

6.2 Format of the Broadcast Rights Object

6.2.1 Format of the OMADRMBroadcastRightsObject class

The OMADRMAsset, OMADRMPermission and OMADRMConstraint object correspond in their meaning to their counterparts in OMA-DRM-REL-V2_0. The OMADRMAction object corresponds to the allowed elements in the permissions element from the same specification.

align(8) class OMADRMBroadcastRightsObject

{

int i;

bit(1)
future_extensions_flag;

bit(1)
reserved;

bit(1)
permissions_flag;

bit(1)
locally_changed_flag;

bit(12)
bcro_length;

// MAC protected part starts here

bit(1)
group_size_flag;

bit(1)
timestamp_flag;

bit(1)
stateful_flag;

bit(1)
refresh_time_flag;

bit(2)
address_mode;

bit(1)
domain_ro_flag;

bit(1)
rights_issuer_flag;

bit(32)
address;

if (address_mode == 0x1)

{

if (group_size_flag == 0)

{

bit(256)
bit_access_mask;

}

else

{

bit(512)
bit_access_mask;

}

}

else if (address_mode&0x2 == 0x2)

{

bit(8)
position_in_group;

}

if (domain_ro_flag == 1)

{

bit(32)
domain_id;

}

if (rights_issuer_flag == 1)

{

bit(160)
rights_issuer_id;

}

if (timestamp_flag == 1)

{

bit(40)
bcro_timestamp;

}

if (refresh_time_flag == 1)

{

bit(40)
refresh_time;

}

bit(1)
extended_rights_object_id_flag;

bit(1)
reserved;

if (extended_rights_object_id_flag == 0)

{

bit(14)
rights_object_id;

}

else

{

bit(30)
rights_object_id;

}

bit(8)
number_of_assets;

for (i=0; i<number_of_assets; i++)

{

OMADRMAsset
asset[i];

}

if (permissions_flag == 1)

{

bit(8)
number_of_permissions;

for (i=0; i<number_of_permissions; i++)

{

OMADRMPermission permission[i];

}

}

if (future_extensions_flag == 1)

{

bit(16)
future_extensions_length;

for (i=0; i<future_extensions_length; i++)

{

bit(8)
future_byte;

}

}

// MAC protected part ends here

bit(96)
MAC;

if (locally_changed_flag == 1)

{

bit(160)
stored_rights_issuer_id;

bit(16)
local_length;

for (i=0; i<local_length; i++)

{

bit(8)
local_byte;

}

}

}

future_extensions_flag: 1-bit flag which indicates the version of the BCRO message format. If set to 0 the original format is used. If set to 1 additional information is contained in a later part of the BCRO. The format of this additional information is beyond the scope of this specification.

permissions_flag: 1-bit flag indicating that the BCRO contains at least 1 permission.

locally_changed_flag: 1-bit flag indicating that information (e.g. the RI ID) has been added after the MAC field (after the protected part of the BCRO). This mechanism can be used to store or forward the BCRO together with additional information. Receivers who do not understand the local additions should skip the locally added extensions.

The first two bytes of the BCRO are not protected by the MAC.

bcro_length: 12-bit field indicating the length in bytes of the BCRO starting immediately after this field (excluding locally added information). The size of an BCRO SHALL NOT exceed 4096 bytes. Note however that other restrictions, e.g. the UDP packet size can restrict the size of an BCRO even more.

Note: the fields up to and including ‘length’ are not protected by a MAC. All following fields up to but not including the MAC field will be protected by a MAC.

group_size_flag: 1-bit field indicating the group size used. 0 – a maximum group size 256 is used, 1 – a maximum group size of 512 is used

timestamp_flag: 1-bit field indicating that the BCRO is timestamped.
stateful_flag: 1-bit flag indicating that when set to 1 the BCRO contains stateful information.

refresh_time_flag: 1-bit flag indicating that a refresh_time for the BCRO is contained in this BCRO

address_mode: 2-bit field indicating the addressing mode used by this BCRO.

	Field: address_mode
	Description

	0x0
	addressing whole of unique group

	0x1
	addressing of Subscription group using a bit_mask size of 256 or 512 bit depending on group_size_flag (subset of unique group)

	0x2-0x3
	addressing of unique device

domain_ro_flag: 1-bit flag indicating that the BCRO is addressed to a certain OMA domain. If set the keys in the assets are encoded using the domain key.

rights_issuer_flag: 1-bit flag indicating that the rights issuer id is listed in this BCRO. Normally this information is given via a dedicated BCRO stream. This flag will only be set if BCROs from different rights issuers are carried in the same stream.

rights_issuer_id: The ID of the rights issuer. This is the 160-bit SHA1 hash of the DER encoded public key of the RI. See X509PKISHash in OMA.

address: 4-byte group address. Each rights issuer has its own address space.

bit_access_mask: If the BCRO addresses a subset of a unique group (address_mode 0x1 or 0x2) than the bit_access_mask defines to which receivers in the group this BCRO is addressed to. Receivers not listed in the bit_access_mask cannot decrypt the key material in this BCRO as zero message Broadcast encryption is used for the encryption of the key material. The size of the bit_access_mask is given by the address mode

position_in_group: If the BCRO addresses a unique device then this field specifies the position of the unique device in the given Subscription group. If group_size_flag is 0 than the position in the group is directly given by the position_in_group field. If group_size_flag is 1 then 9 bit are used to identify the position in the group. If group_size_flag is 1 and the address_mode&0x2==0x2 ten bit 0 from the address_mode is used as the 9th bit, the MSB. The real position in the group is then given by:

int real_position_in_group;

if(address_mode&0x2==0x2)

{

if(group_size_flag == 0)

{

//maximum size of 256 devices in group.

real_position_in_group = position_in_group;

}

else

{

//maximum size of 512 devices in group;

real_position_in_group =

((address_mode&0x1)<<8)||position_in_group;

}

}
domain_id: Field indicating the domain id. If the BCRO is addressed to a certain OMA domain then the keys in the asset object are encrypted using the OMA domain key. The value of the domain_id is coded as 8 digits in 4-bit Binary Coded Decimal (BCD).

bcro_timestamp: Field containing a timestamp at the point of issuing of the BCRO. This 40-bit field contains the time and date of the moment of issuing of the BCRO in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

EXAMPLE 1: 93/10/13 12:45:00 is coded as "0xC079124500".

refresh_time: The refresh_time specifies the time when the terminal should acquire a new BCRO. It does not specifies when the keys in the BCRO expire. This field is a hint to a receiver to acquire a new BCRO for the content listed in the BCRO before the keys in the BCRO expires. The encoding is similar to that of the bcro_timestamp field.

extended_rights_object_id_flag: 1-bit flag that when set to 1 indicates that an extended rights_object_id of 30 bit is used to identify this rights object. If the flag is set to 0 the rights_object_id has a size of 14 bit. The rights_object_id is only valid within one Rights Issuer context and rights_object_ids can wrap around.

rights_object_id: 14-bit or 30-bit field specifying the ID of this rights object. [TBD: Is the size of the id ok?]
number_of_assets: This field specifies the number of assets (see below) in this BCRO. Each asset listed in this BCRO has an internal id which is equal to the index of the asset in this BCRO. In other words the first asset listed in this BCRO has the internal asset id (index) of 0, the second of 1 etc. This internal id or index is used by permissions objects (see below) to identify the assets it addresses.

number_of_permissions:This field specifies the number of permissions (see below) in this BCRO.

future_extensions_length:If the version is set to 1 then the future extensions can be listed following this field. The future_extensions_length field specifies the length of the extensions in bytes. Receivers only supporting version 0 SHOULD skip the future extensions.

MAC: This is the authentication code calculated over all bytes before this field with the exception of the first two bytes in the BCRO using AES-XCBC-MAC-96. AES-XCBC-MAC-96 operates on blocks of 128 bit. To calculate the MAC the MAC protected part of the BCRO is divided into 128-bit blocks. If the MAC protected block is smaller then an integer multiple of 128 then the rest of the last block is padded with zeros. The MAC is calculated over all 128-bit blocks. Note that the padding is not transmitted nor part of the BCRO.

The MAC is used to authenticate and check the integrity of the BCRO. The key used to create the MAC is the BCRO authentication key that is provided to the device at registration time. [The registration process for broadcast is to include this authentication key. This will be clarified in a later contribution.]

stored_rights_issuer_id: This field is only present if the locally_changed_flag is set to 1. BCROs received directly from the Broadcast channel will not contain this field. The field is used to retain the relation between RI and BCRO when stored or forwarded.

local_length: This field specifies the number of locally added bytes following this field. This field and the local_bytes are not present in the original BCRO received from a broadcast channel.

6.2.2 Format of the OMADRMAsset class

class OMADRMAsset

{

int i;

bit(96)
BCI;

bit(1)
key_flag;

bit(4)
reserved_for_future_use;

bit(1)
inherit_flag;

bit(2)
asset_type;

if (inherit_flag)

{

bit(1)
extended_parent_rights_objects_id_flag;

bit(1)
reserved;

if (extended_parent_rights_object_id_flag == 0)

{

bit(14)

parent_rights_object_id;

}

else

{

bit(30)

parent_rights_object_id;

}

}

if (key_flag == 1)

{

if (asset_type == 0x0)

{

bit(320)
wrapped_encryption_authentication_key;

}

else

if (asset_type == 0x1)

{

bit(192)
wrapped_encryption_key;

}

}

}

BCI: This 96-bit field is the Binary Content ID. [The encoding of this field might be the SHA1-96 hash of the Content ID in ‘cid’ URI form.]
key_flag:1-bit flag indicating that the asset does contain key material.

inherit_flag: 1-bit flag indicating whether inheritance is used. If set to 1 the asset inherits the rights setting from a parent rights object.

asset_type: 2-bit flag indicating the asset type as defined in the table below. If the asset_type is set to 0 the asset MAY contain a wrapped encryption key and authentication key. If the asset_type is set to 0x1 then the asset MAY contain a wrapped content encryption key.

	Field: asset_type
	Description

	0x0
	Broadcast stream protected IPSec or SRTP as defined in this specification

	0x1
	downloaded file content as defined by OMA

	0x2-0x3
	reserved

extended_parent_rights_object_id_flag: 1-bit flag that when set to 1 indicates that an extended rights_object_id of 30 bit is used to identify the parent rights object. If the flag is set to 0 the parent_rights_object_id has a size of 14 bit. The parent_rights_object_id is only valid within one Rights Issuer context and the parent_rights_object_ids can wrap around.

parent_rights_object_id: 14-bit or 30-bit field specifying the ID of the parent rights object.

wrapped_encryption_authentication_key: If key_type is set to 0 than this field contains a wrapped concatenated encryption key and authentication key. The field itself is protected using AESWrap. In case of where the BCRO is a domain RO, the domain key is used as the wrapping key. In case of a subscription group BCRO, the key to use depends on the addressing mode of the BCRO.

	Field: address_mode
	Keys used

	0x0 (subscription group addressing / whole group)
	UGK (Unique Group Key)

	0x1 or 0x2 (subscription group addressing / derived keys)
	Deduced decryption key (based on bit_access_mask and subscription group keys)

	0x3 (subscription group addressing / unique device)
	UDK (Unique device key)

wrapped_encryption_key: This field contains a wrapped encryption key (without authentication key). The field is protected using AESWrap. In case of where the BCRO is a domain RO, the domain key is used as the wrapping key. In case of a subscription group BCRO, the key to use depends on the addressing mode of the BCRO.

	Field: address_mode
	Key(s) used to decrypt field

	0x0 (unique group)
	UGK (Unique Group Key)

	0x1 or 0x2 (Subscription group)
	Deduced decryption key (based on bit_access_mask and subscription group keys)

	0x3 (unique device)
	UDK (Unique device key)

6.2.3 Format of the OMADRMPermission class

class OMADRMPermission

{

int i;

bit(6)
number_of_assets;

bit(1)
constraint_flag;

bit(1)
actions_flag;

for (i=0; i<number_of_assets; i++)

{

bit(8)
asset_index;

}

if (constraint_flag == 1)

{

OMADRMConstraint
constraint;

}

if (actions_flag == 1)

{

bit(8)
number_of_actions;

for (i=0; i<number_of_actions; i++)

{

OMADRMAction
action[i];

}

}

}

number_of_assets: The number of assets this permission object links to. Assets linked to by this permission object are bound by this permission object.

constraint_flag: 1-bit flag which indicates when set to 1 that a constraint object is present in this permissions object. The constraint object applies to all action listed in this permission object.

action_flag: 1-bit flag. When set to 1, 1 or more actions are contained in this permission object.

asset_index: A list of number_of_assets links to assets in this BCRO. Assets are linked to by using the internal asset id (the index of the asset in this BCRO).

number_of_actions: Field specifying the number of actions (see below) contained in this permission object

6.2.4 Format of the OMADRMAction class

class OMADRMAction

{

bit(7)
action_type;

bit(1)
constraint_flag;

if (constraint_flag)

{

OMADRMConstraint constraint;

}

}

action_type: 7-bit field specifying the type of action as listed in table below:

	Field: action_type
	Description

	0x00
	PLAY_ACTION

	0x01
	DISPLAY_ACTION

	0x02
	EXECUTE_ACTION

	0x03
	PRINT_ACTION

	0x04
	EXPORT_ACTION

	0x05
	ACCESS_ACTION

	0x06-0x7F
	reserved for future use

constraint_flag: 1-bit flag which indicates when set to 1 that a constraint object is present in this action object. The constraint object only applies to the action it is in.

6.2.5 Format of the OMADRMConstraint class

abstract class OMADRMConstraintDescriptor : bit(8) constraint_id = 0

{

bit(8) length;

}

class OMADRMConstraint

{

int i;

int j;

bit(4)
number_of_constraints;

bit(12)
constraint_descriptor_length;

for (i=0; i<number_of_constraint; i++)

{

OMADRMConstraintDescriptor constraint[i];

}

}

number_of_constraints: 4-bit number specifying the number of constraint descriptors (see below)

constraints_descriptor_length: length of all constraint descriptors in bytes which follow this field.

constraint_tag: Tag identifying the specific constraint_descriptor as listed below:

	Field: constraint_tag
	Description

	0x00
	count constraint

	0x01
	timed-count constraint

	0x02
	date time constraint

	0x03
	interval constraint

	0x04
	accumulated constraint

	0x05
	individual constraint

	0x06
	system constraint

	0x07-0xFF
	reserved for future use

6.2.5.1 Count constraint descriptor

class OMADRMCountConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x00

{

bit(8*length)

count;

}

length: The number of bytes used for the count field. Length SHALL NOT exceed 4, hence the maximum size of the count field can be 32 bits.

count: The number of times the content can be played. The field can be of size 8, 16, 24 and 32 bits.
6.2.5.2 Timed count constraint descriptor

class OMADRMTimedCountConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x01

{

bit(16)

timer;

bit(8*(length-2))
count;

}

length: The number of bytes following this field. The count field is length-2 bytes long and SHOULD NOT exceed 32 bits.

timer: Specifies the number of seconds after which the count state is reduced starting from beginning to render the content.

count: The number of times the content can be played. The field can be of size 8, 16, 24 and 32 bits.
6.2.5.3 Date-time constraint descriptor

class OMADRMDateTimeConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x02

{

bit(1)

start_flag;

bit(1)

end_flag;

bit(6)

reserved;

if (start_flag)

{

bit(40)

start_date;

}

if (end_flag)

{

bit(40)

end_date;

}

}

length: The number of bytes of the descriptor immediately following this field.

start_flag: 1-bit field. When set the descriptor contains a start time.

end_flag: 1-bit field. When set the descriptor contains a end time.

start_time: Time field with the semantics of ‘not before’ time for a permission. The start_time must be before the end_time if present.

end_time: Time field with the semantics of ‘not after’ time for a permission. The end_time must be after the start_time if present.

6.2.5.4 Interval constraint descriptor

class OMADRMIntervalConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x03

{

bit(8*length)

time_interval;

}

length: The number of bytes following this field. Length specifies the size of the time_interval field.

time_interval: Specifies the number of seconds starting from first receiving this BCRO that the permission is valid. The length of the field is given by the length field and SHOULD NOT exceed 32 bit.

6.2.5.5 Accumulated constraint descriptor

The accumulated_constraint_descriptor specifies the maximum period of metered usage time during which the rights can be exercised over the DRM content.

class OMADRMAccumulatedConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x04

{

bit(8*length)

accumulated_time;

}

length: The number of bytes following this field. Length specifies the size of the accumulated_time field.

accumulated_time: Specifies the maximum period of metered usage time during which the rights can be excercised. The period is given in seconds. The length of the field is given by the length field and SHOULD NOT exceed 32 bit.

6.2.5.6 Individual constraint descriptor

Constraint used to bind content to individuals. If the content should be bound to more than one individual multiple individual_constraint_descriptor(s) can be carried in one constraint object.

class OMADRMIndividualConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x05

{

bit(4)

reserved;

bit(4)

id_type;

bit(8*(length-1))
individual_id;

}

length: The number of bytes following this field. Length-1 specifies the size of the individual_id field.

id_type: Tag identifying format of the individual_id as listed below:

	Field: id_type
	Description

	0x0
	The individual_id field contains the IMSI number coded as 16 digit 4-bit BCD. The first digit SHALL be 0 and SHALL be ignored. The length of the individual_id field is 64 bit.

	0x1
	The individual_id field contains the PKC id of the WIM to which the content is bound.

	0x2-0xF
	reserved for future use

individual_id: Individual ID. The format and length of this field is identified by the identifier_type and length field see the table above.

6.2.5.7 System constraint descriptor

Constraint used identify systems to which the content and rights objects are allowed to be exported to.

class OMADRMSystemConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x06

{

bit(8)

constraint_tag;

bit(8)

length;

bit(64)

system_id;

}

length: The number of bytes following this field.

system_id: The system id of the system the content and RO can be exported to. This is the SHA1-64 encoded hash of the system name as registered with OMNA. [The values are registered with OMNA (currently only strings), we either use SHA1-64 to hash the strings or OMNA registers numbers for that as well]
6.3 Usage Metering

The metering feature allows content usage to be governed and eventually billed based on actual consumption of stateful permissions and constraints. This is required to support OMA BCAST requirement PROV-04. For example, if a user plays a particular content item 3 times in a month, he is billed on that consumption rather than having to specifically request 3 plays ahead of time.

The proposed metering mechanism can be used by both broadcast-only devices and devices with a backchannel. It allows the privacy of users to be protected as consumption does not necessarily have to be tracked by the rights issuer. This feature would be entirely optional as with features like transaction tracking in OMA DRM 2.0.

Metering in this proposal is based on tokens. A token can be exchanged for a certain amount of content usage, e.g. one token = 1 play or 30 minutes of usage of a content item. The service provider or broadcaster defines the consumption “value” of a single token. A user’s store of tokens can be used to use any content which is metered until that store is exhausted.

[image: image2.emf]Token

Store

= 10 tokens

OMA BCAST Device

OMA DRM

Agent

1 token

used

Content

RO

(Token = 30 minutes)

Mobile TV

Rights issuer

Figure 1: Token-based Metering

A number of extensions to OMA DRM 2.0 are required to support token-based metering

1. An extension to the REL to add a new stateful constraint for metering.

2. An extension to ROAP to allow a rights issuer to deliver tokens to a device.

3. An extension to ROAP to report consumption information to a rights issuer.

Extension to the OMA DRM 2.0 REL

Token-based consumption requires a new form of stateful constraint. The associated permission cannot be used unless there are sufficient tokens available to the device from this rights issuer. The difference between this constraint type and others like count is that the number of units defined by the constraint is not defined in the REL but depends on the number of tokens currently available to the device. Metered ROs will include the metering constraint.

The metering element will have the following 3 required attributes:

· token-constraint-type: The type of stateful constraint which is governed by token availability. Currently the only two suitable constraints in the REL are count and duration.

· token-unit: The unit of the specified constraint which corresponds to tokens being decremented, e.g. a single count or 30 minutes of time.

· tokens-consumed: Tokens consumed per token unit, e.g. 3 tokens consumed for every count.

The extensions to the REL DTD are shown below:

<!ELEMENT o-ex:constraint (o-dd:count?, oma-dd:timed-count?, o-dd:datetime?, o-dd:interval?, o-dd:accumulated?, o-dd:individual?, oma-dd:system*, o-dd:metering?>

<!ELEMENT oma-dd:metering>

<!ATTLIST oma-dd:metering

oma-dd:token-constraint-type (count | duration) #REQUIRED

oma-dd:token-unit PCDATA #REQUIRED

oma-dd:tokens-consumed PCDATA #REQUIRED>

>

An example of the usage of this constraint shown below instructs the DRM agent to consume two tokens every time that the corresponding content item is played.

<o-dd:play/>

<o-ex:constraint>

 <oma-dd:metering>

<oma-dd:tokenconstraint>count</o-dd:version>

<oma-dd:tokenunit>1</o-dd:tokenunit>

<oma-dd:tokensconsumed>2</o-dd:tokensconsumed>

 </oma-ex:metering>

</o-ex:constraint>

</o-ex:permission>

Token Delivery

ROAP would be extended to allow tokens to be delivered to a device. Either a 1-pass (for broadcast only devices) or 2-pass version of this element of ROAP could be used. The first element of this ROAP extension would be a trigger as shown in Figure 2.

<complexType name="TokenAcquisitionTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce" minOccurs="0"/>

 <element name="roapURL" type="anyURI"/>

 <element name="tokenID" type="ID"/>

 <attribute name="id" type="ID"/>

</complexType>

Figure 2: Token Acquisition Trigger

The next element is a token request from the device to a rights issuer. This would be an extension of the existing ROAP request type.

	ROAP-TokenRequest

	Parameter
	Mandatory/Optional

	Device ID
	M

	RI ID
	M

	Device Nonce
	M

	Token ID
	M

	Certificate Chain
	M

	Signature
	O

Figure 3: Token Request Message Description

Device ID identifies the requesting Device.

RI ID identifies the authorizing RI.

Device Nonce is a nonce chosen by the Device.

Token ID identifies the tokens to be issued to this device.

Certificate Chain: This parameter is sent unless it is indicated in the RI Context that this RI has stored necessary Device certificate information. When present, the parameter value SHALL be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [XC14N].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The RI MUST verify the signature on the ROAP-TokenRequest message.

Finally the RI needs to issue the tokens to the device. In the 1-pass version, this is the only message exchanged between RI and device.

	Parameter
	ROAP-TokenResponse

	
	2-pass

Status = Success
	2-pass

Status ≠ Success
	1-pass

	Status
	M
	M
	M

	Device ID
	M
	-
	M

	RI ID
	M
	-
	M

	Device Nonce
	M
	-
	-

	Protected Tokens
	M
	-
	M

	Certificate Chain
	O
	-
	O

	Signature
	M
	-
	M

Figure 4: Token Response

Status indicates if the request was successfully handled or not. In the latter case an error code specified in Section 5.3.6 is sent.

Device ID identifies the requesting Device. The value returned here MUST equal the Device ID sent by the Device in the ROAP-TokenRequest message that triggered this response in the 2-pass ROAP. In the 1-pass ROAP, the RI selects the Device ID of the recipient Device. If the Device ID is incorrect, the ROAP-TokenResponse processing will fail and the Device MUST discard the received TokenResponse PDU.

RI ID identifies the RI. In the 2-pass protocol, the value MUST equal the RI ID sent by the Device in the preceding ROAP-RORequest message.

Device Nonce: This parameter, if present (2-pass), MUST have the same value as the corresponding parameter value in the preceding ROAP-TokenRequest.

Protected Tokens contains the number of tokens being issued and optionally a latest report time if the device must report token consumption for metered content to the RI. If a report has not been made by this time, then all access to metered content on the content should be blocked. Sensitive information in this part of the message should be encrypted.

Certificate Chain: This parameter MUST be present unless a preceding ROAP-TokenRequest message contained the Peer Key Identifier extension, the extension was not ignored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message.

Signature is a signature on data sent in the protocol. The signature is computed using the RI's private key and the current message (besides the Signature element itself). The signature method is as follows:

· All elements except the Signature element are canonicalized using the exclusive canonicalization method defined in [XC14N].

· The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The Device MUST verify this signature. A Device MUST NOT accept the token acquisition as successful unless the signature verifies, the RI certificate chain has been successfully verified, and the OCSP response indicates that the RI certificate status is good. If the acquisition protocol failed, the Device MUST NOT install the received tokens.

Reporting

A rights issuer may optionally request that a device report on token consumption. Reporting can be used to implement true post-paid billing. Reporting is only an option for devices with a back-channel. The first element required is an optional trigger. If a reporting date has been defined in the token response, then the trigger may not be required.

<complexType name="ReportingTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce" minOccurs="0"/>

 <element name="roapURL" type="anyURI"/>

 </sequence>

</complexType>

Figure 5: Reporting Trigger

The report from the device is based on the ROAPRequest type.

	ROAP-ReportRequest

	Parameter
	Mandatory/Optional

	Device ID
	M

	RI ID
	M

	Device Nonce
	M

	Request Time
	M

	Token Info
	M

	Certificate Chain
	O

	Signature
	M

Figure 6: ROAP Report Request

Device ID identifies the requesting Device.

RI ID identifies the RI.

Device Nonce: This parameter, if present, MUST have the same value as the corresponding parameter value in the preceding trigger.

Request Time is the current DRM Time, as seen by the Device.

Token Info contains information on how many tokens were consumed since the last report.

Certificate Chain: This parameter MUST be present. The value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message.

Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [XC14N].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The RI MUST verify the signature on the ROAP-ReportRequest message.

Finally, the device must receive and process a ROAP-ReportResponse. The device should clear all token consumption information for the latest report period once this response has been received.

	ROAP-ReportRequest

	Parameter
	Mandatory/Optional

	Status
	M

	Device ID
	M

	RI ID
	M

	Device Nonce
	M

	Certificate Chain
	M

	OCSP Response
	O

	Signature
	M

Status indicates if the request was successfully handled or not. In the latter case an error code specified in Section Error! Reference source not found. is sent.

Device ID identifies the requesting Device, in the same manner as in the ROAP-DeviceHello message as specified in section Error! Reference source not found.. The value returned here MUST equal the Device ID sent by the Device in the ROAP-ReportRequest message that triggered this response in the 2-pass ROAP.

RI ID identifies the RI. The value MUST equal the RI ID sent by the Device in the preceding ROAP-ReportRequest message.
Device Nonce: This parameter MUST have the same value as the corresponding parameter value in the preceding ROAP-RORequest.

Certificate Chain: This parameter MUST be present and the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message

The Device SHOULD check if the RI certificate chain received in this parameter corresponds to stored certificate verification data for this RI. If so, the Device need not verify the RI certificate chain again, otherwise the Device MUST verify the RI certificate chain. If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good, then the Device MUST verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
OCSP Response: This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device MUST NOT fail due to the presence of more than one OCSP response element. This parameter will not be sent if the Device sent the Extension No OCSP Response in a preceding ROAP-RegistrationRequest (and the RI did not ignore that extension). For the processing of this parameter, see further Section Error! Reference source not found..
Signature is a signature on data sent in the protocol. The signature is computed using the RI's private key and the current message (besides the Signature element itself). The signature method is as follows:

· All elements except the Signature element are canonicalized using the exclusive canonicalization method defined in [XC14N].

· The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The Device MUST verify this signature. A Device MUST NOT accept the Report as successful unless the signature verifies, the RI certificate chain has been successfully verified, and the OCSP response indicates that the RI certificate status is good.

7. Subscriber Groups

7.1 Introduction

A subscriber group is a set of devices that share a group address along with cryptographic key material and algorithms that allow any subset of this group to be associated with a cryptographic key. A subscriber group can be cryptographically secure, which means that it has the additional property that any device from the group cannot deduce the distinct cryptographic keys for subsets that exclude the device.

The capability to address multiple devices using a single message provides for improved efficiency of the communication protocols. In particular it is very beneficial in the distribution of rights objects.

7.2 Addressing

7.2.1 Addressing Modes

Subscriber group addressing allows for three addressing modes, as is explained in figure 1 below.

[image: image3.wmf]

Subscriber group 3

Subscriber

group 1

Subscriber

group 2

Total

population

Subscriber

group 3

Subscriber

Group

subset

Unique

device

Whole

subscriber

group

Subscriber

group subset

1

3

2

Figure 1: Subscriber group concept

A whole subscriber group contains all devices in a group. A subscriber group subset can be smaller than or as large as the whole group. One or more subscriber groups form the population of devices.

The following sections describe the relation between the registration data and the Broadcast Rights Object (a.k.a. BCRO). The registration data is sent to the device after successful registration of the device. At a later stage the device may receive a BCRO as a means to obtain the content (encryption) key, which in turn is used to decrypt the encrypted AV content. When using subscriber group addressing, the content key is encrypted with a Deduced Encryption Key (DEK) by the RI.

There are three types of addressing possible.

[image: image4.wmf]Group address

Content key

type

1

[image: image5.wmf]Group address

Bit access mask

Content key

type

2

[image: image6.wmf]Group address

Position

Content key

type

3

Figure 7: Addressing modes

The first addressing mode addresses the whole subscriber group, each of which has a unique address. The second addressing mode allows the rights issuer to specify exactly which devices in a subscriber group may access the BCRO. This is done by adding a Eurocrypt style bit access mask to the group address. Each device in the subscriber group has a unique position in that group (determined at registration time). The bit in the bit access mask at this position determines whether the BCRo may be processed by a device.

The third addressing mode addresses a single unique device. This is achieved by appending the device’s position in the subscriber group to the subscriber group address.

7.2.2 Subscriber Group Identifier

To identify a subscriber group, a subscriber group subset or a subscriber group unique device, a new identifier type is required. The following schema defines the roap:SubscriberGroupIdentifier identifier:

<complexType name="SubscriberGroupIdentifier">

 <sequence>

 <element name="subscriberGroupBase" type="base64Binary"/>

 <choice minOccurs="0"/>

 <element name="subscriberAccessMask" type="base64Binary"/>

 <element name="subscriberPosition" type="base64Binary"/>

 </sequence>

</complexType>

If the <subscriberAccessMask> and the <subcriberPosition> element are not included in the roap:SubscriberGroupIdentifier, then the content of the <subscriberGroupBase> identifies the whole subscriber group. If the <subscriberAccessMask> is present, then the <subscriberGroupBase> identifies the group, and the mask value identifies which devices in that group are addressed. If the <subscriberNumber> is present, then the single device with the corresponding number in the group is addressed.

[Using a subscription group also has implications on the distribution of rights objects and device registration, these implications will be contributed to the appropriate sections later.]
7.3 Confidentiality of Message Content

7.3.1 Introduction
If the subscriber group addressing is cryptographically secure, then it can be used very effectively to distribute a rights object to such a subset, where the content encryption keys in the rights object are protected with the distinct key associated with that particular subset. All devices in the subset can determine this key, and hence can decrypt the content encryption keys in the rights object. All other devices in the group cannot, and therefore cannot access the protected content.

7.3.2 Exponential Scheme

As there are 2n subsets of a group of n devices, a very inefficient way of implementing this scheme is to generate 2n distinct keys. Each device would be provided with the keys associated with all the subsets that include that device.

	Group size
	Number of subsets
	Number of keys per device

	1
	2
	1

	2
	4
	2

	4
	16
	8

	8
	256
	128

	16
	65536
	32768

	32
	4294967296
	2147483648

This is for all practical purposes completely unusable.

7.3.3 Linear Scheme

An easy optimisation of the grossly impractical scheme is to generate an exclusion key unique per device part of the group. Each device is given all exclusion keys, except its own exclusion key. For any subset of the group that is to be allowed to access content, one can define the complement subset. If all the exclusion keys of the devices in the complement subset are used in a key derivation function, then only those devices in the complement subset cannot compute all the key material required: they lack the key associated with themselves.

[image: image7.wmf]

d1

d2

d3

d4

d5

d6

d7

d8

Device exclusion keys

Encryption key for subset {d1,d2,d6}

xor

xor

xor

xor

Figure 5 Derivation of an encryption key associated with a subset of the group

The figure shows the derivation of an encryption key for the subset {d1, d2, d6}. The derivation function used here is the bitwise XOR. Each of the devices from the complement subset {d3, d4, d5, d7, d8} will find that its key is used in this derivation. Consequently neither of the devices from the complement subset can compute the encryption key. For example, device d4 cannot compute the required:

d3 XOR d4 XOR d5 XOR d7 XOR d8

because it only knows d1, d2, d3, d5, d6, d7 and d8.

The size of the key material to be distributed now scales linear with the size of the group. This is a big improvement over the exponential scaling of the naïve approach.

	Group size
	Number of subsets
	Number of keys per device

	1
	2
	0

	2
	4
	1

	4
	16
	3

	8
	256
	7

	16
	65536
	15

	32
	4294967296
	31

	64
	1.84 x 1019
	63

	128
	3.40 x 1038
	127

	256
	1.16 x 1077
	255

	512
	1.34 x 10154
	511

	1024
	1.80 x 10308
	1023

This is a great improvement, and can make the scheme already practical for modest group sizes.

7.3.4 Logarithmic Scheme

In [Broadcast Encryption, Advances in Cryptology - CRYPTO ’93 Proceedings, Lecture Notes in Computer Science, Vol. 773, 1994, pp. 480–491, A. Fiat, M. Noar] the authors provide a scheme of hierarchical key derivations. Under this scheme, each device is provided key material that allows on-demand computing of the keys associated with all other devices in the group, except itself. The following picture shows schematically how this operates:

[image: image8.wmf]

d1

d2

d3

d4

d5

d6

d7

d8

Key derivation function ‘Left’

Key derivation function ‘Right’

Figure 6 Fiat-Naor key derivation scheme

The figure shows the application of two similar, but different, key derivation algorithms. From a single key, two child keys can be derived using these two distinct functions. A tree hierarchy of keys can thus be formed. The complete tree is determined completely by the two key derivation functions and the single root key.

This scheme allows an efficient version of the linear scheme. Instead of distributing all keys (except its own) to a device, now only a few keys from the tree need to be distributed to each device. It can be shown that instead of n-1 keys, now it is sufficient to distribute log2n keys to each device.

	Group size

(n devices)
	Total number of keys in the group

	Number of keys per device

	
	Linear scheme

n x (n-1)
	Logarithmic scheme

n x log2n
	Linear scheme

(n-1)
	Logarithmic scheme

log2n

	1
	0
	0
	0
	0

	2
	2
	2
	1
	1

	4
	12
	8
	3
	2

	8
	56
	24
	7
	3

	16
	240
	64
	15
	4

	32
	992
	160
	31
	5

	64
	4032
	384
	63
	6

	128
	16256
	896
	127
	7

	256
	65280
	2048
	255
	8

	512
	261632
	4608
	511
	9

	1024
	1047552
	10240
	1023
	10

	…
	
	
	
	

	1048576
	1.10 x 1012
	20971520
	1048575
	20

A practical limit to the subscriber group size is given by the need to communicate which subset of the group is selected to access particular content. This is typically done with a bitvector, indicating which devices are included in the subset. For each communication to a specific subset, such a bitvector of n bits length must be added in order for the devices to determine the used encryption key.

It must be noted that if the subset of devices allowed to access content is the whole group, then the derivation of the content encryption key fails, because there is no device key at all to include in the key derivation algorithm. To address this issue, one can provide all devices with one additional key special key, to be used when the whole group is addressed.

8. Broadcast Service Support

8.1 Referencing Broadcast Service as Content

This should hold any extension that would be required by the way the BCAST group is defining how broadcast services are to be referenced using ContentID’s.

8.2 Re-Keying

This should hold any extension that would be required by the way the BCAST group is defining how (service) encryption keys are to be managed (periodically replaced).

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	
	
	

	
	
	

A.2 Draft/Candidate Version V1_0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-DRM-XBS-V1_0
	21 Feb 2005
	n/a
	First draft outline based on input to the joined committees (BAC-DLDRM and BAC-BCAST):

 OMA-BCAST-2005-0048-Joint-BCAST-DRM-Task-Workplan

as well as discussions and contributions to the email reflector (prioritisation of work items).

	
	15 Mar 2005
	6.3
	Processed CR: OMA-BCAST-2005-0100R01-token-based-metering (approved at the Chicago BCAST/DLDRM joint meeting).

	
	17 Mar 2005
	6.1 & 6.2

7
	Processed CR: OMA-DLDRM-2005-0064-Broadcast-Rights-Object

(approved in conference call 17 mar 2005)

Processed CR: OMA-DLDRM-2005-0071R01-subscriber-group-addressing

(approved in conference call 17 mar 2005)

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]

_1170849333.vsd
Group address�

Bit access mask�

Content key�

type�

2�

_1172402599.doc

Subscriber group 1

Subscriber group 2

Subscriber group 3

Total population

Subscriber group 3

Subscriber

Group subset

Unique device

Whole subscriber group

Subscriber group subset

1

3

2

_1170770744.vsd

Entire population�

�

�

Unique group I�

Unique group II�

Unique group III
with f.e. 256 devices�

Broadcast group. F.e. �sport��

2�

3�

Priviliged set (preferred use)
Adress unique group? use unique group key.
Address < unique group? use broadcast group key.
Address only 1 device? use unique device key.�

1�

_1172405627.doc

d1

d2

d4

d3

d8

d7

d6

d5

Encryption key for subset {d1,d2,d6}

Device exclusion keys

xor

xor

xor

xor

_1170849351.vsd
Group address�

Position�

Content key�

type�

3�

_1171259802.doc

d1

d2

d4

d3

d8

d7

d6

d5

Key derivation function ‘Right’

Key derivation function ‘Left’

_1170849319.vsd
Group address�

Content key�

type�

1�

