OMA-TS-SRM-V1_0-20070604-D
Page 134 V(134)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	OMA Secure Removable Media Specification

	Draft Version 1.0 – 4 June 2007

	Open Mobile Alliance

	OMA-TS-SRM-V1_0-20070604-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

91.
Scope

2.
References
10
2.1
Normative References
10
2.2
Informative References
10
3.
Terminology and Conventions
11
3.1
Conventions
11
3.2
Definitions
11
3.3
Abbreviations
11
3.4
Notations
12
3.5
Binary Structures
12
4.
Introduction
13
4.1
Component and Interface Deployment
13
5.
Secure Removable Media Overview
15
5.1
Information Structure
15
5.1.1
Rights
15
5.1.2
RI Certificate Chain
16
5.1.3
Handle
16
5.1.4
Other Information
16
5.2
Security Algorithms
17
5.3
DRM Agent – SRM Agent Communications
17
5.4
Client – Server Model
18
5.5
Recovery Procedures
18
5.5.1
Exception Handling
18
5.5.2
Operation Log
18
5.6
Notations of Messages
19
5.6.1
Messages
19
5.6.2
Actions
20
5.6.3
Parameters
20
5.6.4
Binary Message
21
5.7
DRM Agent – SRM Agent Protocol
23
5.7.1
Device – SRM Hello
23
5.7.2
MAKE (Mutual Authentication and Key Exchange) Process
27
5.7.3
Secure Authenticated Channel
35
5.7.4
Revocation Status Checking
35
5.7.5
Movement of Rights from Device to SRM
49
5.7.6
Movement of Rights from SRM to Device
57
5.7.7
Local Rights Consumption
61
5.7.8
SRM Utilities
66
6.
Transport Mappings
92
6.1
SRM Communication Layer Model
92
6.1.1
Application Layer
92
6.1.2
Other Layers (Informative)
92
7.
Compact Encoding of Rights
94
7.1
WBXML Encoding Rules
94
7.2
Attribute Code Pages
94
7.2.1
Fixed Attributed Code Page
94
7.2.2
Dynamic Attribute Code Pages
95
7.2.3
Reserved Attribute Code Pages
95
7.3
Tag Code Pages
96
7.3.1
Rights Object Container
96
7.3.2
Dynamic Tag Code Page
97
7.3.3
Reserved Tag Code Pages
97
7.4
Processing
97
7.4.1
Device (DRM Agent)
97
7.4.2
SRM (SRM Agent)
98
7.4.3
Rights Issuers
98
7.5
Data Representation
98
7.5.1
Binary Data Representation
98
7.5.2
base64Binary Representation
98
7.6
Normal Processing and Transcoding
98
Appendix A.
Method for Describing Binary Structures
100
A.1
Mnemonics (Data Types)
100
A.2
Comments
100
A.3
Syntax Description
100
A.4
Padding
101
A.5
Arrays
101
A.6
Optional Variables or Data Structures
102
Appendix B.
Data Format (Normative)
103
B.1
Common Data Structure
103
B.2
Message Parameters
105
B.2.1
Version
105
B.2.2
Algorithms
105
B.2.3
ContentID
105
B.2.4
Handle String
106
B.2.5
Rights
106
B.2.6
Rights Information List
108
B.3
LCID (List of Content Identifier)
108
B.4
Handle List
109
B.5
Dynamic Code Pages
110
B.5.1
Attribute Code Page
110
B.5.2
Tag Code Page
110
Appendix C.
SRM Transport Protocol
112
C.1
HTTP Mapping
112
C.1.1
HTTP Headers
112
C.1.2
SRM Requests
112
C.1.3
SRM Responses
112
C.1.4
HTTP Response Codes
113
Appendix D.
SRM-API (Secure Removable Media – Application Programming Interface) (Informative)
114
D.1
Definition Structures
114
D.2
API List
114
D.2.1
Initialize_Message
115
D.2.2
CRL_Update_Message
115
D.2.3
CRL_Retrieval_Message
116
D.2.4
LRID_Retrieval_Message
117
D.2.5
Rights_Installation_Message
118
D.2.6
Rights_Retrieval_Message
119
D.2.7
Rights_Update_Message
120
D.2.8
Rights_Removal_Message
121
D.2.9
Rights_Lock_Message
122
D.2.10
Rights_Release_Message
123
D.3
Status Codes for API
124
Appendix E.
Certificates and CRL
126
E.1
Certificate Profiles and Requirements
126
E.2
CRL Profiles and Requirements
127
Appendix F.
Move Permission in Rights Object (Normative)
129
F.1
Extension of Permission Model in REL
129
F.1.1
Element <permission>
129
F.1.2
Element <move>
129
Appendix G.
Change History (Informative)
130
G.1
Approved Version History
130
G.2
Draft/Candidate Version <current version> History
130
Appendix H.
Static Conformance Requirements (Normative)
132
H.1
SCR for Client
132
H.2
SCR for Server
133
H.2.1
SCR for RI
133
H.2.2
SCR for SRM Agent
134

Figures

13Figure 1: Secure Removable Media System - Component and Interface

20Figure 2: Notation of Message

20Figure 3: Notation of Action

23Figure 4: Sequence Diagram – Device - SRM Hello

27Figure 5: Sequence Diagram – MAKE Process

37Figure 6: Sequence Diagram – CRL Information Exchange

40Figure 7: Sequence Diagram – OCSP Nonce

42Figure 8: Sequence Diagram – OCSP Processing

44Figure 9: Sequence Diagram – CRL Delivery from Device to SRM

46Figure 10: Sequence Diagram – CRL Delivery from SRM to Device

50Figure 11: Sequence Diagram – Movement of Rights from Device to SRM

57Figure 12: Sequence Diagram – Movement of Rights from SRM to Device

62Figure 13: Sequence Diagram – REK Query

66Figure 14: Sequence Diagram – Handle List Query

69Figure 15: Sequence Diagram – Rights Information Query

72Figure 16: Sequence Diagram – Rights Information List Query

75Figure 17: Sequence Diagram – Handle Removal

77Figure 18: Sequence Diagram – Rights Enablement

80Figure 19: Sequence Diagram – Rights Removal

82Figure 20: Sequence Diagram – Store RI Certificate Chain

84Figure 21: Sequence Diagram – Get RI Certificate Chain

86Figure 22: Sequence Diagram – Remove RI Certificate Chain

88Figure 23: Sequence Diagram – Dynamic Code Page Query

89Figure 24: Sequence Diagram – Dynamic Code Page Update

92Figure 25: SRM Communication Layer

Tables

19Table 1: Operation Log

21Table 2: Notation of Parameters

21Table 3: Message Identifier

22Table 4: Status

23Table 5: Parameters of HelloRequest (Device Hello)

23Table 6: Parameters of HelloResponse (SRM Hello)

24Table 7: Status of Hello Message

28Table 8: Parameters of AuthenticationRequest

28Table 9: Parameters of AuthenticationResponse

29Table 10: Status of Authentication Message

32Table 11: Parameters of KeyExchangeRequest

32Table 12: Parameters of KeyExchangeResponse

33Table 13: Status of Key Exchange Message

35Table 14: Key Materials

37Table 15: Parameters of CRLInformationExchangeRequest

37Table 16: Parameters of CRLInformationExchangeResponse

38Table 17: Status of CRL Information Exchange Message

40Table 18: Parameters of OCSPNonceResponse

40Table 19: Status of OCSP Nonce Message

42Table 20: Parameters of OCSPProcessRequest

42Table 21: Parameters of OCSPProcessResponse

43Table 22: Status of OCSP Process Message

44Table 23: Parameters of CRLUpdateRequest

44Table 24: Parameters of CRLUpdateResponse

44Table 25: Status of CRL Update Message

46Table 26: Parameters of CRLRetrievalRequest

46Table 27: Parameters of CRLRetrievalResponse

46Table 28: Status of CRL Retrieval Message

50Table 29: Parameters of InstallationSetupRequest

51Table 30: Parameters of InstallationSetupResponse

51Table 31: Status of Installation Setup Message

53Table 32: Parameters of RightsInstallationRequest

54Table 33: Parameters of RightsInstallationResponse

54Table 34: Status of Rights Installation Message

57Table 35: Parameters of RightsRetrievalRequest

58Table 36: Parameters of RightsRetrievalResponse

58Table 37: Status of Rights Retrieval Message

62Table 38: Parameters of REKQueryRequest

63Table 39: Parameters of REKQueryResponse

63Table 40: Status of REK Query Message

66Table 41: Parameters of HandleListQueryRequest

67Table 42: Parameters of HandleListQueryResponse

67Table 43: Status of Handle List Query Message

69Table 44: Parameters of RightsInfoQueryRequest

70Table 45: Parameters of RightsInfoQueryResponse

70Table 46: Status of Rights Information Query Message

72Table 47: Parameters of RightsInfoListQueryRequest

72Table 48: Parameters of RightsInfoListQueryResponse

73Table 49: Status of Rights Information List Query Message

75Table 50: Parameters of HandleRemovalRequest

75Table 51: Parameters of HandleRemovalResponse

76Table 52: Status of Handle Removal Message

77Table 53: Parameters of RightsEnablementRequest

78Table 54: Parameters of RightsEnablementResponse

78Table 55: Status of Rights Enablement Message

80Table 56: Parameters of RightsRemovalRequest

80Table 57: Parameters of RightsRemovalResponse

80Table 58: Status of Rights Removal Message

82Table 59: Parameters of RICertificateStoreRequest

82Table 60: Parameters of RICertificateStoreResponse

83Table 61: Status of RI Certificate Store Message

84Table 62: Parameters of RICertificateQueryRequest

84Table 63: Parameters of RICertificateQueryResponse

84Table 64: Status of RI Certificate Query Message

86Table 65: Parameters of RICertificateRemovalRequest

86Table 66: Parameters of RICertificateRemovalResponse

86Table 67: Status of RI Certificate Removal Message

88Table 68: Parameters of DynamicCodePageQueryResponse

88Table 69: Status of Dynamic Code Page Query Message

89Table 70: Parameters of DynamicCodePageUpdateRequest

90Table 71: Parameters of DynamicCodePageUpdateResponse

90Table 72: Status of Dynamic Code Page Update Message

94Table 73: Fixed WBXML Attribute Code Page – Attribute Names

95Table 74: Fixed WBXML Attribute Code Page – Attribute Values

96Table 75: Fixed WBXML Tag Code Page

100Table 76: Data Types

102Table 77: Ranges

114Table 78: API List

124Table 79: Status Codes

126Table 80: SRM Certificate Profile

127Table 81: CRL Profile

128Table 82: RevokedCertificates Entry fields in CRL Profile

1. Scope

The scope of OMA “Secure Removable Media” is to enable the use of the Secure Removable Media based on the OMA DRM version 2.0. This specification defines mechanisms and protocols necessary to implement the Secure Removable Media and the extended part of the OMA DRM version 2.0 system to enable the use of the Secure Removable Media.
2. References

2.1 Normative References

	[AES]
	“NIST FIPS 197: Advanced Encryption Standard (AES)”. November 2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

	[IOPPROC]
	“OMA Interoperability Policy and Process”. Version 1.1. Open Mobile Alliance™. OMA-IOP-Process-V1_1. http://www.openmobilealliance.org/

	[OMADRMv2]
	“Digital Rights Management”. Open Mobile Alliance(. OMA-DRM-DRM-V2_0. http://www.openmobilealliance.org/

	[OMADRMv2.1]
	“Digital Rights Management”. Open Mobile Alliance(. OMA-DRM-DRM-V2_1. http://www.openmobilealliance.org/

	[PKCS-1]
	“PKCS #1 v2.1: RSA Cryptography Standard”. RSA Laboratories. June 2002. http://www.rsasecurity.com/rsalabs

	[HMAC]
	“HMAC: Keyed-Hashing for Message Authentication”. H. Krawczyk, M. Bellare, and R. Canetti. Informational. February 1997. http://www.ietf.org/rfc/rfc2104.txt

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997. http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997. http://www.ietf.org/rfc/rfc2234.txt

	[RFC2396]
	“Uniform Resource Identifiers (URI): Generic Syntax”. T. Berners-Lee, R. Fielding, L. Masinter. August 1998. http://www.ietf.org/rfc/rfc2396.txt

	[RFC2630]
	“Cryptographic Message Syntax”. R. Housley. June 1999. http://www.ietf.org/rfc/rfc2630.txt

	[RFC3280]
	"Internet Public Key Infrastructure - Certificate and Certificate Revocation List (CRL) Profile". R. Housley, W. Polk, W. Ford, and D. Solo. April 2002. http://www.ietf.org/rfc/rfc3280.txt

	[SHA1]
	“NIST FIPS 180-2: Secure Hash Standard”. August 2002. http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

	[WBXML]
	“Binary XML Content Format Specification”. WAP Forum(. WAP-192-WBXML. http://www.openmobilealliance.org/

2.2 Informative References

	[CertProf]
	“Certificate and CRL Profiles”. OMA-Security-CertProf-v1_1. Open Mobile Alliance(. http://www.openmobilealliance.org

	[HTTP]
	“RFC 2616. Hypertext Transfer Protocol – HTTP/1.1”. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June 1999. http://www.ietf.org/rfc/rfc2616.txt

	[ISO/IEC13818-1]
	“ISO/IEC 13818-1, Information technology - Generic coding of moving pictures and associated audio information - Part 1: Systems”. December 2000

	[SRM-AD]
	“OMA Secure Removable Media Architecture”. Open Mobile Alliance(. OMA-AD-SRM-V1_0. http://www.openmobilealliance.org/

	[SRM-RD]
	“OMA Secure Removable Media Requirements”. Open Mobile Alliance(. OMA-RD-SRM-V1_0. http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Composite Object
	A content object that contains one or more Media Objects by means of inclusion (From [OMADRMv2])

	Media Object
	A digital work e.g. a ringing tone, a screen saver, a Java game or a Composite Object (From [OMADRMv2])

	Handle
	A random number generated by the DRM Agent, which is stored in the SRM and in the Operation Log (kept in the Device) used for associating the DRM Agent to specific Rights for the Move or Local Rights Consumption operation

	Operation Log
	A secure log kept in the Device in which transaction information (e.g. ROID, Handle) is stored until a transaction is completed and that is relevant for recovery procedures and for running the SRM access protocols between DRM Agent and SRM Agents

	Permission
	Actual usages or activities allowed (by the Rights Issuer) over Protected Content (From [OMADRMv2])

	Protected Content
	Media Objects that are consumed according to a set of Permissions in a Rights Object (From [OMADRMv2])

	Rights
	A Rights Object and its associated states.

	Rights Issuer
	An entity that issues Rights Objects to OMA DRM conformant devices (From [OMADRMv2])

	Rights Object
	A collection of Permissions and other attributes which are linked to Protected Content (From [OMADRMv2])

	Secure Removable Media
	A removable media that implements means to protect against unauthorized access to its internal data and includes an SRM Agent. (e.g. secure memory card, smart card)

3.3 Abbreviations

	AES
	Advanced Encryption Standard

	CBC
	Cipher Block Chaining

	CEK
	Content Encryption Key

	CRL
	Certificate Revocation List

	DRM
	Digital Rights Management

	HMAC
	Keyed-Hash Message Authentication Code

	HTTP
	Hyper Text Transfer Protocol

	IV
	Initial Vector

	KDF
	Key Derivation Function

	LCID
	List of Content Identifier

	MAC
	Message Authentication Code

	MAKE
	Mutual Authentication and Key Exchange

	MK
	MAC Key

	OCSP
	Online Certificate Status Protocol

	OMA
	Open Mobile Alliance

	PKCS
	Public Key Cryptography Standards

	REK
	Rights Object Encryption Key

	RI
	Rights Issuer

	ROID
	Rights Object Identifier

	RO
	Rights Object

	ROAP
	Rights Object Acquisition Protocol

	RSA
	Rivest-Shamir-Adelman public key algorithm

	RSA-OAEP
	RSA encryption scheme - Optimal Asymmetric Encryption Padding

	RSA-PSS
	RSA Probabilistic Signature Scheme

	R-UIM
	Removable User Identity Module

	SAC
	Secure Authenticated Channel

	SD
	Secure Digital

	SHA1
	Secure Hash Algorithm

	SK
	Session Key

	S-MMC
	Secure MultiMediaCard

	SIM
	Subscriber Identity Module

	SRM
	Secure Removable Media

	USIM
	UMTS Subscriber Identity Module

3.4 Notations

The following notation is used in this specification:
	X | Y
	Concatenation of X and Y

	E (K , M)
	The result of encrypting message M using the RSA key K

	H (X)
	The result of computing a hash on X

	HMAC (K , X)
	The result of computing an HMAC on X using the key K

The following typographical conventions are used in the body of the text: BinaryDataStructureVariables, Message Parameters, <XML Elements>
3.5 Binary Structures

This document uses a “C” like language to describe the binary data structures used. The details are provided in Appendix A.
4. Introduction

Secure Removable Media is a removable media that implements means to protect against unauthorized access to its internal data and includes an SRM Agent. Example of Secure Removable Media (referred to as SRM hereinafter) may be the secure memory card and the smart card.

The secure memory card has an embedded microprocessor and is capable of storing Rights or contents in a secure manner (e.g. S-MMC, SD). The smart card also has an embedded microprocessor and is capable of storing access codes, user subscription information, secret keys, contents, Rights etc (e.g. SIM, USIM, R-UIM). If a user uses devices with a physical interface to connect SRM, the user can use the SRM as a mean of increasing storage space for contents and portability of Rights. Differently from the secure memory card, the smart card enables users to make a telephone call by using the devices and is issued by a mobile network operator.

OMA DRM with SRM can provide a mechanism to write, read, delete and update Rights in SRM in a secure manner to realize the use cases defined in the OMA SRM requirements document [SRM-RD]. The architecture of the OMA SRM is specified in the OMA SRM architecture document [SRM-AD].
While the OMA DRM version 2.0 [OMADRMv2] defines an end-to-end system for Protected Content and Rights Object distribution among the device, the rights issuer and the content issuer, this specification defines mechanisms and protocols of the SRM to extend the OMA DRM version 2.0 to allow users to move Rights between the device and the SRM and to consume Rights stored in the SRM.
4.1 Component and Interface Deployment

[image: image2.emf]DRM Agent SRM Agent

Device Secure Removable Media

Trusted Entity User Equipment

Rights Issuer

ROAP (OMA DRM V2.0)

Operating System

Secure

Storage

Mass

Storage

Out of Scope

Figure 1: Secure Removable Media System - Component and Interface
The Secure Removable Media system is a set of three entities: Rights Issuer, DRM Agent and SRM Agent.

The Rights Issuer and DRM Agent communicate each other by the ROAP as defined in [OMADRMv2]. The DRM Agent and SRM Agent exchange messages as specified in section 5.7.
The SRM Agent has an internal secure communication with the Secure Storage. The implementation of the communication is out of scope of this specification. For the completeness of the security in the Secure Removable Media system, this specification assumes the follows:

· Only the SRM Agent can access the Secure Storage (i.e. the DRM Agent cannot directly access the Secure Storage).

· To perform an action on information in the Secure Storage, the DRM Agent requests the action to the SRM Agent. After performing the action, the SRM Agent passes the result of the action to the DRM Agent (i.e. the DRM Agent cannot receive information from the Secure Storage, if the information is not produced by the SRM Agent.).
5. Secure Removable Media Overview
This specification defines actions and interfaces of the Rights Issuer, DRM Agent, and SRM Agent.
5.1 Information Structure
5.1.1 Rights
This section specifies Rights stored in SRM(s). Rights may be stored in SRM(s) by being preloaded or moved from a Device by the Move Permission granted by Rights Issuers. Rights consist of Rights Meta Data, Rights Object Container, State Information and REK. XML elements and attributes referred to in this section are specified in [OMADRMv2].
The Rights MUST be securely stored in the SRM.
5.1.1.1 Rights Meta Data

Rights Meta Data consists of following information:

· Rights Object Version

· RO Alias

· RI Identifier

· RI URL

· RI Alias

Appendix B.2.5.1 specifies the data structure of the Rights Meta Data.
5.1.1.2 Rights Object Container
A Rights Object is a collection of Permissions and other attributes which are linked to DRM Content(s). The Rights Object is stored in an SRM in the format of the Rights Object Container. The SRM Agent treats the Rights Object Container as an opaque object.

In case a DRM 2.0 or 2.1 Rights Object is stored in the SRM, the Rights Object Container consists of the <rights> element and the <signature> element in the RO payload (i.e. <ro> element of the <protectedRO> element in the RO Response of ROAP). The RI-signature (i.e. <signature> element in the RO payload) MUST be present in the Rights Object Container. The RI-signature is created by a Rights Issuer that is identified by the <riID> element in the RO payload. The SRM Agent doesn’t verify the RI-signature.
DRM Agents MAY compact the Rights Object Container using WBXML (as defined in section 7) before transferring Rights from the Device to the SRM.
It is RECOMMENDED that the Rights Issuer not generate a Rights Object (in XML format) larger than 4096 bytes if the Rights Object may be installed in an SRM. Appendix B.2.5.2 specifies the data structure of the Rights Object Container.

Note: The SRM version 1.0 doesn’t support domain Rights Objects. (i.e. Domain Rights Objects SHALL NOT be stored in the SRM.)
5.1.1.3 State Information
State Information is the current state of stateful Rights Objects. This is present in Rights if the Rights Object is stateful. Appendix B.2.5.3 specifies the data structure of the State Information in detail.
5.1.1.4 REK

REK is Rights Object Encryption Key (REK) in binary form, i.e. no base64 encoding. When the REK is transferred between the Device and SRM, the confidentiality of the REK MUST be protected by a Secure Authenticated Channel. The REK MUST also be securely stored in the SRM.

Appendix B.2.5.5 specifies the data structure of the REK.
5.1.2 RI Certificate Chain
The Device makes RI certificate chains available to SRMs with which it communicates. The SRM MAY store RI certificate chains. The SRM Agent may make such certificate chains available to DRM Agents with which it communicates. The DRM Agent uses the appropriate RI certificate chain when verifying the RI-signature of a Rights Object.
Trust authorities may decide whether the verification of the RI-signature is necessary or not when the Rights is installed in the Device as a part of the Rights Move (Refer to section 5.7.6). The default behaviour is that the DRM Agent MUST verify the RI-signature and its RI certificate chain.

When Rights in the SRM are used for the Local Rights Consumption (refer to section 5.7.7), the DRM Agent SHOULD verify the RI-signature.

If RI-signature verification is required and the SRM does not provide the RI certificate chain, the Device MUST get the certificate chain (if it does not have it already). The DRM Agent can acquire the RI certificate chain via a DRM v2.0 RI Registration or via other methods specified by a trust authority. The DRM Agent is not required to check the RI revocation status and RI certification chain expiration during RI-signature verification.
5.1.3 Handle

The Handle is a random number generated by a DRM Agent and used to identify Rights on the SRM that the DRM Agent intends to access for the Move or Local Rights Consumption operation.
The Handle is stored in the SRM and in the Operation Log. Note, the Operation Log is kept in the Device and used for associating the DRM Agent to specific Rights for the Move or Local Rights Consumption operation.

When sending the initial message of Move or Local Rights Consumption, the DRM Agent MUST generate a Handle and send it to the SRM.
The usage of the Handle is specified in the sections for Move and Local Rights Consumption.
5.1.4 Other Information

This section specifies information that is used by SRM Agents. XML elements and attributes referred to in this section are specified in [OMADRMv2].

5.1.4.1 Rights Object Identifier
Rights Object Identifier uniquely identifies Rights. This is the value of the <uid> element in the <context> element that is a child of the <rights> element in the Rights Object. This value MUST be identical to the id attribute of the <ro> element in the <protectedRO> element which is included in the RO Response of ROAP.
The Rights Object Identifier is referred to as ROID hereinafter in this specification.
Devices and SRMs MUST support ROIDs of at least 256 bytes. It is RECOMMENDED that the Rights Issuer set the ROID to no more than 256 bytes if the Rights may be installed in an SRM.
5.1.4.2 Content Identifier

Content Identifier is included in a Rights Object and identifies a DRM Content. It is defined in [OMADRMv2]. The identification may be equivalent to a subscription identifier or a Group ID for a corresponding group of DRM Contents. These terms (subscription identifier and Group ID) are defined in [OMADRMv2]. The Content Identifier is referred to as ContentID hereinafter in this specification.
Devices and SRMs MUST support ContentIDs of at least 256 bytes. It is RECOMMENDED that a content author not use a ContentID larger than 256 bytes if the Rights may be installed in an SRM.
5.1.4.3 Rights Information

Rights Information consists of Rights Meta Data, Rights Object Container, and State Information. This doesn’t include REK. The State Information is present in the Rights Information if the Rights Object in the Rights Object Container is stateful. Appendix B.2.5.4 specifies the data structure of the Rights Information.
5.1.4.4 List of Content Identifier
A Rights Object may be associated with one DRM Content or with multiple DRM Contents. List of Content Identifier is a list that identifies DRM Contents which are associated with the Rights Object. Appendix B.3 specifies the data structure of the List of Content Identifier. The list comprises the hash of DRM Content identifiers. The hash algorithm is SHA-1.
The List of Content Identifier is referred to as LCID hereinafter in this specification.
5.1.4.5 Handle List
Handle List consists of the Handles of the Rights in an SRM which are associated with a specific DRM Content. Appendix B.4 specifies the data structure of the Handle List.
5.1.4.6 Rights Information List

Rights Information List consists of one or multiple Rights Information. Appendix B.2.6 specifies the data structure of the Rights Information List.
5.2 Security Algorithms
For the MAKE process and Secure Authenticated Channel, the following cryptographic algorithms are used in this specification. The following algorithms and associated URIs MUST be supported by all DRM Agents and SRM Agents.
Hash algorithms:

SHA-1 [SHA1]: http://www.w3.org/2000/09/xmldsig#sha1
MAC algorithms:

HMAC-SHA-1 [HMAC]: http://www.w3.org/2000/09/xmldsig#hmac-sha1
Symmetric encryption algorithms:

AES-128-CBC [AES]: http://www.w3.org/2001/04/xmlenc#aes128-cbc
Asymmetric encryption algorithms:

RSA-OAEP (v2.1) [PKCS-1]: http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1
Signature algorithms:

RSA-PSS (v2.1) [PKCS-1]: http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1
5.3 DRM Agent – SRM Agent Communications
A DRM Agent communicates to an SRM Agent over a communication channel. How this communication channel is established is beyond the scope of this document. It is presumed that the DRM Agent can use the services of the underlying layers to establish the channel. Once this channel has been established, one or more logical channels are established, depending on what kind of information needs to be exchanged and how many trust authorities are supported by the SRM Agent.
5.4 Client – Server Model

The model used for the communications between the DRM Agent and the SRM Agent is a client – server model. The DRM Agent is always the client and the SRM Agent is always the server. The SRM Agent does not act by itself. It only acts when it receives a request from a client (a DRM Agent) and then responds to that request.

In addition, it is always the DRM Agent that establishes the physical and logical communication channels.
5.5 Recovery Procedures
5.5.1 Exception Handling
During the execution of access protocols between the DRM Agent and SRM Agent as specified in sections 5.7.5, 5.7.6, and 5.7.7, exception handling may become necessary. Exceptional cases are, for example, the unexpected unplugging of the SRM or Device power-off. In particular during Move or Local Rights Consumption various exceptions can occur that must be handled properly. The appropriate recovery steps are explained in the subsections of sections 5.7.5, 5.7.6, and 5.7.7. This section specifies an Operation Log and the Handle concept, which is needed for the recovery.
The following assumptions are necessary for a smooth recovery and the least effort for both, DRM Agent and SRM Agent:

· The DRM Agent maintains an Operation Log. Details of this record can be found in section 5.5.2.
· The SRM Agent maintains a Handle. Details of the Handle can be found in section 5.1.3.
· If any exception occurs during the Local Rights Consumption in section 5.7.7, then the Device SHOULD stop the associated DRM Content use.

· If any exception occurs during the Move of Rights from or to the SRM, then a Right is either on the Device or the SRM accessible, i.e. the same Rights MUST NOT be usable at Device and SRM at the same time.
· In some cases, recovery may involve user interaction.
5.5.2 Operation Log

An Operation Log is a secure log kept in the Device in which transaction information (e.g. ROID, Handle) is stored until a transaction is completed and that is relevant for recovery procedures and for running the SRM access protocols between DRM Agent and SRM Agents.
Each DRM Agent MUST keep an Operation Log, in which the status of protocol execution for

· Move transaction or
· Local Rights Consumption transaction
is recorded.
After successful execution of the MAKE protocol between the DRM Agent and SRM Agent as specified in section 5.7.2, the DRM Agent checks whether there is an Operation Log associated with the SRM Agent.
If an Operation Log exists, recovery procedures may be necessary. The DRM Agent analyzes the Operation Log in order to determine appropriate recovery actions. Details on the recovery procedure are part of the description of each function in sections 5.7.5, 5.7.6, and 5.7.7.
If no Operation Log exists, the DRM Agent MUST create an Operation Log before starting Move or Local Rights Consumption transaction with the SRM as specified in sections 5.7.5, 5.7.6, and 5.7.7.

If the transaction is not completed, the DRM Agent MUST keep the Operation Log.

The Operation Log is specified in Table 1.

Table 1: Operation Log
	Log
	Description

	SRM ID
	This identifies an SRM that the Device is interacting with. This is the SHA1-hash of the SRM’s public key in the SRM Certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the SRM Certificate).

	ROID
	This identifies the Right that is the target of a transaction. Refer to section 5.1.4.1

	Handle
	This is generated by the DRM Agent and identifies a Rights in the SRM.

	Function Identifier
	This identifies a transaction that the DRM Agent and SRM Agent are performing. This identifies one of the transactions.
· Movement of Rights from Device to SRM (in section 5.7.5)
· Movement of Rights from SRM to Device (in section 5.7.6)
· Local Rights Consumption (in section 5.7.7)

	Status
	This represents the current execution step of a transaction as identified by the function identifier and also records whether the transaction is successfully completed or not.
If the function identifier refers to “Movement of Rights from Device to SRM”, then the DRM Agent makes a record after starting one of the following steps:
· Installation Setup Message
· Rights Disablement in Device
· Rights Installation Message
· Rights Removal in Device

If the function identifier refers to “Movement of Rights from SRM to Device”, then the DRM Agent makes a record after starting one of the following steps:
· Rights Retrieval Message
· Rights Installation in Device
· Rights Removal Message
If the function identifier refers to “Local Rights Consumption”, then the DRM Agent makes a record after starting one of the following steps:

· REK Query Message
· Rights Enablement Message

5.6 Notations of Messages
This section presents notations used in this specification.
5.6.1 Messages
A message is data communication between the DRM Agent and the SRM Agent in this specification. The communication is based on a request-response mechanism. A message consists of a request and a response. For all messages between the DRM Agent and the SRM Agent, the DRM Agent sends a request to the SRM Agent to perform a specific action, and then the SRM Agent sends a response back to the DRM Agent for the request.

[image: image3.emf]Entity A Entity B

{message name}Request

{message name}Response

Figure 2: Notation of Message
In Figure 2, the solid line from the entity A to the entity B denotes a request and the solid line from the entity B to the entity A denotes a response. The entity A sends the request to the entity B to perform a specific action. After this, the entity B sends the response back to the entity A.

Names of requests and responses are ended with the string “Request” and “Response” (e.g. RightsInstallationRequest and RightsInstallationResponse).

This notation is used for all messages in this specification.
5.6.2 Actions
An action is a specific operation of the DRM Agent or the SRM Agent. The DRM Agent performs a specific action independently, but the SRM Agent performs a specific action by a request from the DRM Agent. For each action in the SRM, the SRM Agent sends a response to the DRM Agent.

[image: image4.emf]Entity C

{action name}

Figure 3: Notation of Action
In Figure 3, the curved line denotes an action. The entity C performs an action. Each action has a name (e.g. RightsInstallationInSRM). All action names are ended with the string “In{Place}”, in case that the action is performed in the “Place”.
5.6.3 Parameters
A parameter is a data unit which is passed from an entity to the other entity to make the recipient entity perform an action by using the parameter.

Messages in this specification carry a set of parameters from the DRM Agent to the SRM Agent or vice versa. The parameters are denoted by using a table as Table 2 below. A request and response have their own parameter tables (i.e. one parameter table for the request and one parameter table for the response).
Table 2: Notation of Parameters
	Parameters
	Protection Requirement
	Description

	A
	Integrity
	

	B
	Confidentiality
	

	C
	Integrity & Confidentiality
	

	D
	No
	

The Table 2 shows that a message carries 4 parameters – A, B, C, and D. The “Protection Requirement” column denotes the minimum security requirement that MUST be protected by a Secure Authenticated Channel. (i.e. the integrity of the parameter A MUST be guaranteed, the confidentiality of the parameter B MUST be guaranteed , both of the integrity and confidentiality of the parameter C MUST be guaranteed, and the parameter D is not needed to be protected.) The “Description” column shows detail of parameters.

5.6.4 Binary Message

5.6.4.1 Message Format

All messages between the DRM Agent and SRM Agent have the following generic format:
MessageFormat ()

 protectedFlag
1
bslbf

 messageIdentifier
6
bslbf

 messageType
1
bslbf

 MessageBody()

}

The fields are defined as follows:

· protectedFlag - This flag is set to ‘1’ if the message is protected by a Secure Authenticated Channel.

· messageIdentifier - This field defines the identifier of messages being communicated. This is defined in Table 3
· messageType - This flag is set to ‘0’ if this is a request from the DRM Agent to SRM Agent. In case of a response, it’s set to ‘1’.

· MessageBody - This field contains parameters of a message. The MessageBody is specified in each sub-section in section 5.7.
Table 3: Message Identifier
	Identifier Value
	Description

	0
	Hello

	1
	Authentication

	2
	Key Exchange

	3
	CRL Information Exchange

	4
	OCSP Nonce

	5
	OCSP Process

	6
	CRL Update

	7
	CRL Retrieval

	8
	Installation Setup

	9
	Rights Installation

	10
	Rights Retrieval

	11
	REK Query

	12
	Rights Info Query

	13
	Handle List Query

	14
	Handle Removal

	15
	Rights Enablement

	16
	Rights Removal

	17
	RI Certificate Store

	18
	RI Certificate Query

	19
	RI Certificate Removal

	20
	Dynamic Code Page Query

	21
	Dynamic Code Page Update

	22
	Rights Info List Query

	23 ~ 63
	Reserved For Future Use

5.6.4.2 Status

Each response message (i.e. messageType is set to 1) has status parameter indicating the result whether its previous request message (i.e. messageType is set to 0) is successfully handled or not. Table 4 assigns integer value to each error code of the parameter. This is 2 byte integer.

Table 4: Status
	Identifier Value
	Error Code in Status

	0
	Success

	1
	Unknown Error

	2
	Trust Anchor Not Supported

	3
	Device Certificate Chain Verification Failed

	4
	Parameter Decryption Failed

	5
	SRM Random Number Mismatched

	6
	Version Mismatched

	7
	CRL Update Needed

	8
	OCSP Not Supported

	9
	OCSP Response Verification Failed

	10
	Invalid OCSP Nonce

	11
	CRL Verification Failed

	12
	CRL Not Found

	13
	Parameter Integrity Verification Failed

	14
	Duplicate Handle

	15
	Not Enough Space

	16
	Handle Not Found

	17
	Handle List Not Found

	18
	Handle Not Removed

	19
	Function Not Supported

	20
	RI Certificate Chain Not Found

	21
	Dynamic Code Pages Not Found

	22 ~ 65535
	Reserved For Future Use

5.7 DRM Agent – SRM Agent Protocol
5.7.1 Device – SRM Hello
This is the first setup of the DRM Agent – SRM Agent communications. The DRM Agent negotiates the protocol version with the SRM Agent, and receives a list of trust authorithes supported by the SRM Agent.
5.7.1.1 Hello Message

[image: image5.emf]HelloRequest (Device Hello)

HelloResponse (SRM Hello)

DRM Agent SRM Agent

Figure 4: Sequence Diagram – Device - SRM Hello
5.7.1.1.1 Message Description

The DRM Agent sends the HelloRequest (Device Hello message) to initiate a logical channel with the SRM Agent. The parameters of the request are defined in Table 5.

Table 5: Parameters of HelloRequest (Device Hello)
	Parameters
	Protection Requirement
	Description

	Version
	No
	Version is a <major.minor> representation of the highest SRM protocol version number supported by the DRM Agent. DRM Agents MUST support all versions prior to and equal to the one they suggest.
For this version of the protocol, Version SHALL be set to "1.0" without quotes. Minor version upgrades MUST always be backwards compatible.

	Device ID List
	No
	Device ID List identifies the Device Certificates in the Device to the SRM Agent. The identifiers are the hash of the Device’s public keys in the Device Certificates (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the Device Certificate). The default hash algorithm is SHA-1.

Upon receiving the HelloRequest, the SRM Agent selects a protocol version supported by the SRM.
After this completing this step, the SRM Agent sends the HelloResponse (SRM Hello message) to the DRM Agent. The parameters of the response are defined in Table 6. If any error occurs during this action, the error MUST be reported to the DRM Agent. The Status parameter of the HelloResponse contains the error cases as specified in Table 7.
Table 6: Parameters of HelloResponse (SRM Hello)
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the HelloRequest is successfully handled or not. The Status value is specified in Table 7.

If the Status contains any error, only this parameter is present in the HelloResponse.

	Selected Version
	No
	The protocol version selected by the SRM Agent. The Selected Version will be min(DRM Agent suggested version, highest version supported by the SRM Agent). The min(A,B) = A where A <= B.

	Trusted Authorithes
	No
	The list of trust anchors supported by the SRM Agent. The trust anchor is the hash of the public key of the root certificate in the Device Certificate Chain (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the root certificate). The default hash algorithm is SHA-1.

	Peer Key Identifier List
	No
	Identifiers for a Device’s public key stored by the SRM. If the identifiers match the Device IDs in the Device ID List in the preceeding HelloRequest, it means the SRM has already stored that Device IDs and the corresponding Device Certificate Chains, and the DRM Agent need not send that certificate chains in a later message. Keys are identified in the same way as DRM Agents are (a hash of the DER-encoded subjectPublicKeyInfo component of the Device Certificate). If the SRM has stored the Device’s public keys (corresponding certificate chain), then the SRM Agent MUST include this parameter in the HelloResponse.

	Max Number Of ContentIDs
	No
	This field contains the maximum number of ContentIDs that will be returned in the HandleListQueryResponse (see section 5.7.8.1.1).

	Optional Messages Supported
	No
	This field indiciates which optional messages are supported by the SRM.

Table 7: Status of Hello Message
	Status Value
	Description

	Success
	The request is successfully handled

	Unknown Error
	Other errors

Upon receiving the HelloResponse and Status is Success, the DRM Agent continues with the MAKE process in section 5.7.2.
5.7.1.1.2 Message Format

The message format (MessageBody) of the HelloRequest is specified as follows. The messageType and protectedFlag are set to ‘0’.
Version() {

 VersionString()

}

DeviceId()

{

 OctetString8()

}

DeviceIdList() {

 numOfDeviceId
8
uimsbf

 for (i = 0 ; i < numOfDeviceId ; i++) {

 DeviceId()
 }
}

MessageBody() {
 Version()

 DeviceId()

}

The fields are defined as follows:

· Version - Version parameter in Table 5
· DeviceIdList – Device ID List parameter in Table 5
The message format (MessageBody) of the HelloResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
SelectedVersion() {

 VersionString()

}

TrustedAuthorities() {

 numOfTrustedAuthorithes

8
uimsbf
 for (i = 0 ; i < numOfTrustedAuthorithes ; i++) {

 OctetString8()
 }

}

PeerKeyIdentifier() {

 OctetString8()
}

PeerKeyIdentifierList() {

 numOfPeerKeyIdentifier

8
uimsbf

 for (i = 0 ; i < numOfPeerKeyIdentifier ; i++) {

 PeerKeyIdentifier()
 }

}

OptionalMessages() {

 ocspSupported

1
bslbf

 rightsInfoListSupported

1
bslbf

 riCertificateStorageSupported

1
bslbf

 riCertificateRemovalSupported

1
bslbf

 dynamicCodePageSupported

1
bslbf

 rfu

11
bslbf

}
MessageBody() {

 status

16
uimsbf

 if (status == 0) {

 peerKeyIdentifierListPresent
1
bslbf
 rfu

7
bslbf
 SelectedVersion()

 TrustedAuthorities()

 if (peerKeyIdentifierListPresent) {
 PeerKeyIdentifierList()
 }

 maxNbrOfContentIds

16
uimsbf
 OptionalMessages()
 }

}

The fields are defined as follows:

· status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.
· peerKeyIdentifierListPresent – if ‘1’, then PeerKeyIdentifierList is present in this message
· SelectedVersion - Selected Version parameter in Table 6
· TrustedAuthorities – Trusted Authorities parameter in Table 6
· PeerKeyIdentifierList – PeerKeyIdentifierList parameter in Table 6
· maxNbrOfContentIds – Max Number of ContentIDs parameter in Table 6
· OptionalMessages – Optional Messages Supported parameter in Table 6. The contained flags have meaning as follows:
· ocspSupported – if ‘0’, the OCSP Nonce and OCSP Process messages in section 5.7.4.2 and 5.7.4.3 are not supported by the SRM Agent. If ‘1’, the messages are supported by the SRM Agent.
· rightsInfoListSupported – if ‘0’, the Rights Info List Query message in section 5.7.8.3 is not supported by the SRM Agent. If ‘1’, the message is supported by the SRM Agent.
· riCertificateStorageSupported – if ‘0’, the RI Certificate Store and RI Certificate Query messages in section 5.7.8.7 and 5.7.8.8 are not supported by the SRM Agent. If ‘1’, the messages are supported by the SRM Agent.
· riCertificateRemovalSupported – if ‘0’, the RI Certificate Removal message in section 5.7.8.9 is not supported by the SRM Agent. If ‘1’, the message is supported by the SRM Agent.
· dynamicCodPageSupported – if ‘0’, the Dynamic Code Page Query and Dynamic Code Page Update messages in section 5.7.8.10 and section 5.7.8.11 are not supported by the SRM Agent. If ‘1’, the messages are supported by the SRM Agent.
5.7.1.1.3 Exception Handling

There may be an unexpected exception during the Hello Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.
5.7.2 MAKE (Mutual Authentication and Key Exchange) Process

[image: image6.emf]DRM Agent SRM Agent

AuthenticationRequest

KeyExchangeRequest

AuthenticationResponse

KeyExchangeResponse

Figure 5: Sequence Diagram – MAKE Process
5.7.2.1 Authentication Message
The DRM Agent sends the AuthenticationRequest to the SRM Agent, in order to select one of the trust anchors, and negotiate security algorithms used by the DRM Agent and SRM Agent. This request expresses Device information and preferences. The AuthenticationResponse expresses SRM information and preferences. The DRM Agent and SRM Agent also exchange their certificate chains and verify them.
5.7.2.1.1 Message Description

The DRM Agent sends the AuthenticationRequest to initiate a MAKE process. The parameters of the request are defined in Table 8.
Table 8: Parameters of AuthenticationRequest
	Parameters
	Protection Requirement
	Description

	Trust Anchor
	No
	Trust Anchor preferred by the DRM Agent. This is selected from Trusted Authorities in Table 6.
Trust anchors are identified as the hash of the public key of the root certificate in the Device Certificate Chain (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the root certificate). The default hash algorithm is SHA-1.

	Device Certificate Chain
	No
	A certificate chain including the Device Certificate. The chain MUST NOT include the root certificate. The Device Certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it. Refer to Appendix E.1
If the Peer Key Identifier List parameter is present in the HelloResponse and the List contains the Device ID corresponding to the Device Certificate Chain, then this parameter need not be sent in the AuthenticationRequest.

	Supported Algorithms
	No
	Supported Algorithms identifies the cryptographic algorithms (hash algorithms, MAC algorithms, signature algorithms, asymmetric encryption algorithms, symmetric encryption algorithm, and key derivation functions) that are supported by the DRM Agent. Algorithms are identified using common URIs as specified in section 5.2. The algorithms and associated identifiers MUST be supported by all DRM Agents and SRM Agents.

Use of other algorithms is optional. Since all DRM Agents and all SRM Agents must support the default algorithms, they need not be sent in this parameter. Only identifiers for algorithms that are not one of the defaults needs to be sent in the AuthenticationRequest.

Upon receiving the AuthenticationRequest, the SRM Agent verifies the Device Certificate Chain if present. When the Device Certificate Chain is not present even if the HelloResponse doesn’t include Peer Key Identifier, the SRM Agent returns Device Certificate Chain Verification Failed in the Status of the response.
After this action, the SRM Agent sends the AuthenticationResponse to carry the result of the action. The parameters of the response are defined in Table 9. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the AuthenticationResponse contains the error cases as specified in Table 10.
Table 9: Parameters of AuthenticationResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the AuthenticationRequest is successfully handled or not. The Status value is specified in Table 10.

	SRM Certificate Chain
	No
	A certificate chain including the SRM Certificate. The chain MUST NOT include the root certificate. The SRM Certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it. Refer to Appendix E.1

	Encrypted AuthResp Data
	No
	E (PuKeyD , M) where M = RNS | Version | Supported Algorithms | Selected Algorithms
RNS is a random number generated by the SRM Agent
Version is identical to Version received by the SRM Agent in the HelloRequest.
Supported Algorithms is identical to Supported Algorhtms received by the SRM Agent in the AuthenticationRequest
Selected Algorithms specify the cryptographic algorithms selected by the SRM Agent. If the DRM Agent indicated support of only mandatory algorithms (i.e. left out the Supported Algorithm parameter in the AuthenticationRequest, or the DRM Agent only supports the mandatory algorithms), then the SRM Agent need not include this parameter. Otherwise, the SRM Agent MUST provide this parameter and MUST identify one algorithm of each type.
M is encrypted with the Device’s public key (PuKeyD).

Table 10: Status of Authentication Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Trust Anchor Not Supported
	Trust Anchor in the request is not supported by the SRM Agent

	Device Certificate Chain Verification Failed
	The SRM Agent fails to verify the Device Certificate Chain.

	Unknown Error
	Other errors

Upon receiving the AuthenticationResponse and Status is Success, the DRM Agent verifies the SRM Certificate Chain. After the verification, the DRM Agent decrypts RNS, Version, Supported Algorithms and Selected Algorithms with the Device’s private key.
Then the DRM Agent compares Version to the Version parameter sent in the HelloRequest, and also compares Supported Algorithms to the Supported Algorithms sent in the AuthenticationRequest. If both are identical and it is sure that the Selected Algorithms are from the Supported Algorithms, the DRM Agent continues with section 5.7.2.2.
5.7.2.1.2 Message Format

The message format (MessageBody) of the AuthenticationRequest is specified as follows. The messageType and protectedFlag are set to ‘0’.
TrustAnchor() {

 OctetString8()

}

DeviceCertificateChain() {

 CertificateChainString()

}

SupportedAlgorithms() {

 Algorithms()

}

MessageBody() {

 deviceCertificateChainPresent
1
bslbf
 supportedAlgorithmsPresent
1
bslbf
 rfu

6
bslbf
 TrustAnchor()

 if (deviceCertificateChainPresent) {

 DeviceCertificateChain()

 }

 if (supportedAlgorithmsPresent) {

 SupportedAlgorithms()

 }

}

The fields are defined as follows:

· deviceCertificateChainPresent - if ‘1’, then DeviceCertificateChain is present in this message
· supportedAlgorithmsPresent - if ‘1’, then SupportedAlgorithms is present in this message
· TrustAnchor – Trust Anchor parameter in Table 8
· DeviceCertificateChain – Device Certificate Chain parameter in Table 8
· SupportedAlgorithms – Supported Algorithms parameter in Table 8
The message format (MessageBody) of the AuthenticationResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
RandomNumber() {

 RandomNumberString()
}

Version() {

 VersionString()

}

SupportedAlgorithms() {

 Algorithms()

}

SelectedAlgorithms() {

 Algorithms()

}

SrmCertificateChain() {

 CertificateChainString()

}

AuthRespData() {
 supportedAlgorithmsPresent
1
bslbf
 selectedAlgorithmsPresent

1
bslbf
 rfu

6
bslbf
 RandomNumber()

 Version()

 if (supportedAlgorithmsPresent) {

 SupportedAlgorithms()
 }

 if (selectedAlgorithmsPresent) {

 SelectedAlgorithms()

 }

}
EncryptAuthRespData() {

 EncryptedString()

}

MessageBody() {

 status

16
uimsbf

 if (status == 0) {

 SrmCertificateChain()

 EncryptAuthRespData()

 }

}

The fields are defined as follows:

· AuthRespData – M value of Encrypted AuthResp Data parameter in Table 9
· supportedAlgorithmsPresent – if ‘1’, then SupportedAlgorithms is present in AuthRespData
· selectedAlgorithmsPresent – if ‘1’, then SelectedAlgorithms is present in AuthRespData
· RandomNumber – RNS value of Encrypted AuthResp Data parameter in Table 9
· Version –Version value of Encrypted AuthResp Data parameter in Table 9
· SupportedAlgorithms – Supported Algorithms value of Encrypted AuthResp Data parameter in Table 9
· SelectedAlgorithms – Selected Algorithms value of Encrypted AuthResp Data parameter in Table 9
· status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.
· SrmCertificateChain – SRM Certificate Chain parameter in Table 9
· EncryptedAuthRespData – Encrypted AuthRespData with the Device’s public key
5.7.2.1.3 Exception Handling
There may be an unexpected exception during the Authentication Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, finds an error by referring to the Status, fails to verify the SRM Certificate Chain, or fails to decrypt the Encrypted AuthResp Data, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.
In case Version is not matched with the Version parameter sent in the HelloRequest, or Supported Algorithms is not matched with the Supported Algorithms sent in the AuthenticationRequest, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent.
5.7.2.2 Key Exchange Message

This step performs key exchange and key confirmation.

5.7.2.2.1 Message Description

The DRM Agent generates a random number (RND), and encrypts it with the SRM’s public key. At this step, the DRM Agent also encrypts the hash of the SRM Random Number (RNS) received in the AuthenticationResponse.
Then the DRM Agent sends the KeyExchangeRequest to exchange keys with the SRM Agent. The parameters of the request are defined in Table 11.
Table 11: Parameters of KeyExchangeRequest
	Parameters
	Protection Requirement
	Description

	Encrypted KeyEx Data
	No
	E (PuKeyS , M) where M = RND | H(RNS) | Selected Version
Selected Version is identical to the Selected Version received by the DRM Agent in the HelloResponse
M is encrypted with SRM’s public key (PuKeyS).

Upon receiving the KeyExchangeRequest, the SRM Agent decrypts Encrypted KeyExData with the SRM’s private key.
The SRM Agent compares the decrypted H(RNS) to the hash of the random number (RNS) that the SRM Agent has sent in the AuthenticationResponse. The SRM Agent also compares the decrypted Selected Version to the Selected Version parameter sent in the HelloResponse.
After this action, the SRM Agent sends the KeyExchangeResponse to carry the result of the action. The parameters of the response are defined in Table 12. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the KeyExchangeResponse contains the error cases as specified in Table 13.
Table 12: Parameters of KeyExchangeResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the KeyExchangeRequest is successfully handled or not. The Status value is specified in Table 13.
If the Status contains any error, only this parameter is present in the KeyExchangeResponse.

	Hashed RanNum Data
	No
	H(M) where M = RND | RNS. M is hashed by using SHA-1.

Table 13: Status of Key Exchange Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Decryption Failed
	The SRM Agent fails to decrypt the encrypted parameters.

	SRM Random Number Mismatched
	The SRM Random Number from the DRM Agent is not identical to its original value in the SRM.

	Version Mismatched
	The Selected Version received in KeyExchagenRequest is not matched with the original value sent in the HelloResponse.

	Unknown Error
	Other errors

Upon receiving the KeyExchangeResponse and Status is Success, the DRM Agent confirms whether the hashed Device Random Number (RND) and SRM Random Number (RNS) are matched with the random numbers exchanged in the AuthenticationResponse and KeyExchangeRequest.

After the key exchange and key confirmation are successfully finished, the DRM Agent and SRM Agent generate security elements by using the Key Derivation Function as specified in section 5.7.3.1.

5.7.2.2.2 Message Format

The message format (MessageBody) of the KeyExchangeRequest is specified as follows. The messageType and protectedFlag are set to ‘0’.
DeviceRandomNumber() {

 RandomNumberString()

}

SrmRandomNumber() {

 RandomNumberString()

}

HashedSrmRandomNumber() {

 HashedString()

}

KeyExData() {

 DeviceRandomNumber()

 HashedSrmRandomNumber()

 SelectedVersion()

}

EncryptedKeyExData() {

 EncryptedString()

}

MessageBody() {

 EncryptedKeyExData()

}

The fields are defined as follows:

· KeyExData – M value of Encrypted KeyEx Data parameter in Table 11
· DeviceRandomNumber – RNH value of Encrypted KeyEx Data parameter in Table 11
· SrmRandomNumber – RNS value of Encrypted KeyEx Data parameter in Table 11
· Selected Version – Selected Version value of Encrypted KeyEx Data parameter in Table 11
· HashedSrmRandomNumber – Hashed SrmRandomNumber
· EncryptedKeyExData – Encrypted KeyExData with the SRM’s public key
The message format (MessageBody) of the KeyExchangeResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
DeviceRandomNumber() {

 RandomNumberString()

}

SrmRandomNumber() {

 RandomNumberString()

}

RanNumData() {

 DeviceRandomNumber()

 SrmRandomNumber()

}

HashedRanNumData() {

 HashedString()

}

MessageBody() {

 status

16
uimsbf

 if (status == 0) {

 HashedRanNumData()

 }

}

The fields are defined as follows:

· RanNumData – M value of Hashed RanNum Data parameter in Table 12
· DeviceRandomNumber – RND value of Hashed RanNum Data parameter in Table 12
· SrmRandomNumber – RNS value of Hashed RanNum Data parameter in Table 12
· status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.
· HashedRanNumData – Hashed RanNumData
5.7.2.2.3 Exception Handling

There may be an unexpected exception during the Key Exchange Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the random numbers, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.
5.7.3 Secure Authenticated Channel
Whenever sensitive information, such as cryptographic keys, needs to be transferred between the DRM Agent and SRM Agent, a Secure Authenticated Channel (SAC) needs to be used. A SAC is a logical channel that provides message integrity and optionally message confidentiality. A SAC needs to be established using credentials from a trust authority under which the sensitive information was created.
5.7.3.1 Key Derivation Function
After the MAKE process is completed, both the DRM Agent and the SRM Agent have mutually authenticated each other and have exchanged secret random numbers that are used in generating key materials (Session Key and MAC Key). The keys are used in the SAC.
The Key Derivation Function (KDF) is equivalent to the KDF specified in section 7.1.2 of the OMA DRM v2.0 specification [OMADRMv2]. A trust authority may use a different KDF. The following keys in Table 14 are derived from the KDF. When using the KDF, Z = RND | RNS, otherInfo = Supported Algorithms | Selected Algorithms, and kLen is the total size of the key materials in Table 14.

Table 14: Key Materials
	Parameters
	Size
	Description
	Nomenclature

	MAC Key
	160 bit
	HMAC-SHA1 Key: The first 20 octets of T as the derived key
	MK

	Session Key
	128 bit
	AES Key: The next 16 octets of T as the derived key
	SK

	Initial Vector
	128 bit
	AES Key: The last 16 octets of T as the derived key
	IV

By default, the DRM Agent and SRM Agent support the AES128-CBC mode. The padding is performed as specified in [RFC2630]. The kLen = 52 bytes.

5.7.3.2 Secure Message

Once the SAC has been established, two types of security are provided. The first type is integrity protection and the other type is confidentiality protection. The integrity protection is performed by generating HMAC over parameters using the MAC Key (MK). The confidentiality protection is performed by encrypting parameters using the Session Key (SK) and Initial Vector (IV).
5.7.3.3 Message Replay Protection

Replay protection is provided by using a different MAC Key for every protected request-response message pair either a request or response includes the protectedFlag set by 1. Once a MAC Key is used, then the key is invalidated and a new MAC Key is generated. One MAC Key is used for one request and response message pair.

It’s assumed that the MK(k) is kth MAC Key after the MAKE process concludes. Then the k+1th MAC Key (MK(k+1)) is generated as follows:

MK(k+1) = H(MK(k))
5.7.4 Revocation Status Checking
Revocation status checking between the SRM Agent and the DRM Agent is a necessary procedure that MUST occur before exchanging any message over the SAC. During mutual authentication between the DRM Agent and SRM Agent, revocation status checking is performed locally by using a cached Certificate Revocation List (CRL). A DRM Agent MUST cache a CRL that contains revocation status about SRMs, and the SRM Agent MUST cache a CRL that contains revocation status about Devices. If the connected SRM or Device, respectively, is on the CRL then SAC MUST be terminated. The validity dates for the cached CRL (whether in the DRM Agent or the SRM Agent) does not need to be checked for revocation status checking. The CRL update schedule and CRL distribution and thereby criteria for ensuring valid CRLs are beyond the scope of this specification. This section 5.7.4 specifies protocols that relevant authorities may require to implement revocation checking.
Note: This Enabler does not require revocation status checking of the RI certificate chain when verifying RI signatures during Move or Local Rights Consumption. However, Devices MUST follow [OMADRMv2.1] requirements when performing ROAP.
For the DRM Agent and SRM Agent to replace old CRL with new CRL, this document specifies protocols for the following purposes:

· CRL Information Exchange (Refer to section 5.7.4.1)

The DRM Agent and SRM Agent exchange CRL numbers in order to determine if CRL(s) in Device supersede CRL(s) in SRM or vice versa.

· OCSP Nonce (Refer to section 5.7.4.2)

The DRM Agent requests a nonce from the SRM Agent. The DRM Agent uses the nonce for the OCSP request so that the SRM Agent can be provided with the current DRM time and check the revocation status of the Device.
· OCSP Response Processing (Refer to section 5.7.4.3)

The DRM Agent to pass an OCSP response to the SRM Agent that includes the revocation status of the DRM Agent and the DRM time

· CRL Delivery from Device to SRM (Refer to section 5.7.4.4)

The DRM Agent sends its CRL(s) to the SRM Agent. The SRM Agent replaces the CRL(s) stored in the SRM itself with the received CRL(s).

· CRL Delivery from SRM to Device (Refer to section 5.7.4.5)

The DRM Agent retrieves CRL(s) in SRM, and replaces its stored CRL(s) with the retrieved CRL(s).
A trust authority may determine whether the OCSP responder provides the revocation status of Devices. If the OCSP responder provides the revocation status of Devices, the DRM Agent SHOULD support the following:

· Communication protocol between the OCSP responder and DRM Agent (The protocol is defined by a trust authority)

· OCSP nonce request in section 5.7.4.2
· OCSP request generation with the OCSP nonce

· OCSP response processing message between the DRM Agent and SRM Agent in section 5.7.4.3
If the OCSP responder provides the revocation status of Devices, the SRM Agent SHOULD also support the following:

· OCSP nonce request in section 5.7.4.2
· OCSP response processing in section 5.7.4.3
The CRL(s) are updated by the following procedure.

· Step 1: The CRL information exchange function in section 5.7.4.1 is executed.

· Step 2: If the DRM Agent supports the OCSP responder – DRM Agent communication, then the DRM Agent MAY pass the OCSP response to the SRM Agent by using the OCSP Nonce request function in section 5.7.4.2 and OCSP response processing function in section 5.7.4.3.
· Step 3: If the CRL information exchange function finds that CRL(s) must be updated, then the CRL delivery function in section 5.7.4.4 or 5.7.4.5 is used.
To minimize the impact of not checking the CRL validity dates, the following procedure is introduced

· Event Counting with a threshold as specified in section 5.7.4.6.
The DRM Agent and the SRM Agent count events until a predefined threshold is reached, upon which a "fresh" CRL is required. Support for Event Counting is optional; relevant authorities may mandate the use of the event counting mechanism.
5.7.4.1 CRL Information Exchange
The DRM Agent and SRM Agent exchange CRL numbers in order to determine if CRL(s) in the Device supersede CRL(s) in the SRM or if CRL(s) in the SRM supersede CRL(s) in the Device as illustrated in Figure 6.

[image: image7.emf]DRM Agent SRM Agent

CRLInformationExchangeRequest

CRLInformationExchangeResponse

Figure 6: Sequence Diagram – CRL Information Exchange

5.7.4.1.1 Message Description

The DRM Agent sends the CRLInformationExchangeRequest. The parameters of the request are defined in Table 15.
Table 15: Parameters of CRLInformationExchangeRequest
	Parameters
	Protection Requirement
	Description

	CRL Information List
	No
	CRL Information is a pair of CRL Issuer ID and CRL Number. The CRL Information List contains CRL Information of all CRLs in a Device.

CRL Issuer ID is the 160-bit SHA-1 hash of the public key corresponding to the private key used to sign the CRL (i.e. the keyIdentifier field of the authorityKeyIdentifier component in the CRL). The default hash algorithm is SHA-1.

CRL Number is the value contained in the CRL number extension of the referenced CRL. This value is used to determine when a particular CRL supersedes another CRL.

Upon receiving the CRLInformationExchangeRequest, the SRM Agent compares each element in the CRL Information List received from the Device with the SRM’s list. If the CRL Issuer IDs are identical, then the CRL numbers are compared to determine if the Device’s CRL supersedes the CRL stored in the SRM.
The SRM Agent sends the CRLInformationExchangeResponse to the DRM Agent. The parameters of the response are defined in Table 16. If any error occurs during this action, the error MUST be reported to the DRM Agent. The Status parameter of the CRLInformationExchangeResponse contains the error cases in Table 17.
Table 16: Parameters of CRLInformationExchangeResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the CRLInformationExchangeRequest is successfully handled or not. The Status value is specified in Table 17

	CRL Information List
	No
	CRL Information is a pair of CRL Issuer ID and CRL Number. The CRL Information List contains CRL Information of all CRLs in the SRM.

CRL Issuer ID is the 160-bit SHA-1 hash of the public key corresponding to the private key used to sign the CRL (i.e. the keyIdentifier field of the authorityKeyIdentifier component in the CRL). The default hash algorithm is SHA-1.

CRL Number is the value contained in the CRL number extension of the referenced CRL. This value is used to determine when a particular CRL supersedes another CRL.

Table 17: Status of CRL Information Exchange Message
	Status Value
	Description

	Success
	The request is successfully handled.

	CRL Update Needed
	The SRM Agent recognized that CRL(s) in the SRM is older than CRL(s) in the Device. When the DRM Agent receives this error code, the DRM Agent SHOULD send the new CRL(s) to the SRM by using the CRL delivery protocol in section 5.7.4.4.

	Unknown Error
	The SRM Agent fails to read the CRL Information.

Upon receiving the CRLInformationExchangeResponse (Status is Success), the DRM Agent compares each element in the CRL Information List received from the SRM with the Device’s list. If the CRL Issuer IDs are identical, then the CRL numbers are compared to determine if the SRM’s CRL supersedes the CRL stored in the Device or if the Device’s CRL supersedes the CRL stored in the SRM.
If the DRM Agent finds that a CRL in the Device supersedes a CRL in the SRM from the same CRL issuer (received CRL Update Needed in the Status), the DRM Agent SHOULD transfer the new CRL to the SRM using the CRL delivery function as specified in section 5.7.4.4. If there are multiple CRL(s) to be updated, the DRM Agent repeats the CRL delivery function.
If the DRM Agent finds that a CRL in the SRM supersedes a CRL in the Device from the same CRL issuer, the DRM Agent SHOULD transfer the new CRL to the Device using the CRL delivery function as specified in section 5.7.4.5. If there are multiple CRL(s) to be updated, the DRM Agent repeats the CRL delivery function.
5.7.4.1.2 Message Format

The message format (MessageBody) of the CRLInformationExchangeRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘0’.
CrlIssuerId() {

 OctetString8()

}

CrlNumber() {

 OctetString8()

}

CrlInformation() {

 CrlIssuerId()

 CrlNumber()

}

CrlInformationList() {

 numOfCrlInformation
8
uimsbf

 for (i = 0 ; i < numOfCrlInformation ; i++) {

 CrlInformation()
 }

}

MessageBody() {

 CrlInformationList()

}

The fields are defined as follows:

· CrlInformationList – CRL Information List parameter in Table 15
The message format (MessageBody) of the CRLInformationExchangeResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
MessageBody() {

 status
16
uimsbf

 if ((status == 0) || (status == CrlUpdateNeeded)) {

 CrlInformationList()

 }

}

The field is defined as follows:

· status - Status parameter in Table 16
· CrlInformationList – CRL Information List parameter in Table 16
5.7.4.1.3 Exception Handling

There may be an unexpected exception during the CRL Information Exchange Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response or finds an error by referring to the Status (except CRL Update Needed), then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.
5.7.4.2 OCSP Nonce
This section is valid for only the DRM Agent that supports the OCSP responder – DRM Agent communication. The DRM Agent MAY get a nonce from the SRM Agent as illustrated in Figure 7 to generate an OCSP response.

[image: image8.emf]DRM Agent SRM Agent

OCSPNonceRequest

OCSPNonceResponse

Figure 7: Sequence Diagram – OCSP Nonce

5.7.4.2.1 Message Description

The DRM Agent sends the OCSPNonceRequest to request the SRM Agent to generate a nonce. There are no parameters included in this request
Upon receiving the OCSPNonceRequest, the SRM Agent generates a nonce (i.e. OCSP Nonce) and returns the value by sending the OCSPNonceResponse to the DRM Agent.
If the SRM Agent doesn’t support the OCSP response processing, it MUST return the error code - OCSP Not Supported.

The parameters of the response are defined in Table 18. If any error occurs during this action, the error MUST be reported to the DRM Agent. The Status parameter of the OCSPNonceResponse contains the error cases in Table 19.

Table 18: Parameters of OCSPNonceResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the OCSPNonceRequest is successfully handled or not. The Status value is specified in Table 19

	OCSP Nonce
	No
	This is a number randomly generated by the SRM Agent.

	OCSP Responder Key Identifier

	No
	This parameter identifies a trusted OCSP responder key stored in the SRM. If the identifier matches the key in the certificate used by the Device’s OCSP responder, the DRM Agent MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the SRM.

Table 19: Status of OCSP Nonce Message
	Status Value
	Description

	Success
	The request is successfully handled.

	OCSP Not Supported
	The SRM Agent doesn’t support the OCSP response processing.

	Unknown Error
	The SRM Agent fails to generate the OCSP Nonce.

Upon receiving the response (Status is Success), the DRM Agent generates a nonce based OCSP request for its own certificate (using the OCSP nonce provided by the SRM Agent) and sends it to the OCSP responder. The OCSP Nonce is identified by the object identifier id-pkix-ocsp-nonce, while the extnValue is the value of the nonce. Then the OCSP Nonce Message processing is completed.
If Status is OCSP Not Supported, the DRM Agent MUST NOT send an OCSP request to the OCSP responder and MUST NOT perform the OCSP response processing in section 5.7.4.3. Then the OCSP Nonce Message processing is completed.
5.7.4.2.2 Message Format

The message format (MessageBody) of the OCSPNonceRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘0’. This message doesn’t include parameters.

The message format (MessageBody) of the OCSPNonceResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
OcspNonce() {

 OctetString8()

}

OcspResponderKeyIdentifier() {

 OctetString8()

}

MessageBody() {

 status
16
uimsbf

 if (status == 0) {

 OcspNonce()

 OcspResponderKeyIdentifier()

 }

}

The field is defined as follows:

· status - Status parameter in Table 18
· OcspNonce – OCSP Nonce parameter in Table 18
· OcspResponderKeyIdentifier – OCSP Responder Key Identifier parameter in Table 18
5.7.4.2.3 Exception Handling

There may be an unexpected exception during the OCSP Nonce Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response or finds an error by referring to the Status (except OCSP Not Supported), then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.
5.7.4.3 OCSP Response Processing
This section is valid for only the DRM Agent that supports the OCSP responder – DRM Agent communication. The DRM Agent MAY send OCSP Response to the SRM Agent as illustrated in Figure 8.

[image: image9.emf]DRM Agent SRM Agent

OCSPProcessRequest

OCSPProcessResponse

Figure 8: Sequence Diagram – OCSP Processing

5.7.4.3.1 Message Description

Upon receiving the OCSP response from the OCSP responder, the DRM Agent sends the OCSPProcessRequest to pass the response to the SRM Agent. The parameters of the request are defined in Table 20.

Table 20: Parameters of OCSPProcessRequest
	Parameters
	Protection Requirement
	Description

	OCSP Response
	No
	OCSP Response contains the revocation status of the DRM Agent, the current DRM time, and the OCSP Nonce transferred by the OCSPNonceResponse as specified in section 5.7.4.2.

Upon receiving OCSPProcessRequest, the SRM Agent verifies the OCSP Response. The SRM Agent MUST verify that the OCSP-provided status of all revocable certificates in the Device Certificate Chain is good. The SRM Agent MUST be able to detect that an OCSP responder certificate is non-revocable through the use of the id-pkix-ocsp-nocheck extension as specified in [OMADRMv2]. The determination of which certificates in a Device Certificate Chain are revocable is deemed to be part of the trust model of the root of trust of that chain. In case the root of trust does not specify such a policy, the SRM SHALL assume a default model. In the default model only the Device Certificate is revocable and requires an OCSP response to prove its status.
SRM Agents MUST be able to match a nonce sent for OCSP purposes in the OCSPNonceResponse (in section 5.7.4.2) with a nonce in the received OCSP Response.
With the OCSP response, the SRM Agent is able to verify the revocation status of the Device Certificate during the MAKE process in section 5.7.2 and can check the freshness of the CRL(s) during the CRL Delivery from the Device in section 5.7.4.4 based on the time in the OCSP response.
If the SRM Agent doesn’t support the OCSP response processing, it MUST return the error code - OCSP Not Supported.
The SRM Agent then sends the OCSPProcessResponse. The parameters of the response are defined in Table 21. If any error occurs during this action, the error MUST be reported to the DRM Agent. The Status parameter of the OCSPProcessResponse contains the error cases in Table 22.
Table 21: Parameters of OCSPProcessResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the OCSPProcessRequest is successfully handled or not. The Status value is specified in Table 22.

Table 22: Status of OCSP Process Message
	Status Value
	Description

	Success
	The request is successfully handled.

	OCSP Not Supported
	The SRM Agent doesn’t support the OCSP response processing.

	OCSP Response Verification Failed
	The SRM Agent fails to verify the OCSP Response.

	Invalid OCSP Nonce
	The OCSP nonce in the OCSP response is not identical with the OCSP nonce generated by the SRM Agent.

	Unknown Error
	Other errors

If no errors or exceptions (Status = Success or OCSP Not Supported), the OCSP Process Message processing is completed.

5.7.4.3.2 Message Format

The message format (MessageBody) of the OCSPProcessRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘0’.
OcspResponse() {

 OctetString16()

}

MessageBody() {

 OcspResponse()

}

The field is defined as follows:

· OcspResponse – OCSP Response parameter in Table 20
The message format (MessageBody) of the OCSPProcessResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
MessageBody() {

 status
16
uimsbf

}

The field is defined as follows:

· status - Status parameter in Table 21
5.7.4.3.3 Exception Handling

There may be an unexpected exception during the OCSP Process Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, or finds an error by referring to the Status (except OCSP Not Supported), then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.
5.7.4.4 CRL Delivery from Device to SRM

[image: image10.emf]DRM Agent SRM Agent

CRLUpdateResponse

CRLUpdateRequest

Figure 9: Sequence Diagram – CRL Delivery from Device to SRM
5.7.4.4.1 Message Description

The DRM Agent sends the CRLUpdateRequest to replace the current CRL in the SRM with the CRL in the Device. The parameters of the request are defined in Table 23.
Table 23: Parameters of CRLUpdateRequest
	Parameters
	Protection Requirement
	Description

	CRL
	No
	Certificate Revocation List (CRL) contains revocation status information for Device Certificates or SRM Certificates. Refer to Appendix E.2

Upon receiving the CRLUpdateRequest, the SRM Agent verifies the signature over the CRL. If the signature of the CRL is valid, and the received CRL is newer than the CRL of the SRM, then the SRM Agent replaces the current CRL in the SRM with the received CRL. The CRL numbers are compared to determine if the received CRL supersedes the CRL stored in the SRM.
The SRM Agent can recognize the CRL issuer by referring to the authorityKeyIdentifier component in the CRL.
In case the SRM Agent received a valid OCSP response as specified in section 5.7.4.2 and 5.7.4.3, the SRM Agent checks if the producedAt time of the OCSP response is between the thisUpdate time and nextUpdate time of the received CRL.
The SRM Agent then sends the CRLUpdateResponse. The parameters of the response are defined in Table 24. If any error occurs during this action, the error MUST be reported to the DRM Agent. The Status parameter of the CRLUpdateResponse contains the error cases as specified in Table 25.
Table 24: Parameters of CRLUpdateResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the CRLUpdateRequest is successfully handled or not. The Status value is specified in Table 25

Table 25: Status of CRL Update Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Old CRL
	CRL in the request is older than the CRL in SRM, or the nextUpdate time of the received CRL is older than the producedAt time of the OCSP response.

	CRL Verification Failed
	The verification of the signature over CRL is failed.

	Unknown Error
	Other errors

5.7.4.4.2 Message Format
The message format (MessageBody) of the CRLUpdateRequest is specified as follows. The messageType and protectedFlag are set to ‘0’.
Crl()

{

 CrlString()

}

MessageBody() {

 Crl()
}

The field is defined as follows:

· Crl - CRL parameter in Table 23
The message format (MessageBody) of the CRLUpdateResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
MessageBody() {

 status
16
uimsbf

}

The field is defined as follows:

· status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.
5.7.4.4.3 Exception Handling

There may be an unexpected exception during the CRL Update Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.
5.7.4.5 CRL Delivery from SRM to Device

[image: image11.emf]DRM Agent SRM Agent

CRLRetrievalRequest

CRLRetrievalResponse

Figure 10: Sequence Diagram – CRL Delivery from SRM to Device

5.7.4.5.1 Message Description

The DRM Agent sends the CRLRetrievalRequest to retrieve the CRL in the SRM. The parameters of the request are defined in Table 26.
Table 26: Parameters of CRLRetrievalRequest
	Parameters
	Protection Requirement
	Description

	CRL Issuer ID
	No
	The 160-bit SHA-1 hash of the public key corresponding to the private key used to sign the CRL (i.e. the keyIdentifier field of the authorityKeyIdentifier component in the CRL).

Upon receiving the CRLRetrievalRequest, the SRM Agent retrieves the CRL stored in the SRM that corresponds to the CRL Issuer ID.
The SRM Agent then sends the CRLRetrievalResponse to carry the result of the action. The parameters of the response are defined in Table 27. If any error occurs during this action, the error MUST be reported to the DRM Agent. The Status parameter of the CRLRetrievalResponse contains the error cases as specified in Table 28.
Table 27: Parameters of CRLRetrievalResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the CRLRetrievalRequest is successfully handled or not. The Status value is specified in Table 28.

	CRL
	No
	Certificate Revocation List (CRL) contains revocation status information for Device Certificates or SRM Certificates. Refer to Appendix E.2

Table 28: Status of CRL Retrieval Message
	Status Value
	Description

	Success
	The request is successfully handled.

	CRL Not Found
	There is no CRL corresponding to the CRL Issuer ID.

	Unknown Error
	Other errors

Upon receiving the CRLRetrievalResponse, the DRM Agent verifies the signature over the CRL. If the signature of the CRL is valid, and the retrieved CRL is newer than the CRL of the Device, then the DRM Agent replaces the current CRL in the Device with the retrieved CRL. The CRL numbers are compared to determine if the received CRL supersedes the CRL stored in the Device.
5.7.4.5.2 Message Format

The message format (MessageBody) of the CRLRetrievalRequest is specified as follows. The messageType and protectedFlag are set to ‘0’.
CrlIssuerId() {

 HashedString()

}

MessageBody() {

 CrlIssuerId()

}

The field is defined as follows:

· Crl – CRL Issuer ID parameter in Table 26
The message format (MessageBody) of the CRLRetrievalResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
Crl()

{

 CrlString()

}

MessageBody() {

 status
16
uimsbf

 if (status == 0) {

 Crl()
 }

}

The fields are defined as follows:

· status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.

· Crl - CRL parameter in Table 27
5.7.4.5.3 Exception Handling
There may be an unexpected exception during the CRL Retrieval Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, finds an error by referring to the Status or fails the CRL verification, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.
5.7.4.6 Event Counting

In order to minimize the impact of not checking the CRL validity dates, the concept of event counting with a threshold is defined in this section. Event counting is optional and consequently the normative statements in this section 5.7.4.6 and its subsections apply only in case event counting is implemented.

In this section 5.7.4.6 and its subsections, the term entity refers either to a DRM Agent or a SRM Agent. Each entity MUST keep an event counter, which starts at zero, and gets incremented, whenever a countable event occurs (see sections 5.7.4.6.1 and 5.7.4.6.2). When a “fresh” CRL is received, the event counter is reset; see section 5.7.4.6.3.
The value of the predefined threshold is not defined in this specification, but set by a relevant Authority; however, the following implementation considerations may be taken into account.

· A very high threshold value effectively disables revocation status checking.

· Devices and SRMs MAY have different threshold values.

· Although this Enabler specifies a single counting mechanism, in practice, multiple counters may be used. For example, a Trust Authority may choose to have one counter for each event type and each with its own threshold value.

The performance of an entity when the predefined threshold is reached is not defined in this specification but is left to relevant Authorities. For example, a Trust Authority may require that an entity must disable all countable events once the threshold value is reached.
5.7.4.6.1 Countable DRM Agent Events

Countable DRM Agent events are:

· Moving Rights to an SRM (see section 5.7.5)
Suggested counter increment operation point: Following RightsDisablementInDevice and prior to RightsInstallationRequest.
If during recovery, HandleRemovalResponse Status = Success, then prior to enabling disabled Rights in Device, counter may be decremented to reverse increment operation.
· Moving Rights from an SRM (see section 5.7.6)
Suggested counter increment operation point: Following RightsRemovalResponse for which Status = Success.
· Local Rights Consumption from an SRM (see section 5.7.7)
Suggested counter increment operation point: Following REKQueryResponse for which Status = Success.
5.7.4.6.2 Countable SRM Agent Events

Countable SRM Agent events are:

· Moving Rights from an SRM (see section 5.7.6)
Suggested counter increment operation point: Following successfully handled RightsRemovalRequest and prior to associated RightsRemovalResponse.
· Local Rights Consumption from an SRM (see section 5.7.7)
Suggested counter increment operation point: Following successfully handled REKQueryRequest and prior to associated REKQueryResponse.
5.7.4.6.3 Resetting the Event Counter

Once the event counter has reached its threshold value, a “fresh” CRL for the other entity type is needed. The entity MUST have means to determine whether or not a CRL is considered "fresh" based on the entity’s “current date-time”. How the “current date-time” is determined depends on whether or not the entity supports DRM Time. Resetting the event counter to zero SHALL require a “fresh” CRL for the other entity type, i.e. a DRM Agent needs a fresh CRL for SRMs and an SRM Agent needs a fresh CRL for Devices. Note that there may be only one CRL that covers both Devices and SRMs.
If an entity supports DRM Time, then the “current date-time” is just the current DRM Time. If the cached CRL is fresh according to the current DRM Time, the entity (which supports DRM Time) can reset its event counter. Otherwise, the entity MUST get a fresh CRL before resetting its event counter. How or from where an entity gets a fresh CRL is beyond the scope of this document.

If an entity does not support DRM Time, then the entity MUST get a nonce-based secure date-time and use this as the current date-time. Once the nonce-based secure date-time is received and validated, the entity can check the freshness of its cached CRL. If the cached CRL is fresh, the entity can reset its event counter. Otherwise, the entity MUST get a fresh CRL before resetting its event counter. An entity generating a nonce MAY store the nonce in volatile or non-volatile memory. If the nonce is not available at the point of receiving the supposed nonce-based secure date-time, the date-time MUST be rejected.

Because it is anticipated that most SRMs will not support DRM Time, the SRM Agent MUST provide a nonce to the DRM Agent, which in turn MUST get a nonce-based secure date-time and provide it back to the SRM. Also, the DRM Agent MUST provide CRLs to the SRM Agent.

The SRM Agent SHOULD provide its current event counter and the threshold so that a Device can then ensure that the threshold is never reached by providing the SRM Agent with timely date-time to update the SRM.
5.7.4.6.4 Threshold-based Event Counting Considerations
Effective implementation of optional threshold-based event counting requires an entity to be able to periodically acquire a measure of "current date-time" that is verifiable as originating from a trusted source. If there is a malicious or unintended delay in making a response to a nonce-based date-time query available to the entity awaiting the response, then such delay increases the likelihood that the entity deems a CRL as acceptably fresh when it should not. If the date-time query occurs after the entity’s counter has already reached its threshold, then delaying the response delays the point at which the entity once again becomes useful to handle countable events.

To minimize any adversarial advantage of holding back or delaying responses to nonce-based date-time queries, a trust authority may elect to prevent an entity from handling events until it receives a successful response to an outstanding date-time query or until it purges the nonce corresponding to that query, even if the entity’s counter has not reached its threshold.

In order to enable each entity to make maximally effective use of just a single event counter, a trust authority may assign different weights to different countable event types. Differential weighting would give a trust authority the flexibility to allow, for example, a Device which is used predominantly for Local Rights Consumption transactions to go significantly longer between CRL freshness checks than a Device that regularly engages in Move transactions to SRMs. If weights are assigned differentially, the same weight applies to the incrementing and to the decrementing (if any) when recovery is performed.
5.7.5 Movement of Rights from Device to SRM
A Rights (i.e. Rights Meta Data, Rights Object Container, State Information, and REK) is Moved from a Device to an SRM as illustrated in Figure 11.

[image: image12.emf]DRM Agent SRM Agent

InstallationSetupResponse

RightsRemovalInDevice

InstallationSetupRequest

RightsInstallationRequest

RightsInstallationResponse

RightsDisablementInDevice

Figure 11: Sequence Diagram – Movement of Rights from Device to SRM
5.7.5.1 Installation Setup Message

5.7.5.1.1 Message Description

The DRM Agent sends the InstallationSetupRequest to initiate a Move to the SRM. The parameters of the request are defined in Table 29.

Table 29: Parameters of InstallationSetupRequest
	Parameters
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	The Handle identifies the Rights while stored in the SRM. It is a 10 byte random value generated by the DRM Agent for this Move transaction. Refer to section 5.1.3.

	Size of Rights
	Integrity
	Size of a Rights in bytes. This informs the SRM Agent the size of a Rights that will be installed in the SRM as specified in section 5.7.5.3.

Size of Rights = Length of RightsInformation + Length of EncryptedRek. RightsInformation and EncryptedRek are specified in section 5.7.5.3.2.

Upon receiving the InstallationSetupRequest, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the parameters

2. Decrypt the Handle with the Session Key
3. The SRM Agent MAY check if the SRM already has another Rights with the same Handle. If yes, the SRM Agent sets Status to Duplicate Handle and the SRM Agent sends the InstallationSetupResponse as described below.

4. The SRM Agent checks if the SRM has space for the new Rights. If not, the SRM Agent sets Status to Not Enough Space. Otherwise, the SRM Agent stores the Handle in the SRM securely. The Handle is not included in the Handle List until the Move transaction is completed.

The SRM Agent sends the InstallationSetupResponse to carry the result of the procedure. The parameters of the response are defined in Table 30. If any error occurs during the procedure, the error MUST be reported to the DRM Agent. The Status parameter of the InstallationSetupResponse contains the error cases defined in Table 31.
Table 30: Parameters of InstallationSetupResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the InstallationSetupRequest is successfully handled or not. The Status value is specified in Table 31.

Table 31: Status of Installation Setup Message

	Status Value
	Description

	Success
	No errors during the action

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Parameter Decryption Failed
	The SRM Agent fails to decrypt the encrypted parameters.

	Duplicate Handle
	A Rights with the Handle already exists in the SRM.

	Not Enough Space
	The SRM doesn’t have enough space to store a Rights having the same size as the Size of Rights.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response.

If no errors or exceptions (Status = Success), the DRM Agent continues with section 5.7.5.2.

5.7.5.1.2 Message Format

The message format (MessageBody) of the InstallationSetupRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘1’.
Handle() {

 HandleString()

}

EncryptedHandle() {

 EncryptedString()

}

Parameters() {

 EncryptedHandle()

 sizeOfRights
16
uimsbf

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· Handle –Handle parameter in Table 29
· SizeOfRights –Size Of Rights parameter in Table 29
· EncryptedHandle – Encrypted Handle with the current Session Key (SK)
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
The message format (MessageBody) of the InstallationSetupResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘1’.
Parameters() {

 status
16
uimsbf

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· status - Status parameter in Table 30
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
5.7.5.1.3 Exception Handling

There may be unexpected exceptions during the Installation Setup Message processing as specified in section 5.5.1. The exception is classified into one of the following cases.

· Case 1: The DRM Agent receives the InstallationSetupResponse not containing Success in the Status parameter. (The Handle is not stored)
· Case 2: The Installation Setup Message processing is uncompleted for any reason other than those of case 1.

When the exception occurs, the DRM Agent SHOULD immediately recover it. If the DRM Agent fails to detect the exception, it MUST recover the exception by referring to the Operation Log when a new MAKE process is executed.

[Recovery Procedure – Cancellation of Move]

To cancel the Move transaction, the DRM Agent activates a recovery procedure per case as follows.
· In case 1, the Move is terminated without recovery. If the response contains Duplicate Handle, then the DRM Agent may start the Move transaction with a different Handle.

· In case 2, the DRM Agent sends the HandleRemovalRequest as specified in section 5.7.8.4 in order to remove the Handle. The Handle recorded in the Operation Log for this Move transaction MUST be used in this request. If the HandleRemovalResponse contains one of Success, Handle Not Found and Handle Not Removed in the Status parameter, then the Move is terminated.

When the Move is terminated, the entry for the Move transaction is removed from the Operation Log.
If the Handle Removal Message processing is uncompleted for any reason other than those specified above, then the recovery procedure is aborted. The DRM Agent MAY resume the aborted recovery by sending the HandleRemovalRequest when a new MAKE process is executed. To resume the aborted recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
5.7.5.2 Rights Disablement in Device

5.7.5.2.1 Action Description

The DRM Agent disables the Rights. The disabled Rights cannot be used for the other purposes except the current Move transaction. After the Rights is disabled, the DRM Agent continues with section 5.7.5.3.

5.7.5.2.2 Exception Handling

There may be unexpected exceptions as specified in section 5.5.1 during disabling the Rights. This exception causes incompletion of the disablement processing.

When the exception occurs, the DRM Agent SHOULD immediately recover it. If the DRM Agent fails to detect the exception, it MUST recover the exception by referring to the Operation Log when a new MAKE process is executed. The recovery is same as the procedure for the exceptional case 2 of the Installation Setup Message processing specified in section 5.7.5.1.3.
When the Move is terminated as specified in section 5.7.5.1.3, the original Rights in the Device MUST be enabled (i.e. the Rights can be used for any purpose).
5.7.5.3 Rights Installation Message
5.7.5.3.1 Message Description

The DRM Agent sends the RightsInstallationRequest to install the Rights in the SRM. The parameters of the request are defined in Table 32.
Table 32: Parameters of RightsInstallationRequest
	Parameters
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	Same as the Handle transmitted by the InstallationSetupRequest in Table 29. Refer to section 5.1.3.

	LCID
	Integrity
	Refer to 5.1.4.4. This contains the hash value of ContentIDs that are associated with the Rights. This is used for generating the Handle List.

	Rights Meta Data
	Integrity
	Refer to section 5.1.1.1

	Rights Object Container
	Integrity
	Refer to section 5.1.1.2.

	State Information
	Integrity
	Refer to section 5.1.1.3. This parameter is not present if the Rights Object in the Rights Object Container is stateless.

	REK
	Integrity & Confidentiality
	Refer to section 5.1.1.4

Upon receiving the RightsInstallationRequest, the SRM Agent installs the Rights in the SRM. For the installation, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the request parameters

2. Decrypt the Handle and REK with the Session Key
3. Install the Rights (Rights Meta Data, Rights Object Container, State Information (if present), and REK) at a space associated with the Handle. If the Rights corresponding to the Handle already exists in the SRM, the SRM Agent returns Success in the Status without performing this action.
The SRM Agent sends the RightsInstallationResponse to carry the result of the procedure. The parameters of the response are defined in Table 33. If any error occurs during the procedure, the error MUST be reported to the DRM Agent. The Status parameter of the RightsInstallationResponse contains the error cases as specified in Table 34.
Table 33: Parameters of RightsInstallationResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the RightsInstallationRequest is successfully handled or not. The Status value is specified in Table 34.

Table 34: Status of Rights Installation Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Parameter Decryption Failed
	The SRM Agent fails to decrypt the encrypted parameters.

	Handle Not Found
	The Handle in the request doesn’t exist in the SRM.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response.
If no errors or exceptions (Status = Success), the DRM Agent continues with section 5.7.5.4.
5.7.5.3.2 Message Format

The message format (MessageBody) of the RightsInstallationRequest is specified as follows. The messageType is set to ‘0’ and the protectedFlag is set to ‘1’.
Handle() {

 HandleString()

}

EncryptedHandle() {

 EncryptedString()

}

EncryptedRek() {

 EncryptedString()

}

Parameters() {

 EncryptedHandle()

 Lcid()

 RightsInformation()

 EncryptedRek()

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· Handle – Handle parameter in Table 32
· EncryptedHandle – Encrypted Handle with the current Session Key (SK)
· Lcid – LCID parameter in Table 32
· RightsInformation – Rights Meta Data, Rights Object Container, State Information parameters in Table 32 (Refer to Appendix B.2.5.4)
· EncryptedRek – Encrypted REK parameter in Table 32 (Rek in Appendix B.2.5.5) with the current Session Key (SK)
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
The message format (MessageBody) of the RightsInstallationResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘1’.
Parameters() {

 status
16
uimsbf

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· status - Status parameter in Table 33
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
5.7.5.3.3 Exception Handling
There may be an unexpected exception during the Rights Installation Message processing as specified in section 5.5.1. The exception is classified into one of the following cases.

· Case 1: The DRM Agent receives the RightsInstallationResponse containing Handle Not Found in the Status parameter. (This case must not happen if the Move transaction is properly executed as illustrated in Figure 11)

· Case 2: The Rights Installation Message processing in this section is uncompleted for any reason other than those of cases 1.
When the exception occurs, the DRM Agent SHOULD immediately recover it. If the DRM Agent fails to detect the exception, it MUST recover the exception by referring to the Operation Log when a new MAKE process is executed.

[Recovery Procedure – Cancellation of Move]

To cancel the Move transaction, the DRM Agent activates a default recovery procedure per case as follows.

· In case 1, the Move is terminated without recovery.

· In case 2, the DRM Agent sends the HandleRemovalRequest as specified in section 5.7.8.4 in order to remove the Handle. The Handle recorded in the Operation Log for this Move transaction MUST be used in this request. If the HandleRemovalResponse contains Success in the Status parameter, then the Move is terminated.

When the Move is terminated, the Rights in the source Device MUST be enabled (i.e. the Rights can be used for any purpose) and the entry for the Move transaction is removed from the Operation Log.
In case 2, if the HandleRemovalResponse contains one of Handle Not Removed and Handle Not Found in the Status parameter, then the DRM Agent continues the Move with the Rights Removal in Device processing in section 5.7.5.4. (Note: It implies that the Rights was installed successfully in the SRM by the uncompleted Rights Installation Message processing. In case of Handle Not Found, after the installation, the Rights was removed from the SRM or its corresponding Handle was updated to use the Rights.)

If the Handle Removal Message processing is uncompleted for any reason other than those specified above, then the recovery procedure is aborted. The DRM Agent MAY resume the aborted recovery by sending the HandleRemovalRequest when a new MAKE process is executed. To resume the recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
(Note: During the recovery of the Rights Installation Message processing, if the DRM Agent fails to receive a proper Status of the Handle Removal Message processing (i.e. fails to receive the response or fails to verify the integrity of the response) more than once and then finally receives Handle Not Found in the Status parameter of the HandleRemovalResponse, it implies that there is a possibility that the Handle was successfully removed from the SRM by an previous uncompleted Handle Removal Message processing.

In this case, if the DRM Agent continues the Move with the Rights Removal in Device processing as specified in this section, then the user loses the Rights.

The default behaviour is that the Move is terminated without further recovery procedure and the entry for the Move transaction is removed from the Operation Log (i.e. the Rights in the source Device stays in disabled state). A trust authority may decide how to handle the disabled Rights in the Device.)
5.7.5.4 Rights Removal in Device
5.7.5.4.1 Action Description

The DRM Agent removes the Rights from the source Device permanently. When the Rights Removal in Device processing is completed, the Move is terminated and the entry for the Move transaction is removed from the Operation Log.
5.7.5.4.2 Exception Handling
There may be unexpected exceptions as specified in section 5.5.1 during removing the Rights. The exception causes incompletion of the removal processing.

When the exception occurs, the DRM Agent SHOULD immediately recover it. If the DRM Agent fails to detect the exception, it MUST recover the exception by referring to the Operation Log when a new MAKE process is executed. The DRM Agent recovers the exception by executing this Rights Removal in Device processing.

If the recovery fails, the DRM Agent MAY resume the recovery by removing the Rights from the Device when a new MAKE process is executed. To resume the recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
5.7.6 Movement of Rights from SRM to Device
A Rights (i.e. Rights Meta Data, Rights Object Container, State Information, and REK) is Moved from an SRM to a Device as illustrated in Figure 12.

[image: image13.emf]DRM Agent SRM Agent

RightsInstallationInDevice

RightsRetrievalRequest

RightsRemovalRequest

RightsRetrievalResponse

RightsRemovalResponse

Figure 12: Sequence Diagram – Movement of Rights from SRM to Device
5.7.6.1 Rights Retrieval Message
5.7.6.1.1 Message Description
The DRM Agent sends the RightsRetrievalRequest to initiate the Move of the Rights from the SRM. The parameters of the request are defined in Table 35.
Table 35: Parameters of RightsRetrievalRequest
	Parameters
	Protection Requirement
	Description

	Handle
	Integrity
	This identifies a Rights that will be Moved from the SRM to the Device. Refer to section 5.1.3.

	New Handle
	Integrity & Confidentiality
	New Handle is a 10 byte random value generated by the DRM Agent for this Move transaction.

Upon receiving the RightsRetrievalRequest, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the request parameters

2. Decrypt the New Handle with the Session Key
3. Find a Rights corresponding to the Handle
4. If found, overwrite the Handle in the SRM with the New Handle and disable the Rights
The SRM Agent sends the RightsRetrievalResponse to carry the result of the procedure. The parameters of the response are defined in Table 36. If any error occurs during the procedure, the error MUST be reported to the DRM Agent. The Status parameter of the RightsRetrievalResponse contains the error cases as specified in Table 37.
Table 36: Parameters of RightsRetrievalResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the RightsRetrievalRequest is successfully handled or not. The Status value is specified in Table 37.

If the Status contains any error, only this parameter is present in the RightsRetrievalResponse.

	Rights Meta Data
	Integrity
	Refer to section 5.1.1.1

	Rights Object Container
	Integrity
	Refer to section 5.1.1.2

	State Information
	Integrity
	Refer to section 5.1.1.3. This parameter is not present if the Rights Object in the Rights Object Container is stateless.

	REK
	Integrity & Confidentiality
	Refer to section 5.1.1.4

Table 37: Status of Rights Retrieval Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Parameter Decryption Failed
	The SRM Agent fails to decrypt the encrypted parameters.

	Handle Not Found
	The Handle in the request doesn’t exist in the SRM.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent MUST perform the following procedure:

1. Verify the integrity of parameters in the response

2. Decrypt REK with the Session Key
If no errors or exceptions (Status = Success), the DRM Agent continues with section 5.7.6.2.

5.7.6.1.2 Message Format

The message format (MessageBody) of the RightsRetrievalRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘1’.
Handle() {

 HandleString()

}

NewHandle() {

 HandleString()

}

EncryptedNewHandle() {

 EncryptedString()

}

Parameters() {

 Handle()

 EncryptedNewHandle()

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· Handle –Handle parameter in Table 35
· NewHandle – New Handle parameter in Table 35
· EncryptedNewHandle – Encrypted NewHandle with the current Session Key (SK)
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
The message format (MessageBody) of the RightsRetrievalResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘1’.
EncryptedRek() {

 EncryptedString()

}

Parameters() {

 status

16
uimsbf

 if (status == 0) {

 RightsInformation()

 EncryptedRek()

 }

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· RightsInformation – Rights Meta Data, Rights Object Container, State Information parameters in Table 36 (Refer to Appendix B.2.5.4)
· EncryptedRek – Encrypted REK parameter in Table 36 (Rek in Appendix B.2.5.5) with the current Session Key (SK)
· status - Status parameter in Table 36
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
5.7.6.1.3 Exception Handling

There may be unexpected exceptions during the Rights Retrieval Message processing as specified in section 5.5.1. The exception is classified into one of the following cases.

· Case 1: The DRM Agent receives the RightsRetrievalResponse not containing Success in the Status parameter.

· Case 2: The Rights Retrieval Message processing in this section is uncompleted for any reason other than those of case 1.
When the exception occurs, the DRM Agent SHOULD immediately recover it. If the DRM Agent fails to detect the exception, it MUST recover the exception by referring to the Operation Log when a new MAKE process is executed.
[Recovery Procedure – Cancellation of Move]

To cancel the Move transaction, the DRM Agent activates a recovery procedure per case as follows.
· In case 1, the Move is terminated without recovery.

· In case 2, the DRM Agent sends the RightsEnablementRequest as specified in section 5.7.8.5 in order to enable the Rights. The New Handle recorded in the Operation Log for this Move transaction MUST be used in this request. If the RightsEnablementResponse contains one of Success and Handle Not Found in the Status parameter, then the Move is terminated.

When the Move is terminated, the entry for the Move transaction is removed from the Operation Log.
If the Rights Enablement Message processing is uncompleted for any reason other than those specified above, then the recovery procedure is aborted. The DRM Agent MAY resume the aborted recovery by sending the RightsEnablementRequest when a new MAKE process is executed. To resume the recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
5.7.6.2 Rights Installation in Device
5.7.6.2.1 Action Description

The DRM Agent installs the Rights in the Device. After the Rights is installed, the DRM Agent continues with section 5.7.6.3.
Rights received by a DRM Agent via the Move protocol, SHALL NOT be rejected based on the content of the replay cache.
5.7.6.2.2 Exception Handling
There may be unexpected exceptions as specified in section 5.5.1 during installing the Rights. The exception causes incompletion of the installation.

When the exception occurs, the DRM Agent SHOULD immediately recover it. If the DRM Agent fails to detect the exception, it MUST recover the exception by referring to the Operation Log when a new MAKE process is executed. The recovery is same as the procedure for the exceptional case 2 of the Rights Retrieval Message processing specified in section 5.7.6.1.3.

5.7.6.3 Rights Removal Message
5.7.6.3.1 Message Description

The DRM Agent executes the Rights Removal Message processing as specified in section 5.7.8.6 in order to remove the original Rights from the SRM.
The Handle in the RightsRemovalRequest MUST be identical to the New Handle in the previous RightsRetrievalRequest specified in section 5.7.6.1.1.

When the Rights Removal Message processing is completed (Status = Success), the Move is terminated and the entry for the Move transaction is removed from the Operation Log.
5.7.6.3.2 Message Format

Refer to section 5.7.8.6.2.
5.7.6.3.3 Exception Handling

There may be an unexpected exception during the Rights Removal Message processing as specified in section 5.5.1. The exception is classified into one of the following cases.

· Case 1: The DRM Agent receives the RightsRemovalResponse containing Handle Not Found in the Status parameter. (The Handle is not stored)

· Case 2: The Rights Removal Message processing is uncompleted for any reason other than those of case 1.

When the exception occurs, the DRM Agent SHOULD immediately recover it. If the DRM Agent fails to detect the exception, it MUST recover the exception by referring to the Operation Log when a new MAKE process is executed.

[Recovery Procedure – Completion of Move]

To complete the Move transaction, the DRM Agent activates a recovery procedure per case as follows.
· In case 1, the Move is terminated without recovery.

· In case 2, the DRM Agent sends the RightsRemovalRequest as specified in section 5.7.8.6 in order to remove the Rights from the SRM. The New Handle recorded in the Operation Log for this Move transaction MUST be used in this request. If the RightsRemovalResponse contains one of Success and Handle Not Found in the Status parameter, then the Move is terminated.

When the Move is terminated, the entry for the Move transaction is removed from the Operation Log.
If the Rights Removal Message processing for the recovery purpose is uncompleted for any reason other than those specified above, then the recovery procedure is aborted. The DRM Agent MAY resume the aborted recovery by sending the RightsRemovalRequest when a new MAKE process is executed. To resume the recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
5.7.7 Local Rights Consumption

[Initiation of Local Rights Consumption]
To use a DRM Content by consuming its associated Rights, the DRM Agent may collect Rights Information associated with the DRM Content from the SRM (Refer to section 5.7.8.2). If there are more than one associated Rights in the SRM, the DRM Agent may perform it multiple times.
Then the DRM Agent selects one Rights for consumption. by referring to permissions and constraints in the Rights Information. (Refer to section 5.7.7.1) After the DRM Agent selects a Rights, the DRM Agent reads the REK of the selected Rights and disables it. (Refer to section 5.7.7.2)
[Local Rights Consumption]
A DRM Content is used by consuming a Rights from the SRM as specified in section 5.7.7.3.
5.7.7.1 Rights Selection in Device
For a DRM Content, there may be more than one Rights either in the SRM or in the Device. Then the DRM Agent selects one Rights. It is assumed that the DRM Agent may read associated Rights Information from the SRM as specified in section 5.7.8.2. The selection may be achieved by the DRM Agent itself or may need the user interaction.
If the DRM Agent selects a Rights from the Device, the consumption of the Rights is performed as specified in [OMADRMv2].
If the DRM Agent selects a Rights from the SRM, then the DRM Agent continues with the REK Query Message processing as specified in section 5.7.7.2.
5.7.7.2 REK Query Message
The DRM Agent may receive the REK of a Rights from the SRM Agent as illustrated in Figure 13.

[image: image14.emf]DRM Agent SRM Agent

REKQueryRequest

REKQueryResponse

Figure 13: Sequence Diagram – REK Query

5.7.7.2.1 Message Description
The DRM Agent sends the REKQueryRequest for the SRM Agent to read the REK of a Rights and disable the Rights in the SRM. The parameters of the request are defined in Table 38.
Table 38: Parameters of REKQueryRequest
	Parameters
	Protection Requirement
	Description

	Handle
	Integrity
	This identifies a Rights whose REK will be transferred from the SRM to the Device. Refer to section 5.1.3.

	New Handle
	Integrity & Confidentiality
	New Handle is an 10 byte random value generated by the DRM Agent for this Local Rights Consumption transaction.

Upon receiving the REKQueryRequest, the SRM Agent MUST performs the following procedure:

1. Verify the integrity of the request parameters
2. Decrypt the New Handle with the Session Key
3. Find a Rights corresponding to the Handle
4. If found, read REK of the Rights, overwrite the Handle in the SRM with the New Handle, and disable the Rights
A Trust Authority may decide that the disabled Rights is enabled automatically when a new Device – SRM Hello processing (specified in section 5.7.1) is executed. Default behaviour is that the disabled Rights SHALL NOT be enabled without a request from the DRM Agent that disabled the Rights.
The SRM Agent sends the REKQueryResponse to carry the result of the procedure. The parameters of the response are defined in Table 39. If any error occurs during the procedure, the error MUST be reported to the DRM Agent. The Status parameter of the REKQueryResponse contains the error cases as specified in Table 40.
Table 39: Parameters of REKQueryResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the REKQueryRequest is successfully handled or not. The Status value is specified in Table 40.
If the Status contains any error, only this parameter is present in the REKQueryResponse.

	REK
	Integrity & Confidentiality
	Refer to section 5.1.1.4

Table 40: Status of REK Query Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Parameter Decryption Failed
	The SRM Agent fails to decrypt the encrypted parameters.

	Handle Not Found
	The Handle in the request doesn’t exist in the SRM.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent MUST perform the following procedure:
1. Verify the integrity of parameters in the response
2. Decrypt REK with the Session Key

If no errors or exceptions (Status = Success), the DRM Agent completes the REK Query Message processing.
5.7.7.2.2 Message Format
The message format (MessageBody) of the REKQueryRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘1’.
Handle() {

 HandleString()

}

NewHandle() {

 HandleString()

}

EncryptedNewHandle() {

 EncryptedString()

}

Parameters() {

 Handle()

 EncryptedNewHandle()

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· Handle –Handle parameter in Table 38
· NewHandle – New Handle parameter in Table 38
· EncryptedNewHandle – Encrypted NewHandle with the current Session Key (SK)
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
The message format (MessageBody) of the REKQueryResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘1’.
EncryptedRek() {

 EncryptedString()

}

Parameters() {

 status

16
uimsbf

 if (status == 0) {

 EncryptedRek()

 }

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· EncryptedRek – Encrypted REK parameter in Table 39 (Rek in Appendix B.2.5.5) with the current Session Key (SK)
· status - Status parameter in Table 39
· Hmac – HMAC of Parameters with the current MAC Key (MK)
5.7.7.2.3 Exception Handling
There may be unexpected exceptions during the REK Query Message processing as specified in section 5.5.1. The exception is classified into one of the following cases.

· Case 1: The DRM Agent receives the REKQueryResponse not containing Success in the Status parameter.
· Case 2: The Rights Retrieval Message processing is uncompleted for any reason other than those of case 1.
When the exception occurs, the DRM Agent SHOULD immediately recover it. If the DRM Agent fails to detect the exception, it MUST recover the exception by referring to the Operation Log when a new MAKE process is executed.
[Recovery Procedure]

The DRM Agent activates a recovery procedure per case as follows.
· In case 1, the Local Rights Consumption is terminated without recovery. In case of Handle Not Found in the Status of the REKQueryResponse, the DRM Agent may restart it with the Rights Selection in Device processing section 5.7.7.1.

· In case 2, the DRM Agent sends the RightsEnablementRequest as specified in section 5.7.8.5 in order to enable the Rights and update the State Information if necessary. The New Handle recorded in the Operation Log for this Local Rights Consumption transaction MUST be used in this request. If the RightsEnablementResponse contains one of Success and Handle Not Found in the Status parameter, then the Local Rights Consumption is terminated.

When the Local Rights Consumption transaction is terminated, the entry for the transaction is removed from the Operation Log.
If the Rights Enablement Message processing is uncompleted for any reason other than those specified above, then the recovery procedure is aborted. The DRM Agent MAY resume the aborted recovery by sending the RightsEnablementRequest when a new MAKE process is executed. To resume the recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
5.7.7.3 Rights Consumption and Release

The DRM Agent consumes a Rights in the SRM in order to use an associated DRM Content. When one of <count>, <timed-count>, <interval>, and <accumulated> is used to constraint permissions granted to the DRM Content, after the DRM Agent retrieves the REK (as specified in section 5.7.7.2), the DRM Agent SHALL consume the Rights as if the Rights is locally installed in the Device, updating the state as specified in [OMADRMv2]. After consumption, the DRM Agent SHALL update the State Information in the SRM when it releases the Rights as specified in this section.

Note that a Trust Authority may decide different timing of the Rights Enablement Message activation for each constraint. Default behaviour is that the Rights Enablement Message processing is executed after consumption.
5.7.7.3.1 Message Description

The DRM Agent releases the Rights using Rights Enablement Message as specified in section 5.7.8.5.
The State Information parameter MUST be present when releasing Stateful Rights.
5.7.7.3.2 Message Format
Refer to section 5.7.8.5.2.
5.7.7.3.3 Exception Handling
There may be unexpected exceptions during the Rights Enablement Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the integrity of parameters, then the DRM Agent regards it as an exception.

When the exception occurs, the DRM Agent SHOULD immediately recover it. If the DRM Agent fails to detect the exception, it MUST recover the exception by referring to the Operation Log when a new MAKE process is executed.
[Recovery Procedure]

The DRM Agent sends the RightsEnablementRequest. The New Handle recorded in the Operation Log for this Local Rights Consumption transaction MUST be used in this request. If the RightsEnablementResponse contains one of Success and Handle Not Found in the Status parameter, then the Local Rights Consumption is terminated.

When the Local Rights Consumption transaction is terminated, the entry for the transaction is removed from the Operation Log.
If the Rights Enablement Message processing for the recovery purpose is uncompleted for any reason other than those specified above, then the recovery procedure is aborted. The DRM Agent MAY resume the aborted recovery by sending the RightsEnablementRequest when a new MAKE process is executed. To resume the recovery, the DRM Agent refers to the Operation Log as specified in section 5.5.2.
5.7.8 SRM Utilities
The protocols specified in this section provide necessary functions that are used for the Rights Move and Local Rights Consumption.
5.7.8.1 Handle List Query Message
To read Rights from an SRM, the DRM Agent has to be aware of the identifier of the Rights in the SRM (i.e. Handle). The Handle List Query Message processing is used to read a Handle List from the SRM as illustrated in Figure 14.

[image: image15.emf]DRM Agent SRM Agent

HandleListQueryRequest

HandleListQueryResponse

Figure 14: Sequence Diagram – Handle List Query
5.7.8.1.1 Message Description

The DRM Agent sends the HandleListQueryRequest to read the Handle List from the SRM. The parameter of the request is defined in Table 41.
Table 41: Parameters of HandleListQueryRequest
	Parameters
	Protection Requirement
	Description

	Hashed ContentID List
	No
	List of H(ContentID). Each ContentID conforms to [RFC2396] and is present in the <uid> element when its parent <context> element is included in the <asset>element of the <ro> element of a Rights Object. The elements (<uid>, <context>, <asset> and <ro>) are defined in [OMADRMv2].

	Handle List Length
	No
	Maximum Handle List length in bytes that the DRM Agent can process. If this value is present, the SRM Agent MUST send a Handle List shorter than or equal to the Handle List Length value.

If a Handle List for a specific ContentID is longer than the Handle List Length, the SRM Agent divides the Handle List into several chunks.

The ContentID in the HandleListQueryRequest is the identification of a DRM Content. The DRM Content can be associated with one or multiple Rights. The SRM Agent generates and returns a Handle List of Rights that are associated with the DRM Content.

Upon receiving the HandleListQueryRequest, the SRM Agent performs the following actions:

· In case of absence of Hashed ContentID List in the request, the SRM Agent generates a Handle List of all Rights in the SRM.
· In case the Hashed ContentID List is included in the request, the SRM Agent generates a Handle List of Rights in the SRM that are associated with specific DRM Contents. The DRM Contents are identified by the ContentIDs in the request.
The Handle List MUST contain only Handles of enabled Rights.

The SRM Agent MAY restrict the number of ContentIDs included in the Handle List. For example, if the SRM Agent supports to generate a Handle List of maximum 3 ContentIDs, then the SRM Agent generates the Handle List of only 3 ContentIDs, even the Hashed ContentID List contains 5 ContentID hash values.

The SRM Agent sends the HandleListQueryResponse to carry the result of the action. The parameters of the response are defined in Table 42. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the HandleListQueryResponse contains the error cases as specified in Table 43.
Table 42: Parameters of HandleListQueryResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the HandleListQueryRequest is successfully handled or not. The Status value is specified in Table 43.

	Handle List
	No
	This parameter contains a Handle List or a chunk of it if a Handle List has been divided into several chunks.

	Continuation Flag
	No
	It is assumed that a Handle List is divided into several chunks.

‘0’: The Handle List in this response is the last chunk of the whole Handle List, or the Handle List is not divided into chunks (i.e. the Handle List is shorter than or equal to the Handle List Length in the request, or the Handle List Length field is not present in the request).

‘1’: A Handle List has been divided into several chunks. The Handle List in this response is a chunk of the whole Handle List, and there are subsequent chunks.

	Handle List Length
	No
	This is the length in bytes of a chunk, and is present when the length of the chunk is not equal to the Handle List Length in the request.

Table 43: Status of Handle List Query Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Handle List Not Found
	There is no Rights in SRM associated with a specific DRM Content that is identified by the ContentID.

	Unknown Error
	Other errors

If the Continuation Flag contains the value ‘1’ and Status is Success, the DRM Agent SHOULD send the HandleListQueryRequest again in order to read the next chunk. The DRM Agent repeats the HandleListQueryRequest until the response contains the value ‘0’ in the Continuation Flag parameter. If the Continuation Flag contains the value ‘0’ and no errors or exceptions (Status = Success), the Handle List Query Message processing is completed.
If the DRM Agent sends a different message or sends the HandleListQueryRequest with different parameter values than the previous values, then the SRM Agent resets the operation (i.e. the SRM Agent returns the Handle List from the first chunk again).

If a Handle List is divided into several chunks, a chunk may not maintain the complete data structure in Appendix B.4. The DRM Agent MUST concatenate all chunks in sequence from the SRM Agent in order to complete the Handle List data structure.
5.7.8.1.2 Message Format

The message format (MessageBody) of the HandleListQueryRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘0’.
MessageBody() {
 hashedContentIdListPresent
1
bslbf

 handleListLengthPresent

1
bslbf

 rfu

6
bslbf

 if (hashedContentIdListPresent) {

 numOfContentId

8
bslbf

 if (i = 0 ; i < numOfContentId ; i++) {

 HashedContentId()

 }

 }

 if (handleListLengthPresent) {

 handleListLength
16
uimsbf

 }

}

The fields are defined as follows:

· hashedContentIdListPresent - if ‘1’, then the list of HashedContentId is present in this message
· handleListLengthPresent - if ‘1’, then handleListLength is present in this message
· numOfContentId – Number of HashedContentId in Hashed ContentId List parameter in Table 41
· HashedContentId – Hash of ContentId
· handleListLength – Handle List Length parameter in Table 41
The message format (MessageBody) of the HandleListQueryResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
MessageBody() {

 status

16
uimsbf

 if (status == 0) {

 handleListLengthPresent
1
bslbf
 rfu

7
bslbf
 HandleList()

 continuationFlag

8
uimsbf

 if (handleListLengthPresent) {

 handleListLength

16
uimsbf

 }

 }

}

The fields are defined as follows:

· status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.

· handleListLengthPresent - if ‘1’, then handleListLength is present in this message
· HandleList – Handle List parameter in Table 42
· continuationFlag – Continuation Flag parameter in Table 42
· handleListLength – Handle List Length parameter in Table 42
5.7.8.1.3 Exception Handling

There may be an unexpected exception during the Handle List Query Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates the Handle List Query Message processing. The user may be informed of the exception.
5.7.8.2 Rights Information Query Message

The DRM Agent may request the SRM Agent to read Rights Information including the Rights Meta Data, Rights Object Container, and State Information from the SRM as illustrated in Figure 15. The Rights Information doesn’t include REK.

[image: image16.emf]DRM Agent SRM Agent

RightsInfoQueryRequest

RightsInfoQueryResponse

Figure 15: Sequence Diagram – Rights Information Query
5.7.8.2.1 Message Description
The DRM Agent sends the RightsInfoQueryRequest to read the Rights Information (Rights Meta Data, Rights Object Container, and State Information) without the REK from the SRM. The parameters of the request are defined in Table 44.
Table 44: Parameters of RightsInfoQueryRequest
	Parameters
	Protection Requirement
	Description

	Handle
	Integrity
	This identifies a Rights whose Rights Information will be transferred from the SRM to the Device. Refer to section 5.1.3.

Upon receiving the RightsInfoQueryRequest, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the request parameters

2. Find a Rights corresponding to the Handle
The SRM Agent sends the RightsInfoQueryResponse to carry the result of the procedure. The parameters of the response are defined in Table 45. If any error occurs during the procedure, the error MUST be reported to the DRM Agent. The Status parameter of the RightsInfoQueryResponse contains the error cases as defined in Table 46.
Table 45: Parameters of RightsInfoQueryResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the RightsInfoQueryRequest is successfully handled or not. The Status value is specified in Table 46.

If the Status contains any error, only this parameter is present in the RightsInfoQueryResponse.

	Rights Meta Data
	Integrity
	Refer to section 5.1.1.1

	Rights Object Container
	Integrity
	Refer to section 5.1.1.2

	State Information
	Integrity
	Refer to section 5.1.1.3. This parameter is not present if the Rights Object in the Rights Object Container is stateless.

Table 46: Status of Rights Information Query Message

	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Handle Not Found
	The Handle in the request doesn’t exist in the SRM.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response.

If no errors or exceptions (Status = Success), the Rights Information Query Message processing is completed.
5.7.8.2.2 Message Format

The message format (MessageBody) of the RightsInfoQueryRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘1’.
Handle() {

 HandleString()

}

Parameters() {

 Handle()

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· Handle –Handle parameter in Table 44
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
The message format (MessageBody) of the RightsInfoQueryResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘1’.
Parameters() {

 status

16
uimsbf

 if (status == 0) {

 RightsInformation()

 }

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· RightsInformation – Rights Meta Data, Rights Object Container, Rights Meta Data parameters in Table 45
· status - Status parameter in Table 45
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
5.7.8.2.3 Exception Handling

There may be an unexpected exception during the Rights Information Query Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the integrity of parameters, then the DRM Agent regards it as an exception and terminates the Rights Information Query Message processing. The user may be informed of the exception.
5.7.8.3 Rights Information List Query Message

The DRM Agent MAY request the SRM Agent to read Rights Information List as illustrated in Figure 16.
The user may need to know the Rights Information before he/she can decide which Rights to be retrieved. The Rights Information List Query message is used to read lists of Rights information from the SRM. By using this message, the DRM Agent SHOULD get the latest list of Handles with Rights Information from the SRM Agent before the Movement of Rights or Local Rights Consumption. The Rights Information List Query message is optional for the SRMs.

[image: image17.emf]DRM Agent SRM Agent

RightsInfoListQueryRequest

RightsInfoListQueryResponse

Figure 16: Sequence Diagram – Rights Information List Query
5.7.8.3.1 Message Description

The DRM Agent sends the RightsInfoListQueryRequest to read the Rights Information List from the SRM. The parameter of the request is defined in Table 47.
Table 47: Parameters of RightsInfoListQueryRequest
	Parameters
	Protection Requirement
	Description

	Hashed ContentID List
	No
	List of H(ContentID). Each ContentID conforms to [RFC2396] and is present in the <uid> element when its parent <context> element is included in the <asset>element of the <ro> element of a Rights Object. The elements (<uid>, <context>, <asset> and <ro>) are defined in [OMADRMv2].

	Rights Information List Length
	No
	Maximum Rights Information List length in bytes that the DRM Agent can process. If this value is present, the SRM Agent MUST send a Rights Information List shorter than or equal to the Rights Information List Length value.

If a Rights Information List for a specific ContentID is longer than the Rights Information List Length, the SRM Agent divides the Rights Information List into several chunks.

The ContentID in the RightsInfoListQueryRequest is the identification of a DRM Content. The DRM Content can be associated with one or multiple Rights. The SRM Agent generates and returns a Rights Information List that are associated with the DRM Content.
Upon receiving the RightsInfoListQueryRequest, the SRM Agent performs the following actions:

· In case of absence of Hashed ContentID List in the request, the SRM Agent generates a Rights Information List of all Rights in the SRM.
· In case of presence of Hashed ContentID List in the request, the SRM Agent generates a Rights Information List in the SRM that are associated with specific DRM Contents. The DRM Contents are identified by the ContentIDs in the request.
The Rights Information List MUST contain only Rights Information of enabled Rights.
The SRM Agent sends the RightsInfoListQueryResponse to carry the result of the action. The parameters of the response are defined in Table 48. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the RightsInfoListQueryResponse contains the error cases as defined in Table 49.
Table 48: Parameters of RightsInfoListQueryResponse

	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the RightsInfoListQueryRequest is successfully handled or not. The Status value is specified in Table 49.

	Rights Information List
	Integrity
	This parameter contains a Rights Information List or a chunk of it if the Rights Information List has been divided into several chunks.

	Continuation Flag
	Integrity
	It is assumed that a Rights Information List is divided into several chunks.

‘0’: The Rights Information List in this response is the last chunk of the whole Rights Information List, or the Rights Information List is not divided into chunks (i.e. the Rights Information List is shorter than or equal to the Rights Information List Length in the request, or the Rights Information List Length field is not present in the request).

‘1’: A Rights Information List has been divided into several chunks. The Rights Information List in this response is a chunk of the whole Rights Information List, and there are subsequent chunks.

	Rights Information List Length
	Integrity
	This is the length in bytes of a chunk, and is present when the length of the chunk is not equal to the Rights Information List Length in the request.

Table 49: Status of Rights Information List Query Message

	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Rights Information List Not Found
	There is no Rights Information in SRM associated with a specific DRM Content that is identified by the H(ContentID) in the RightsInfoListQueryRequest.

	Function Not Supported
	This function is not supported by the SRM Agent.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response.

If the Continuation Flag contains the value ‘1’ and Status is Success, the DRM Agent SHOULD send the RightsInfoListQueryRequest again in order to read the next chunk. The DRM Agent repeats the RightsInfoListQueryRequest until the response contains the value ‘0’ in the Continuation Flag parameter. If the Continuation Flag contains the value ‘0’ and no errors or exceptions (Status = Success), the Handle List Query Message processing is completed.

If the DRM Agent sends a different message or sends the RightsInfoListQueryRequest with different parameter values than the previous values, then the SRM Agent resets the operation (i.e. the SRM Agent returns the Rights Information List from the first chunk again).

If a Rights Information List is divided into several chunks, a chunk may not maintain the complete data structure in Appendix B.2.6. The DRM Agent MUST concatenate all chunks in sequence from the SRM Agent in order to complete the Rights Information List data structure.
5.7.8.3.2 Message Format
The message format (MessageBody) of the RightsInfoListQueryRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘0’.
MessageBody() {
 hashedContentIdListPresent
1
bslbf

 rightsInfoListLengthPresent
1
bslbf
 rfu

6
bslbf

 if (hashedContentIdListPresent) {
 numOfContentId

8
bslbf

 if (i = 0 ; i < numOfContentId ; i++) {

 HashedContentId()

 }

}
 if (rightsInfoListLengthPresent) {

 rightsInfoListLength

16
uimsbf

 }

}

The fields are defined as follows:

· hashedContentIdListPresent - if ‘1’, then the list of HashedContentId is present in this message
· rightsInfoListLengthPresent - if ‘1’, then rightsInfoListLength is present in this message
· numOfContentId – Number of HashedContentId in Hashed ContentId List parameter in Table 47
· HashedContentId – Hash of ContentId
· rightsInfoListLength – Rights Information List Length parameter in Table 47
The message format (MessageBody) of theRightsInfoListQueryResponse is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘1’.
MessageBody() {

 status

16
uimsbf

 if (status == 0) {

 rightsInfoListLengthPresent
1
bslbf
 rfu

7
bslbf
 RightsInformationList()

 continuationFlag

8
uimsbf

 if (rightsInfoListLengthPresent) {

 rightsInfoListLength
16
uimsbf

 }

 }

}

The fields are defined as follows:

· status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.

· rightsInfoListLengthPresent - if ‘1’, then rightsInfoListLength is present in this message
· RightsInformationList – Rights Information List parameter in Table 48
· continuationFlag – Continuation Flag parameter in Table 48
· rightsInfoListLength – Rights Information List Length parameter in Table 48
5.7.8.3.3 Exception Handling
There may be an unexpected exception during the Rights Information List Query Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates the Rights Information List Query Message processing. The user may be informed of the exception.
5.7.8.4 Handle Removal Message
The DRM Agent may remove a Handle from the SRM as illustrated in Figure 17 when its corresponding Rights doesn’t exist in the SRM.

[image: image18.emf]DRM Agent SRM Agent

HandleRemovalRequest

HandleRemovalResponse

Figure 17: Sequence Diagram – Handle Removal

5.7.8.4.1 Message Description

The DRM Agent sends the HandleRemovalRequest to remove the Handle from the SRM. The parameters of the request are defined in Table 50.
Table 50: Parameters of HandleRemovalRequest
	Parameters
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	Handle that will be removed from the SRM. Refer to section 5.1.3.

Upon receiving the HandleRemovalRequest, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the parameters

2. Decrypt the Handle with the Session Key

3. Remove the matched Handle in the SRM
If a Rights corresponding to the Handle already exists in the SRM, then the SRM Agent returns Handle Not Removed in the Status.

The SRM Agent sends the HandleRemovalResponse to carry the result of the procedure. The parameters of the response are defined in Table 51. If any error occurs during the procedure, the error MUST be reported to the DRM Agent. The Status parameter of the HandleRemovalResponse contains the error cases as defined in Table 52.
Table 51: Parameters of HandleRemovalResponse

	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the HandleRemovalRequest is successfully handled or not. The Status value is specified in Table 52.

Table 52: Status of Handle Removal Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Parameter Decryption Failed
	The SRM Agent fails to decrypt the encrypted parameters.

	Handle Not Found
	The SRM Agent cannot find the matched Rights.

	Handle Not Removed
	The SRM Agent cannot remove the Handle because a Rights corresponding to the Handle already exists in the SRM.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response.

If no errors or exceptions (Status = Success), the Handle Removal Message processing is completed.

5.7.8.4.2 Message Format

The message format (MessageBody) of the HandleRemovalRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘1’.
Handle() {

 HandleString()

}

EncryptedHandle() {

 EncryptedString()

}

Parameters() {

 EncryptedHandle()

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· Handle –Handle parameter in Table 50
· EncryptedHandle – Encrypted Handle with the current Session Key (SK)
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
The message format (MessageBody) of the HandleRemovalResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘1’.
Parameters() {

 status
16
uimsbf

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· status - Status parameter in Table 51
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
5.7.8.4.3 Exception Handling

There may be an unexpected exception during the Handle Removal Message processing as specified in section 5.5.1. The recovery of the exception is handled as a part of Move transactions.
5.7.8.5 Rights Enablement Message

The DRM Agent may enable a Rights in the SRM using this function as illustrated in Figure 18.

[image: image19.emf]DRM Agent SRM Agent

RightsEnablementRequest

RightsEnablementResponse

Figure 18: Sequence Diagram – Rights Enablement
5.7.8.5.1 Message Description

The DRM Agent sends the RightsEnablementRequest to enable the Rights in the SRM. The parameters of the request are defined in Table 53.
Table 53: Parameters of RightsEnablementRequest
	Parameters
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	Handle identifies a Rights that will be enabled in the SRM. Refer to section 5.1.3.

	State Information
	Integrity
	New State Information that replaces the original State Information in the SRM. This parameter is OPTIONAL.

Upon receiving the RightsRetrievalRequest, the SRM Agent MUST perform the following procedure:

1. Verify the integrity of the request parameters

2. Decrypt the Handle with the Session Key
3. Enable the Rights corresponding to the Handle. If the State Information is present, overwrite the State Information of the found Rights in the SRM with the State Information. If the Rights is already enabled, then the SRM Agent returns Success in the Status parameter without executing this action.
The SRM Agent sends the RightsEnablementResponse to carry the result of the procedure. The parameters of the response are defined in Table 54. If any error occurs during the procedure, the error MUST be reported to the DRM Agent. The Status parameter of the RightsEnablementResponse contains the error cases as defined in Table 55.
Table 54: Parameters of RightsEnablementResponse

	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the RightsEnablementRequest is successfully handled or not. The Status value is specified in Table 55

Table 55: Status of Rights Enablement Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Parameter Decryption Failed
	The SRM Agent fails to decrypt the encrypted parameters.

	Handle Not Found
	The Handle in the request doesn’t exist in the SRM.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response.

If no errors or exceptions (Status = Success), the Rights Enablement Message processing is completed.

5.7.8.5.2 Message Format

The message format (MessageBody) of the RightsEnablementRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘1’.
Handle() {

 HandleString()

}

EncryptedHandle() {

 EncryptedString()

}

Parameters() {

 stateInformationPresent
1
bslbf
 rfu
7
bslbf
 EncryptedHandle()

 if (stateInformationPresent) {

 StateInformation()

 }
}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· Handle –Handle parameter in Table 53
· EncryptedHandle – Encrypted Handle with the current Session Key (SK)

· stateInformationPresent – if ‘1’, then StateInformation is present in this message

· StateInformation – State Information parameter in Table 53
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
The message format (MessageBody) of the RightsEnablementResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘1’.
Parameters() {

 status
16
uimsbf

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· status - Status parameter in Table 54
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
5.7.8.5.3 Exception Handling
There may be an unexpected exception during the Rights Enablement Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the integrity of parameters, then the DRM Agent regards it as an exception.

The recovery of the exception is handled as a part of Move transactions.
5.7.8.6 Rights Removal Message
The DRM Agent may remove a Rights from the SRM using this function as illustrated in Figure 19.

[image: image20.emf]DRM Agent SRM Agent

RightsRemovalRequest

RightsRemovalResponse

Figure 19: Sequence Diagram – Rights Removal
5.7.8.6.1 Message Description
The DRM Agent sends the RightsRemovalRequest to remove the Rights in the SRM. The parameters of the request are defined in Table 56.
Table 56: Parameters of RightsRemovalRequest
	Parameters
	Protection Requirement
	Description

	Handle
	Integrity & Confidentiality
	Handle identifies a Rights that will be removed in the SRM. Refer to section 5.1.3.

Upon receiving the RightsRetrievalRequest, the SRM Agent performs the following procedure:

1. Verify the integrity of the request parameters

2. Decrypt the Handle with the Session Key
3. Remove a Rights corresponding to the Handle
The SRM Agent sends the RightsRemovalResponse to carry the result of the procedure. The parameters of the response are defined in Table 57. If any error occurs during the procedure, the error MUST be reported to the DRM Agent. The Status parameter of the RightsRemovalResponse contains the error cases as defined in Table 58.
Table 57: Parameters of RightsRemovalResponse

	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the RightsRemovalRequest is successfully handled or not. The Status value is specified in Table 58.

Table 58: Status of Rights Removal Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Parameter Decryption Failed
	The SRM Agent fails to decrypt the encrypted parameters.

	Handle Not Found
	The Handle in the request doesn’t exist in the SRM.

	Unknown Error
	Other errors

Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response.

If no errors or exceptions (Status = Success), the Rights Removal Message processing is completed.

5.7.8.6.2 Message Format

The message format (MessageBody) of the RightsRemovalRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘1’.
Handle() {

 HandleString()

}

EncryptedHandle() {

 EncryptedString()

}

Parameters() {

 EncryptedHandle()

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· Handle –Handle parameter in Table 56
· EncryptedHandle – Encrypted Handle with the current Session Key (SK)
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
The message format (MessageBody) of the RightsRemovalResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘1’.
Parameters() {

 status
16
uimsbf

}

MessageBody() {

 Parameters()

 Hmac()

}

The fields are defined as follows:

· status - Status parameter in Table 57
· Hmac – HMAC of Parameters generated with the current MAC Key (MK)
5.7.8.6.3 Exception Handling
There may be an unexpected exception during the Rights Removal Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the integrity of parameters, then the DRM Agent regards it as an exception.

The recovery of the exception is handled as a part of Move transactions.
5.7.8.7 Store RI Certificate Chain
The DRM Agent may store Rights Issuer’s certificate chains in the SRM as illustrated in Figure 20.

[image: image21.emf]DRM Agent SRM Agent

RICertificateStoreRequest

RICertificateStoreResponse

Figure 20: Sequence Diagram – Store RI Certificate Chain
5.7.8.7.1 Message Description

The DRM Agent sends the RICertificateStoreRequest to store an RI certificate chain in the SRM. The parameters of the request are defined in Table 59.
Table 59: Parameters of RICertificateStoreRequest
	Parameters
	Protection Requirement
	Description

	RI ID
	No
	The hash of the Rights Issuer’s public key in the RI Certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the RI Certificate). The default hash algorithm is SHA-1.

	RI Certificate Chain
	No
	Rights Issuer’s certificate chain

Upon receiving the RICertificateStoreRequest, the SRM Agent stores the RI ID and certificate chain. If there already exists the RI certificate chain, this is overwritten with the certificate chain in the request.

The SRM Agent sends the RICertificateStoreResponse to carry the result of the action. The parameters of the response are defined in Table 60. If any error occurs during this action, the error MUST be reported to the DRM Agent. The Status parameter of the RICertificateStoreResponse contains the error cases as specified in Table 61.
Table 60: Parameters of RICertificateStoreResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the RICertificateStoreRequest is successfully handled or not. The Status value is specified in Table 61

Table 61: Status of RI Certificate Store Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Not Enough Space
	The SRM doesn’t have enough space to store the certificate chain.

	Function Not Supported
	RI Certificate Chain cannot be stored in the SRM.

	Unknown Error
	Other errors

If no errors or exceptions (Status = Success), the RI Certificate Store Message processing is completed.

5.7.8.7.2 Message Format

The message format (MessageBody) of the RICertificateStoreRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘0’.
RiId() {

 OctetString8()

}

RiCertificateChain() {

 CertificateChain()

}

MessageBody() {

 RiId()

 RiCertificateChain()

}

The fields are defined as follows:

· RiId – RI ID parameter in Table 59
· RiCertificateChain – RI Certificate Chain parameter in Table 59
The message format (MessageBody) of the RICertificateStoreResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
MessageBody() {

 status
16
uimsbf

}

The field is defined as follows:

· status - Status parameter in Table 60
5.7.8.7.3 Exception Handling
There may be an unexpected exception during the RI Certificate Store Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user MAY be informed of this exception.
5.7.8.8 Get RI Certificate Chain
The DRM Agent may read Rights Issuer’s certificate chains from the SRM as illustrated in Figure 21.

[image: image22.emf]DRM Agent SRM Agent

RICertificateQueryRequest

RICertificateQueryResponse

Figure 21: Sequence Diagram – Get RI Certificate Chain
5.7.8.8.1 Message Description

The DRM Agent sends the RICertificateQueryRequest to read an RI certificate chain from the SRM. The parameters of the request are defined in Table 62.
Table 62: Parameters of RICertificateQueryRequest
	Parameters
	Protection Requirement
	Description

	RI ID
	No
	The hash of the Rights Issuer’s public key in the RI Certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the RI Certificate). The default hash algorithm is SHA-1.

Upon receiving the RICertificateQueryRequest, the SRM Agent reads the RI certificate chain identified by the RI ID from the SRM.

The SRM Agent sends the RICertificateQueryResponse to carry the result of the action. The parameters of the response are defined in Table 63. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the RICertificateQueryResponse contains the error cases as specified in Table 64.
Table 63: Parameters of RICertificateQueryResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the RICertificateQueryRequest is successfully handled or not. The Status value is specified in Table 64

	RI Certificate Chain
	No
	Rights Issuer’s certificate chain

Table 64: Status of RI Certificate Query Message
	Status Value
	Description

	Success
	The request is successfully handled.

	RI Certificate Chain Not Found
	The SRM Agent cannot find the matched RI certificate chain.

	Unknown Error
	Other errors

If no errors or exceptions (Status = Success), the RI Certificate Query Message processing is completed.

5.7.8.8.2 Message Format
The message format (MessageBody) of the RICertificateQueryRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘0’.
RiId() {

 OctetString8()

}

MessageBody() {

 RiId()

}

The field is defined as follows:

· RiId – RI ID parameter in Table 62
The message format (MessageBody) of the RICertificateQueryResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
RiCertificateChain() {

 CertificateChain()

}

MessageBody() {

 status
16
uimsbf

 if (status == 0) {

 RiCertificateChain()

 }

}

The fields are defined as follows:

· status - Status parameter in Table 63
· RiCertificateChain – RI Certificate Chain parameter in Table 63
5.7.8.8.3 Exception Handling

There may be an unexpected exception during the RI Certificate Query Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user MAY be informed of this exception.
5.7.8.9 Remove RI Certificate Chain
The DRM Agent may remove an RI certificate chain from the SRM as illustrated in Figure 22.

[image: image23.emf]DRM Agent SRM Agent

RICertificateRemovalRequest

RICertificateRemovalResponse

Figure 22: Sequence Diagram – Remove RI Certificate Chain
5.7.8.9.1 Message Description

The DRM Agent sends the RICertificateRemovalRequest to remove the RI certificate chain from the SRM. The parameters of the request are defined in Table 65.
Table 65: Parameters of RICertificateRemovalRequest
	Parameters
	Protection Requirement
	Description

	RI ID
	No
	The hash of the Rights Issuer’s public key in the RI Certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the RI Certificate). The default hash algorithm is SHA-1.

Upon receiving the RICertificateRemovalRequest, the SRM Agent finds the RI certificate chain identified by the RI ID and removes it.
The SRM Agent sends the RICertificateRemovalResponse to carry the result of the action. The parameters of the response are defined in Table 66. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the RICertificateRemovalResponse contains the error cases as specified in Table 67.
Table 66: Parameters of RICertificateRemovalResponse

	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the RICertificateRemovalRequest is successfully handled or not. The Status value is specified in Table 67

Table 67: Status of RI Certificate Removal Message
	Status Value
	Description

	Success
	The request is successfully handled.

	RI Certificate Chain Not Found
	The SRM Agent cannot find the matched RI certificate chain.

	Unknown Error
	Other errors

If no errors or exceptions (Status = Success), the RI Certificate Removal Message processing is completed.

5.7.8.9.2 Message Format

The message format (MessageBody) of the RICertificateRemovalRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘0’.
RiId() {

 OctetString8()

}

MessageBody() {

 RiId()

}

The field is defined as follows:

· RiId – RI ID parameter in Table 65
The message format (MessageBody) of the RICertificateRemovalResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
MessageBody() {

 status
16
uimsbf

}

The field is defined as follows:

· status - Status parameter in Table 66
5.7.8.9.3 Exception Handling

There may be an unexpected exception during the RI Certificate Removal Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user MAY be informed of this exception.
5.7.8.10 Dynamic Code Page Query
The DRM Agent may read the WBXML Dynamic Code Pages (see section 7.2.2 and 7.3.2) as illustrated in Figure 23.

[image: image24.emf]DRM Agent SRM Agent

DynamicCodePageQueryRequest

DynamicCodePageQueryResponse

Figure 23: Sequence Diagram – Dynamic Code Page Query
5.7.8.10.1 Message Description
The DRM Agent sends the DynamicCodePageQueryRequest to read the WBXML Dynamic Code Pages from the SRM. The DynamicCodePageQueryRequest has no parameters. The DRM Agent SHOULD NOT send the DynamicCodePageQueryRequest to SRMs that indicated in the HelloResponse (section 5.7.1) that they do not support storage of Dynamic Code Pages.

Upon receiving the DynamicCodePageQueryRequest, the SRM Agent reads the Dynamic Code Pages from its internal storage and the SRM Agent sends the DynamicCodePageQueryResponse to carry the result of the action. The parameters of the response are defined in Table 68. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of theDynamicCodePageQueryResponse contains the error cases as specified in Table 69.
Table 68: Parameters of DynamicCodePageQueryResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the DynamicCodePageQueryRequest is successfully handled or not. The Status value is specified in Table 69.

	Attribute Code Page
	No
	The Dynamic Attribute Code Page

	Tag Code Page
	No
	The Dynamic Tag Code Page

Table 69: Status of Dynamic Code Page Query Message
	Status Value
	Description

	Success
	The request is successfully handled and the Dynamic Code Pages are returned.

	Dynamic Code Pages Not Found
	The WBXML Dynamic Code Pages do not yet exist on the SRM. The DRM Agent MAY create new Code Pages as required.

	Unknown Error
	Other errors

If no errors or exceptions (Status = Success or Status = Dynamic Code Pages Not Found), the Dynamic Code Page Query Message processing is completed.
5.7.8.10.2 Message Format
The MessageBody of the DynamicCodePageQueryRequest is empty. The messageType is set to’0’ and protectedFlag is set to ‘0’.
The message format (MessageBody) of the DynamicCodePageQueryResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
MessageBody() {

 status
16
uimsbf

 if (status == 0) {

 attributeCodePage()
 tagCodePage()
 }

}

The fields are defined as follows:

· status - Status parameter in Table 68
· attributeCodePage – Attribute Code Page parameter as defined in B.5.1
· tagCodePage – Tag Code Page parameter in section B.5.2
5.7.8.10.3 Exception Handling

There may be an unexpected exception during the Dynamic Code Page Query as specified in section 5.5.1. If the DRM Agent fails to receive the response, or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user MAY be informed of this exception.
5.7.8.11 Dynamic Code Page Update
The DRM Agent MAY store an updated WBXML Dynamic Code Page on the SRM as illustrated in Figure 24.

[image: image25.emf]DRM Agent SRM Agent

DynamicCodePageUpdateRequest

DynamicCodePageUpdateResponse

Figure 24: Sequence Diagram – Dynamic Code Page Update
5.7.8.11.1 Message Description

The DRM Agent sends the DynamicCodePageUpdateRequest to store an updated set of Dynamic Code Pages in the SRM. The updated code pages SHALL replace any existing code pages. The parameters of the request are defined in Table 70.
Table 70: Parameters of DynamicCodePageUpdateRequest
	Parameters
	Protection Requirement
	Description

	Attribute Code Page
	No
	The Dynamic Attribute Code Page

	Tag Code Page
	No
	The Dynamic Tag Code Page

Upon receiving the DynamicCodePageUpdateRequest, the SRM Agent stores the updated Code Page(s). If the updated code page already exists in the SRM then it is overwritten.
The SRM Agent sends the DynamicCodePageUpdateResponse to carry the result of the action. The parameters of the response are defined in Table 71. If any error occurs during this action, the error MUST be reported to the DRM Agent. The Status parameter of the DynamicCodePageUpdateResponse contains the error cases as specified in Table 72.
Table 71: Parameters of DynamicCodePageUpdateResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the DynamicCodePageUpdateRequest is successfully handled or not. The Status value is specified in Table 72

Table 72: Status of Dynamic Code Page Update Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Not Enough Space
	The SRM doesn’t have enough space to store the dynamic code tables

	Function Not Supported
	Dynamic Code Tables cannot be stored in the SRM.

	Unknown Error
	Other errors

If no errors or exceptions (Status = Success), the Dynamic Code Page Update Message processing is completed.
5.7.8.11.2 Message Format

The message format (MessageBody) of the DynamicCodePageUpdateRequest is specified as follows. The messageType is set to’0’ and protectedFlag is set to ‘0’.
MessageBody() {
 attributeCodePagePresent

1
bslbf

 tagCodePagePresent

1
bslbf
 rfu

6
bslbf
 if (attributeCodePagePresent) {

 attributeCodePage()

 }

 if (tagCodePagePresent) {

 tagCodePage()

 }
}

The fields are defined as follows:

· attributeCodePagePresent – indicates whether the attributeCodePage is present.

· tagCodePagePresent – indicates whether the tagCodePage is present.

· attributeCodePage – Attribute Code Page parameter as defined in B.5.1
· tagCodePage – Tag Code Page parameter in section B.5.2
The message format (MessageBody) of the DynamicCodePageUpdateResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
MessageBody() {

 status
16
uimsbf

}

The field is defined as follows:

· status - Status parameter in Table 71
5.7.8.11.3 Exception Handling

There may be an unexpected exception during the Dynamic Code Page Update Message processing as specified in section 5.5.1. If the DRM Agent fails to receive the response, or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user MAY be informed of this exception.
6. Transport Mappings
This section shows SRM communication layer model and includes explanation of each layer. This section clarifies the scope of OMA SRM enabler and the work-scope of external organizations related to each type of SRM.
6.1 SRM Communication Layer Model

The SRM communication layer model divides the functions of a protocol into a series of layers. Each layer has the property that it only uses the functions of the layer below, and only exports functionality to the layer above. This section briefly dictates the specifications on how one layer interacts with another.

[image: image26.emf]Application Layer

Middle Layer

Transformation Layer

SRM Access Layer

Figure 25: SRM Communication Layer
The SRM communication layer model consists of 4 layers: SRM access layer, transformation layer, middle layer and application layer. SRM access layer, transformation layer and middle layer have different property depending on each SRM type. However the application layer defines a common function of a protocol between devices and SRM regardless of the layers below.

6.1.1 Application Layer

The application layer defines services that facilitate communication between DRM Agents and SRM Agents. This layer is independent of lower layers so that this layer is common to all SRM types.

OMA Secure Removable Media enabler specifies this layer.
6.1.2 Other Layers (Informative)

OMA Secure Removable Media enabler doesn’t specify these layers, and these layers are defined by external organizations related to each type of SRM.
6.1.2.1 Middle Layer

The middle layer relieves the application layer of concern regarding syntactical differences in a message's data representation between device and SRM. This layer provides functional interface defined by OMA SRM enabler for DRM agents and SRM Agents in the application layer. The implementation of this layer depends on each type of SRM.
6.1.2.2 Transformation Layer

The transformation layer defines fragmentation and de-fragmentation of the representation of digital data in devices and SRM(s) and data blocks over a data line
6.1.2.3 SRM Access Layer

The SRM access layer defines all the electrical and physical specifications for device and SRM. This includes bus width, data rate, clock frequencies, and SRM form factor. The major functions and services performed by the SRM access layer are:
· Establishment and termination of a connection to a communications medium

· Modulation or conversion between data blocks and the corresponding signals transmitted over a communications channel

· Format of command line and data line
· SRM states and transition between each state
This layer also detects and corrects errors that may occur physically.
7. Compact Encoding of Rights
This section specifies the compact encoding of the SRM 1.0 Rights Object Container (<oma-dd:roContainer>). This encoding is used if the Rights Object Container roFormat indicates WBXML encoding.

WBXML 1.3 [WBXML] is a simple method that allows compacting XML documents in a loss-less manner. A WBXML decoder processes a WBXML encoded document by interpreting it byte-by-byte. Some bytes represent decoding instructions, some represent XML element start tags, attribute names or attribute values. The decoding process is stateful. The decoder maintains one global state, which determines whether it is processing elements, or attributes. Within each state, the decoder maintains an independent notion of a selected code page.
7.1 WBXML Encoding Rules
The following rules MUST be followed when WBXML encoding the <roContainer>:
· WBXML version 1.3 MUST be used (encoded as u_int8 value 0x03)

· The public identifier value "-//OMA//SRM 1.0//EN" MUST be used (encoded as mb_u_int32 value of 0x14). This document type identifier is registered by OMNA.

· The character set MUST be UTF-8 (encoded as mb_u_int32 value 0x6A).

· The string table MAY be used to specify string values of literal tokens. The string table SHOULD NOT be used to encode WBXML strings.

· All strings SHOULD be encoded inline.
7.2 Attribute Code Pages
7.2.1 Fixed Attributed Code Page
Attribute code page 0 in the context of the public identifier "-//OMA//SRM 1.0//EN" is a fixed code page. This holds attribute names and attribute values that correspond to the Rights Objects used in SRM 1.0, DRM 2.0, DRM 2.1 and BCAST 1.0. This code table is fixed and future versions of SRM will not add additional values to this code table.
Table 73: Fixed WBXML Attribute Code Page – Attribute Names
	Attribute Name
	WBXML Attribute Code
	Comment

	GLOBAL TOKENS
	00 – 04
	

	xmlns:o-ex
	05
	

	xmlns:o-dd
	06
	

	xmlns:ds
	07
	

	xmlns:oma-dd
	08
	

	xmlns:xenc
	09
	

	o-ex:id
	0A
	

	o-ex:idref
	0B
	

	Algorithm
	0C
	

	URI
	0D
	

	oma-dd:onExpiredURL
	0E
	

	oma-dd:timer
	0F
	

	oma-dd:mode
	10
	

	oma-dd:timed
	11
	

	oma-dd:contentAccessGranted
	12
	

	oma-dd:token-timed-count-timer
	13
	

	
	14 – 3F
	Not Used

	
	40 – 44
	GLOBAL TOKENS

	
	45 – 7F
	Not Used

Table 74: Fixed WBXML Attribute Code Page – Attribute Values
	Attribute Value
	WBXML Attribute Value Code

	GLOBAL TOKENS
	80 - 84

	http://odrl.net/1.1/ODRL-EX
	85

	http://odrl.net/1.1/ODRL-DD
	86

	http://www.openmobilealliance.com/oma-dd
	87

	http://www.w3.org/2000/09/xmldsig#
	88

	http://www.w3.org/2001/04/xmlenc#
	89

	http://www.w3.org/2000/09/xmldsig#sha1
	8A

	http://www.w3.org/2001/04/xmlenc#kw-aes128
	8B

	http://www.w3.org/2001/10/xml-exc-c14n#
	8C

	http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsa-pss-default
	8D

	#K_MAC_and_K_REK
	8E

	move
	8F

	copy
	90

	true
	91

	false
	92

	UNUSED
	93 - BF

	GLOBAL TOKENS
	C0 – C4

	UNUSED
	C5 – FF

7.2.2 Dynamic Attribute Code Pages
Attribute code page 1 in the context of the public identifier "-//OMA//SRM 1.0//EN" is a dynamic code page. The attribute name codes and attribute value codes are not defined in this specification. The dynamic attribute code page is defined to allow forward compatibility in WBXML encoding. The values within the dynamic attribute code page are stored on the SRM. The dynamic code page is unique per SRM. Normally a new SRM will have an empty dynamic attribute code page.

As defined in section 5.7.8.10, DRM Agents MAY retrieve the SRM’s dynamic code page from the SRM. DRM Agents MUST NOT delete attribute codes from the SRMs dynamic code page.

During the process of compacting an XML Document before transferring it to the SRM, the DRM Agent MAY add new attribute code values and attribute name codes to the dynamic code page. DRM Agents SHOULD add new attribute codes if the XML Document to be compacted contains any attributes or attribute values that do not exist in either code page 0 or the existing dynamic code page.
7.2.3 Reserved Attribute Code Pages
All attribute code pages 2 to 127 in the context of the public identifier "-//OMA//SRM 1.0//EN" are reserved for future use by OMA.
7.3 Tag Code Pages
7.3.1 Rights Object Container
The element tag code page defined in this section is to be used together with tag code page 1 and attribute code pages 1 and 2 to encode and decode the Rights Object Container’s <roContainer> element.
Table 75: Fixed WBXML Tag Code Page
	Attribute Name
	WBXML Attribute Code
	Comment

	o-ex:rights
	05
	

	o-ex:context
	06
	

	o-ex:agreement
	07
	

	o-ex:asset
	08
	

	o-ex:inherit
	09
	

	o-ex:permission
	0A
	

	o-ex:requirement
	0B
	

	o-ex:constraint
	0C
	

	o-ex:digest
	0D
	

	o-dd:version
	0E
	

	o-dd:uid
	0F
	

	o-dd:play
	10
	

	o-dd:display
	11
	

	o-dd:execute
	12
	

	o-dd:print
	13
	

	o-dd:export
	14
	

	o-dd:move
	15
	

	o-dd:save
	16
	

	o-dd:tracked
	17
	

	o-dd:count
	18
	

	o-dd:datetime
	19
	

	o-dd:start
	1A
	

	o-dd:end
	1B
	

	o-dd:interval
	1C
	

	o-dd:accumulated
	1D
	

	o-dd:individual
	1E
	

	oma-dd:timed-count
	1F
	

	oma-dd:system
	20
	

	oma-dd:access
	21
	

	oma-dd:token-based
	22
	

	oma-dd:token-constraint-count
	23
	

	oma-dd:token-constraint-timed-count
	24
	

	oma-dd:token-accumulated
	25
	

	oma-dd:token-unit
	26
	

	oma-dd:token-consumed
	27
	

	oma-dd:roContainer
	28
	

	xenc:EncyptedKey
	29
	

	xenc:EncryptionMethod
	2A
	

	xenc:CipherData
	2B
	

	xenc:CipherValue
	2C
	

	ds:DigestMethod
	2D
	

	ds:DigestValue
	2E
	

	ds:KeyInfo
	2F
	

	ds:RetrievalMethod
	30
	

	ds:SignedInfo
	31
	

	ds:CanonicalizationMethod
	32
	

	ds:SignatureMethod
	33
	

	ds:Reference
	34
	

	ds:Transforms
	35
	

	ds:Transform
	36
	

	ds:SignatureValue
	37
	

	roap:X509SPKIHash
	38
	

	hash
	39
	

	
	3A – 3F
	UNUSED

7.3.2 Dynamic Tag Code Page
Tag code page 1 in the context of the public identifier "-//OMA//SRM 1.0//EN" is a dynamic code page. The tag name codes are not defined in this specification. The dynamic tag code page is defined to allow forward compatibility in WBXML encoding. The values within the dynamic tag code page are stored on the SRM. The dynamic code page is unique per SRM. Normally a new SRM will have an empty dynamic tag code page.

As defined in section 5.7.8.10, DRM Agents MAY retrieve the SRM’s dynamic tag code page from the SRM. DRM Agents MUST NOT delete tag-name codes from the SRMs dynamic code page.
During the process of compacting an XML document before transferring it to the SRM, the DRM Agent MAY add new tag-name codes to the dynamic code page. DRM Agents SHOULD add new tag name codes if the XML document to be compacted contains any tags that do not exist in either code page 0 or the existing dynamic code page.
7.3.3 Reserved Tag Code Pages
All tag code pages 2 to 127 in the context of the public identifier "-//OMA//SRM 1.0//EN" are reserved for future use by OMA.
7.4 Processing
7.4.1 Device (DRM Agent)
DRM Agents MUST support WBXML encoding of the <roContainer> element as defined in section B.2.5.2. DRM Agents SHOULD be able to generate and extend dynamic code pages if they are supported by the target SRM. DRM Agents SHOULD be able to encode tags, and attributes that do not have a well known token-code using the WBXML LITERAL token.

DRM Agents MUST support WBXML decoding of the <roContainer> element as defined in section B.2.5.2.

DRM Agents MAY support updating of SRM dynamic code tables.
7.4.2 SRM (SRM Agent)
SRM Agents MAY support storage of the dynamic attribute code page and dynamic tag code page.

SRM Agents do not need to support WBXML encoding or decoding.
7.4.3 Rights Issuers
As the WBXML encoding of Rights Object Containers is supported by DRM Agents, Rights Issuers do not need to support WBXML enocoding of Rights Object Containers.
7.5 Data Representation
7.5.1 Binary Data Representation
The WBXML OPAQUE token provides a method to encode raw binary data. DRM Agents MUST use the WBXML OPAQUE token to represent whitespace in the XML.
7.5.2 base64Binary Representation
Some elements in the Rights Obejct Container hold base64Binary data. All base64Binary data within the <rights> element MUST be encoded in the WBXML form using WBXML the LITERAL token. All base64Binary data within the <signature> element MUST be base64 decoded prior to WBXML encoding and then encoded using the OPAQUE token.
7.6 Normal Processing and Transcoding
After a DRM Agent receives a WBXML encoded <roContainer> from an SRM, that DRM Agent MUST decode the message into Exclusive Canonical XML format before any other processing is applied. Before a DRM Agent Moves a Rights Object Container to an SRM, the DRM Agent MAY encode the <roContainer> element using WBXML. The criterion by which a DRM Agent determines whether it should WBXML encode an <roContainer> is outside the scope of this specification. It is anticipated that individual SRM form factors will have different recommendations. In general it is RECOMMENDED that DRM Agents SHOULD WBXML encode all <roContainer> elements larger than 2kB.

If the SRM does not support storage of dynamic code pages then the DRM Agent MUST use only the the fixed code pages. If the <roContainer> contains any additional tags, attributes or attribute values, these SHOULD be encoded using the WBXML LITARAL token.

The WBXML SWITCH token SHALL be used to switch between the fixed code pages and dynamic code pages.

The normal process for a DRM Agent to encode a Rights Object Container is:

· Construct the <roContainer> as XML

· Encode the <roContainer> using as WBXML:

· Initially attempt to use only the fixed attribute code page and fixed tag code page.

· If the SRM Agent indicated support for dynamic code pages in the HelloResponse message then:

· If during the encoding any unknown attributes, attribute values or tags are found, then DRM Agents SHOULD retrieve the dynamic code pages from the SRM, before continuing processing.

· Continue the encoding making use of the additional attributes, attribute values, and tags that are specified in the dynamic code pages.

· If the dynamic code pages do not contain the necessary attributes, then the DRM Agent SHOULD add new attributes codes, attribute values and tags as required to the relevant dynamic tag code page.

· If updates were made to a dynamic code table then the DRM Agent MUST store the updated code table on the SRM. If the update to the dynamic code pages on the SRM fails for any reason, the DRM Agent SHOULD discard the WBXML encoded <roContainer>. The DRM Agent MAY re-start the processing as if the SRM Agent does not support dynamic code pages; or it MAY use plain XML to represent the <roContainer>.

· If the SRM Agent does not support dynamic code pages:

· Continue the encoding making use of the WBXML LITERAL token to encode unknown attributes and tags.

The normal process for a DRM Agent to decode a WBXML encoded <roContainer> is:

· Attempt to decode the WBXML encoded <roContainer> to XML:

· Initially attempt to decode using only the fixed attribute code page and fixed tag code page.

· If during the decoding any unknown application tokens are discovered, then if the SRM indicated support for dynamic code pages in the HelloResponse message then retrieve the dynamic code pages from the SRM.

· Continue the decoding by making use of the additional application tokens that are specified in the dynamic code pages.

· If an application token is not specified in either the fixed code pages or dynamic code pages, then a critical error has occurred. The DRM Agent SHOULD delete the Rights Object from the SRM.

· Process the re-constructed XML <roContainer> as normal.
Appendix A. Method for Describing Binary Structures
A.1 Mnemonics (Data Types)
Section 2.2.6 of ISO/IEC 13818-1 [ISO/IEC13818-1] lists several data types supported by that standard. Most are not needed for SRM. The following table lists the mnemonics and data types that are needed for SRM.
Table 76: Data Types

	Mnemonic
	Data Type
	Equivalent C Type

	bslbf
	Bit string, left bit first, where "left" is the order in which bit strings are written in this document. Bit strings are written as a string of 1s and 0s within single quote marks, e.g. '1000 0001'. Blanks within a bit string are for ease of reading and have no significance.
	None

	tcimsbf
	Two’s complement integer, msb (sign) bit first.
	int

	uimsbf
	Unsigned integer, most significant bit first.
	unsigned int

As seen above, the data types are all big-endian.
A.2 Comments
Comments may be interspersed in the description. Comments follow a C++ style, being preceded by two forward slashes, i.e. “//”. It is suggested that they appear before the data structure or variable needing the comment. Comments are illustrated in the examples provided below.
A.3 Syntax Description
A data structure description starts with a name for the data structure. The name is begins with an upper case letter, followed by one or more upper and lower case letters (A-Z, a-z) and numbers (0-9) and finally ending with “()” (open and close parenthesis). The length of the name should be kept to a reasonable length. This document suggests that only the first letter of words be capitalized. The name of the data structure is followed by a “{“ (open brace) and a newline. Next comes a list of one or more field names (one per line) and followed a “}” (close brace). The following is an example description of a data structure called DsName():

DsName(){

 fieldName1

 .

 .

 fieldNamen
}

A field name represents either another data structure or a variable. If another data structure, the data structure is defined elsewhere. If a variable, then the field name is followed by two elements. Variable names follows the same rules as the name of a data structure except that it MUST begin with a lower case letter and is not followed by “()”. On the same line following variable name, the next element, nbrBits, indicates the size of the variable in bits. The next element is the dataType of the variable, taken from Table 76 above.

The following example is for a data structure that contains an additional data structure and a 16 bit unsigned integer. The inner data structure contains a bit flag and a 32 bit signed integer.
Example(){

 InnerDataStructure()

 //A 16 bit unsigned integer

 uint16Var
16
uimsbf

}

InnerDataStructure(){

 //A 1 bit Boolean flag

 bitFlag
1
bslbf

 //A 32 bit signed integer
 int32Var
32
tcimsbf
}
A.4 Padding
Although it is strictly not required, it is highly recommended that all integer variables and data structures start on byte boundaries. Therefore, when defining bit variables, it is up to the person defining the syntax to ensure that padding bits are defined to align the next variable or data structure on a byte boundary. The InnerDataStructure() example above should be rewritten as follows:

InnerDataStructure(){

 //A 1 bit Boolean flag

 bitFlag
1
bslbf

 //Padding bits, reserved for future use

 rfu
7
bslbf

 //A 32 bit signed integer
 int32Var
32
tcimsbf
}

A.5 Arrays
For describing an array, a C “for loop” is used. For example, the following data structure describes an array of 10 bytes:

FixedArrayExample(){

 for(i=0; i < 10; i++){

 byte
8
uimsbf

 }

}

A more complex example is a variable length (0 – 255) array of signed 16 bit integers.

VariableArrayExample(){

 nbrOfElements
8
uimsbf
 for(i=0; i < nbrOfElements; i++){

 int16
16
tcimsbf

 }

}

For variable sized arrays, there should be a size field (of type uimsbf) that is large enough to hold the maximum number of entries in the array. The following table lists a few of the possible ranges:

Table 77: Ranges
	Number of bits
	Range

	8
	0 - 255

	16
	0 - 65,535

	24
	0 - 16,777,215

	32
	0 - 4,294,967,295

A.6 Optional Variables or Data Structures
Many times there is a need for a variable or a data structure to be optional. In order to indicate whether the variable or data structure is present, a bit flag should be defined to indicate the presence. If multiple fields are optional, the indicator bit flags should be combined to minimize padding. The following example illustrates a data structure with a 16 bit integer, an optional data structure (which will not be defined), an 8 bit variable, an optional 64 bit integer and an optional fixed sized array.
OptionalExample(){

 int16
16
tcimsbf

 dsPresent
1
bslbf

 int64Present
1
bslbf

 arrayPresent
1
bslbf

 //Pad to 8 bit boundary

 rfu
5
bslbf

 if(dsPresent){

 DataStructure()

 }

 uint8
8
uimsbf

 if(int64Present){

 int64
64
tcimsbf

 }

 if(arrayPresent){

 for(i=0; i<10; i++){

 byte
8
uimsbf

 }

 }
}

For variable sized arrays, it is recommended that an optional array be indicated by the size field. So if the size field has a value of 0 (zero), then the array is not present.

Optional variables or data structures may also be indicated by the value of a previous variable as illustrated in the following example:
OptionalExample2(){

 status
16
uimsbf

 if(status == 0){

 DataStructure()

 }

}
Appendix B. Data Format (Normative)
B.1 Common Data Structure

The OctetString8 describes an octet string that is of length within 0 and 255.

OctetString8(){

 length
8
uimsbf

 for(i = 0; i < length; i++){

 byte
8
uimsbf

 }

}

The fields are defined as follows:

· length – Length of an octet string
· byte – Octets comprised in an octet string
The OctetString16 describes an octet string that is of length within 0 and 65535.
OctetString16(){

 length
16
uimsbf

 for(i = 0; i < length; i++){

 byte
8
uimsbf

 }

}

The fields are defined as follows:

· length – Length of an octet string
· byte – Octets comprised in an octet string
The RandomNumberString describes an octet string that is the result of a random number generation.

RandomNumberString(){

 OctetString8()
}

The HashedString describes an octet string that is the result of a cryptographic hash operation.

HashedString(){
 // The following hash types are defined for hashType

 // 0 = SHA1

 hashType
8
uimsbf

 // Hash of String
 OctetString8()
}

The Hmac describes an octet string that is the result of a cryptographic MAC operation.

Hmac(){
 // The following hash types are defined for hmacType

 // 0 = HMAC-SHA1

 hmacType
8
uimsbf

 // HMAC
 OctetString8()
}

The EncryptedString describes an octet string that is the result of a cryptographic encryption including both of symmetric and asymmetric operations.

EncryptedString(){
 // The following hash types are defined for encryptionType

 // 0 = AES-CBC

 // 1 = RSA-OAEP

 ivPresent
1
bslbf

 rfu
7
bslbf

 encryptionType
8
uimsbf

 if (ivPresent == 1) {

 if (encryptionType == 0) {

 // Holds the IV

 OctetString8()

 }

 }

 // Encrypted String
 OctetString16()
}
The Certificate and CertificateChain describes an octet string comprised in certificates specified in Appendix E.

Certificate() {

 OctetString16()

}

CertificateChain(){
 numOfCerts
8
uimsbf

 for (i = 0 ; i < numOfCerts ; i++) {
 Certificate()

 }

}
The Crl describes an octet string comprised CRL(s) specified in Appendix E.

Crl(){

 OctetString16()
}
B.2 Message Parameters
B.2.1 Version
A data structure for a string comprised in an SRM protocol version (Version) is described as follows:

VersionString() {

 major
4
uimsbf

 minor
4
uimsbf

}

B.2.2 Algorithms
A data structure for an index representing cryptographic algorithms (Algorithms) used in MAKE and SAC is described as follows. A trust authority may decide this string.

Algorithms() {

 algorithmId
16
uimsbf

}
B.2.3 ContentID

A data structure for a DRM Content identifier (ContentId) is described as follows. This is specified in section 5.1.4.2.
ContentId () {

 OctetString16()
}

B.2.4 Handle String

A data structure for a string comprised in a Handle (HandleString) is described as follows:

HandleString() {

 for (i = 0 ; i < 10 ; i++) {

 byte
8
uimsbf

 }

}
B.2.5 Rights

B.2.5.1 Rights Meta Data

A data structure for a Rights Meta Data (RightsMetaData) is described as follows:

RoAlias() {

 OctetString16()

}

RiUrl() {

 OctetString16()

}

RiAlias() {

 OctetString16()

}

RightsMetaData() {

 roAliasPresent

1
bslbf

 riUrlPresent

1
bslbf

 riAliasPresent

1
bslbf

 rfu

5
bslbf

 if (roAliasPresent) {

 RoAlias()

 }

 if (riUrlPresent) {

 RiUrl()

 }

 if (riAliasPresent) {

 RiAlias()

 }

}

The fields are defined as follows:

· roAliasPresent - if ‘1’, then roAlias is present in this message
· riUrlPresent - if ‘1’, then RiUrl is present in this message
· riAliasPresent - if ‘1’, then RiAlias is present in this message
· RoAlias – RO Alias in section 5.1.1.1
· RiUrl – RI URL in section 5.1.1.1
· RiAlias – RI Alias in section 5.1.1.1
B.2.5.2 Rights Object Container
A data structure for a Rights Object Container (RightsObjectContainer) is described as follows:

RightsObjectContainer() {

 //The following RO formats are defined for roFormat:

 // 0 = XML

 // 1 = WBXML
 roFormat
8
uimsbf
 OctetString16()

}

The octet string comprised in the Rights Object Container is an XML document of type oma-dd:RightsObjectContainer. It is instantiated as a <oma-dd:roContainer> element and contains the <rights> element and the <signature> element from the RO payload as specified in section 5.1.1.2. The XML schema is as follows:

<!--Rights Object Container Definitions -->
<element name="roContainer" type="oma-dd:RightsObjectContainer">
<complexType name=”RightsObjectContainer”>

 <sequence>

 <element name=”rights” type=”o-ex:rightsType”/>

 <element name=”signature” type=”ds:SignatureType”/>

 </sequence>

</complexType>
B.2.5.3 State Information
A data structure for a State Information (StateInformation) is described as follows:

StateInformation() {

 OctetString16()

}
B.2.5.4 Rights Information

A data structure for a Rights Information (RightsInformation) is described as follows. The Rights Meta Data, Rights Object Container, and State Information comprise a Rights Information.

RightsInformation() {

 stateInformationPresent

1
bslbf
 rfu

7
bslbf
 RightsMetaData()

 RightsObjectContainer()

 if (stateInformationPresent) {

 StateInformation()

 }

}

B.2.5.5 REK
A data structure for a REK (Rek) is described as follows:

Rek() {

 OctetString8()

}

B.2.6 Rights Information List

A data structure for Rights Information List is described as follows:

RightsInformationList() {

 numOfContentId
16
uimsbf
 for (i = 0 ; i < numOfContentId ; i++) {
 HashedContentID()

 numOfRightsInfo
16
uimsbf
 for (j = 0 ; j < numOfRightsInfo ; j++) {
 //List of Handle and Rights Information
 Handle()
 RightsInformation()
 }
 }

}
The fields are defined as follows:

· numOfContentId – Number of hashed ContentIds in the Rights Information List
· HashedContentId – Hash of ContentId. A DRM Content identified by this ContentID is associated with subsequent Rights Information.
· numOfRightsInfo – This is the number of enabled Rights in an SRM that are associated with the DRM Content identified by the ContentId
· Handle – This identifies enabled Rights in an SRM that are associated with a DRM Content identified by the ContentId
· RightsInformation – Rights Information of a Rights identified by the Handle
B.3 LCID (List of Content Identifier)
A data structure for an LCID is described as follows:

HashedContentId() {

 HashedString()

}

Lcid () {

 numOfContentId
8
uimsbf
 for (i = 0 ; i < numOfContentId ; i++) {
 HashedContentId()

 }

}

The fields are defined as follows:

· numOfContentId – Number of H(ContentId) comprised in an LCID
· HashedContentId – H(ContentId) comprised in an LCID
B.4 Handle List
A data structure for a Handle List (HandleList) is described as follows:

HashedContentId() {

 HashedString()

}

HandleList () {

 numOfContentId
16
uimsbf
 for (i = 0 ; i < numOfContentId ; i++) {
 HashedContentId()

 numOfHandle
16
uimsbf
 for (j = 0 ; j < numOfHandle ; j++) {
 Handle()

 }
 }

}

The fields are defined as follows:

· numOfContentId – Number of hashed ContentIds in the Handle List. If the HandleListQueryRequest in section 5.7.8.1 sends a H(ContentID), then this contains the value of integer 1. If not (i.e. the HandleListQueryRequest doesn’t include a ContentID), then this element has the number of all DRM Contents that are associated with all enabled Rights in SRM.
· HashedContentId – Hash of ContentId. A DRM Content identified by this ContentID is associated with Rights in an SRM identified by subsequent Handle(s).
· numOfHandle – This is the number of enabled Rights in an SRM that are associated with the DRM Content identified by the ContentId
· Handle – This identifies enabled Rights in an SRM that are associated with a DRM Content identified by the ContentId
B.5 Dynamic Code Pages
B.5.1 Attribute Code Page
A data structure for the Dynamic Attribute Code Page (AttributeCodePage) is described as follows.

AttributeName() {

 OctetString8()

}

AttributeValue() {

 OctetString8()

}

AttributeCodePage() {

 rfu1
1

bslbf
 nbrOfAttrs
7
uimsbf

 for(i = 0 ; i < nbrOfAttrs ; i++){

 AttributeName()

 }

 rfu2
1

bslbf
 nbrOfAttrValues
7
uimsbf

 for(i = 0 ; i < nbrOfAttrValues ; i++){

 AttrributeValue()

 }
}

The fields are defined as follows:

· nbrOfAttrs – The number of Attribute Start Tokens in the dynamic code page. The maximum allowed value is 122.
· AttributeName – The specific string value of well-known Attribute. The array is an ordered list of all Attribute Start Tokens in the dynamic code page. The first Attribute Name in the array has the token value of 6 and each subsequent Attribute Name has a token value incremented by 1.
· nbrOfAttrValues – The number of Attribute Value Tokens in the dynamic code page. The maximum allowed value is 122.
· AttributeValue – The specific string value of a well-known Attribute Value. The array is an ordered list of all Attribute Value Tokens in the dynamic code page. The first Attribute Value in the array has the token value of 133 and each subsequent Attribute Value has a token value incremented by 1.
B.5.2 Tag Code Page
A data structure for the Dynamic Tag Code Page (TagCodePage) is described as follows.

TagName() {

 OctetString8()

}

TagCodePage() {

 rfu
2

bslbf
 nbrOfTags
6
uimsbf

 for(i = 0 ; i < nbrOfTags ; i++){

 TagName()

 }

}

The fields are defined as follows:

· nbrOfTags – The number of Tag Names in the dynamic code page. The maximum allowed value is 59.
· TagName – The specific string value of a well-known Tag/element Name. The array is an ordered list of all Tag Names in the dynamic code page. The first Tag Name in the array has the tag identity of 6 and each subsequent Tag Name has a tag identity incremented by 1.

Appendix C. SRM Transport Protocol
C.1 HTTP Mapping
An SRM MAY support an HTTP transport layer (as middle layer) to communicate with the DRM agent if it can implement a local HTTP server. In this case the DRM Agent can connect to the SRM as an HTTP client. The data are then transported and exchanged between the two entities over HTTP. This appendix defines this HTTP mapping.

The following sections describe how the data are delivered using the HTTP 1.1 protocol.
C.1.1 HTTP Headers
The HTTP Content-Type header MUST be supported. This header describes the media type that is present in the body part of the HTTP Request/Response.

The DRM Agent MUST include an HTTP Accept header when sending a request over HTTP. The Accept header specifies the media types that the DRM Agent will accept in response to the request.

Implementations MAY support other HTTP headers than those specified herein. The presence of HTTP headers other than those specified here when a message is received over HTTP SHOULD NOT by itself cause termination of the session.
C.1.2 SRM Requests
· The DRM Agent SHALL send SRM requests as the body of HTTP POST requests. Example:

POST /SRM HTTP/1.1

Host: 127.0.0.1:3516

Content-Type: application/vnd.oma.drm.srm-pdu

... [Application Data] ...

In the above example the DRM Agent is using the Request-URI field for specifying the path component. The absolute URI of the SRM is specified using the HTTP Host header.
· The DRM Agent SHALL use the absolute path “/SRM” (without the quotes) to address the SRM Agent
· If the SRM has its own IP address then the DRM agent SHALL address the SRM agent via this IP address and the standard HTTP port number 80 (e.g. 192.168.0.1:80) otherwise the DRM agent SHALL use port 3516 with the local IP address 127.0.0.1 for SRM Requests (i.e. 127.0.0.1:3516)
· The DRM Agent SHOULD use persistent connections when sending requests over HTTP.

· The DRM Agent SHALL support chunk as mandated in [HTTP]

· The DRM Agent SHALL indicate to the SRM that the message is a SRM message using the HTTP Content-Type header with value application/vnd.oma.drm.srm-pdu. The following is an example of such a header field:

Content-Type: application/vnd.oma.drm.srm-pdu
· The DRM Agent SHALL use the HTTP Accept header to indicate acceptable media types in response to SRM requests sent over HTTP. The DRM Agent MUST accept at least the following media types:

· application/vnd.oma.drm.srm-pdu

Example:

· Accept: application/vnd.oma.drm.srm-pdu

· HTTP requests from the DRM Agent MUST contain one, and only one, SRM request message.
C.1.3 SRM Responses
· The SRM SHALL send SRM responses as the body of HTTP responses.

· The HTTP Content-Type header MUST be set to application/vnd.oma.drm.srm-pdu when a SRM message constitutes the message-body of a response. Example:

Content-Type: application/vnd.oma.drm.srm-pdu
If the HTTP Content-Type header value in the Response does not match the above Content-Type, the DRM Agent SHALL terminate the session.
· The SRM MUST NOT include multipart responses in an HTTP response.

· The SRM MUST include an HTTP Cache-Control header with the value no-transform when sending an integrity-protected SRM message. The no-transform directive prohibits network caches from doing any content transformations. The no-cache option must also be set in order to prevent caching of responses.

The following is an example:

Cache-Control: no-transform; no-cache
C.1.4 HTTP Response Codes
An SRM that refuses to perform a SRM message exchange with a DRM Agent SHOULD return a 403 (Forbidden) response. In the case of an error while processing an HTTP request, the SRM MUST return a 500 (Internal Server Error) response. This type of error SHOULD be returned for HTTP-related errors detected before control is passed to the SRM engine, or when the SRM engine reports an internal error (for example, the SRM schema cannot be located). If the type of a SRM request cannot be determined, the SRM MUST return a 500 (Internal Error) response code.

In these cases (i.e. when the HTTP response code is 4xx or 5xx), the content of the HTTP body is not significant.

In all other cases, the SRM MUST respond with 200 (OK) and a suitable SRM message (possibly with SRM-related error information) in the HTTP body.

DRM Agents MUST be able to handle HTTP response codes specified here (200, 400, 403, 404, and 500).
Appendix D. SRM-API (Secure Removable Media – Application Programming Interface) (Informative)
The various SRM platforms may support different transport protocols for communication with Devices. This section defines a common set of APIs that may be used between DRM Agents and SRM Agents to support the different SRM platforms. The APIs specify the parameter format of message requests and responses. They are applied as follows:
· Message Request: API call with input parameters
· Message Response: Result of API with output parameters
D.1 Definition Structures
	/*********************** To input Input/Output data **********************/

typedef struct {

 unsigned long
len;

/* length of input */
 unsigned char*
buf;

/* buffer pointer */
} f_bytes;
/************************ To input Content ID list ****** ******************/

typedef struct {

 unsigned int
num;
/* number of Content ID */
 void*
contentid;
/* pointer to *contentid[num] */
} ContentID;
/* contentid is LV format : The first 2 bytes the indicates the length of the ContentID data that follows */

/************************ To Error Code List *******************************/

typedef unsigned short STATUS_CODE;

D.2 API List
Table 78: API List

	API
	Function

	Initialize_Message
CRL_Update_Message
CRL_Retrieval_Message
	Initialize API processing layer
Request to replace the current CRL in the SRM
Request to retrieve the CRL in the SRM

	LRID_Retrieval_Message
	Get Rights list stored in SRM

	Rights_Installation_Message
	Write Rights to SRM

	Rights_Retrieval_Message
	Read SRM RO stored in SRM

	Rights_Update_Message
	Update State Information stored in SRM

	Rights_Removal_Message
	Delete Rights stored in SRM

	Rights_Lock_Message
	Lock Rights stored in SRM

	Rights_Release_Message
	Release locked Rights

D.2.1 Initialize_Message
	Declaration：
STATUS_CODE API_SRMP_Initialize (void* arg);

Input：
arg

Data for initializing library depends on the specific SRM

Output：
None

Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MEMORY_ERROR

INTERNAL_ERROR

Function:
Initialize API processing layer

Prior condition：

None
Post condition：

None

Notice：

The processing in this API is depends on the type of SRM. Each SRM provides specific functions to initialize processing with this API.

D.2.2 CRL_Update_Message
	Declaration：
STATUS_CODE CRL_Update_Message (f_bytes* crlSRMData, f_bytes* crlDeviceData);
Input：
crlSRMData

SRM listed CRL data
crlDeviceData

Device listed CRL data
Output：
None

Return value：
SUCCESS
OLD_CRL

CRL_VERIFICATION_FAILED

UNKNOWN_ERROR
Function:

SRM Agent replaces the current CRL in the SRM with the received CRL, if it is newer
Prior condition：

None
Post condition：

None

Notice：

Either crlSRMData or crlDeviceData can be 0 (i.e. the length of crlSRMData is 0)

D.2.3 CRL_Retrieval_Message
	Declaration：
STATUS_CODE CRL_Retrieval_Message (f_bytes* crlSRMData, f_bytes* crlDeviceData);
Input：
None
Output：
crlSRMData

SRM listed CRL data

crlDeviceData

Device listed CRL data
Return value：
SUCCESS
UNKNOWN_ERROR
Function:

Get CRLs stored in SRM
Prior condition：

None
Post condition：

None

Notice：

D.2.4 LRID_Retrieval_Message
	Declaration：
STATUS_CODE LRID_Retrieval_Message (unsigned long offset, unsigned long length ,

f_bytes* encData, unsigned char* remainFlag);
Input：
offset

Offset of Rights List (BLOCK union)

length

Length of Rights List (Number of BLOCKs)

Output：
encData

Rights List data encrypted by Session Key
remainFlag

Remain Data Flag (0: No more data 1: More data remains)

Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MUTUAL_AUTH_NOT_COMPLETED_ERROR

NO_CARD_ERROR

MEMORY_ERROR

INVALID_HMAC_ERROR

HMAC_ERROR_IN_RESPONSE

INTERNAL_ERROR

Function:

Get Rights list stored in SRM
Prior condition：

Mutual authentication is completed
Post condition：

None

Notice：

BLOCK size is defined by each SRM type

D.2.5 Rights_Installation_Message
	Declaration：
STATUS_CODE Rights_Installation_Message (f_bytes* roID, ContentID* contentidList,

f_bytes* encSRMData, f_bytes* encESFData));
Input：
roID

ROID of SRM RO to write

contentidList

list of contents which are associated with the RO

encSRMData

RO data encrypted by Session Key
encESFData

ESF data encrypted by Session Key
Output：
None

Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MUTUAL_AUTH_NOT_COMPLETED_ERROR

NO_CARD_ERROR

NO_ENOUGH_SPACE_ERROR

MEMORY_ERROR

INVALID_HMAC_ERROR

HMAC_ERROR_IN_RESPONSE

INTERNAL_ERROR

Function:

Write Right to SRM
Prior condition：

Mutual authentication is completed
Post condition：

None

Notice：

Rights List is updated in this API

D.2.6 Rights_Retrieval_Message
	Declaration：
STATUS_CODE Rights_Retrieval_Message (f_bytes* roID, unsigned char* rFlag,

f_bytes* encSRMData, f_bytes* encESFData);
Input：
roID

RO ID to read SRM RO

rFlag

Read Data Flag

Output：
encSRMData

RO data encrypted by Session Key
encESFData

ESF data encrypted by Session Key
Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MUTUAL_AUTH_NOT_COMPLETED_ERROR

NO_CARD_ERROR

RIGHTS_NOT_FOUND_ERROR

INVALID_HMAC_ERROR

HMAC_ERROR_IN_RESPONSE

MEMORY_ERROR

INTERNAL_ERROR

Function:

Read SRM RO & ESF stored in SRM

Prior condition：

Mutual authentication is completed
Post condition：

None

Notice：

“Read Data Flag” has two parameters

 - 00h: The Rights is disabled after retrieval

 - 01h: The Rights stays in the enabled state after retrieval

For the move function, the “Read Data Flag” has the value 00h

D.2.7 Rights_Update_Message
	Declaration：
STATUS_CODE Rights_Update_Message (f_bytes* roID, f_bytes* encESFData);
Input：
roID

RO ID to be update

encESFData

ESF data encrypted by Session Key
Output：
None
Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MUTUAL_AUTH_NOT_COMPLETED_ERROR

NO_CARD_ERROR

RIGHTS_NOT_FOUND_ERROR

INVALID_HMAC_ERROR

INVALID_DRM_AGENT_ERROR

RIGHTS_NOT_LOCKED_UPDATE_ERROR
UPDATE_FAILURE_ERROR
MEMORY_ERROR

INTERNAL_ERROR
Function:

Update State Information stored in SRM
Prior condition：

Mutual authentication is completed
Post condition：

None

Notice：

D.2.8 Rights_Removal_Message
	Declaration：
STATUS_CODE Rights_Removal_Message (f_bytes* roID);
Input：
roID

RO ID of Rights to be deleted

Output：
None

Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MUTUAL_AUTH_NOT_COMPLETED_ERROR

NO_CARD_ERROR

RIGHTS_NOT_FOUND_ERROR

INVALID_HMAC_ERROR

MEMORY_ERROR

INTERNAL_ERROR
Function:

Delete Rights stored in SRM
Prior condition：

Mutual authentication is completed
Post condition：

None

Notice：

Rights List is updated in this API

D.2.9 Rights_Lock_Message
	Declaration：
STATUS_CODE Rights_Lock_Message (f_bytes* roID);
Input：
roID

RO ID of Rights to be locked

Output：
None

Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MUTUAL_AUTH_NOT_COMPLETED_ERROR

NO_CARD_ERROR

RIGHTS_NOT_FOUND_ERROR

INVALID_HMAC_ERROR

DISABLE_LOCKED_ERROR
MEMORY_ERROR

INTERNAL_ERROR
Function:

Lock Rights stored in SRM
Prior condition：

Mutual authentication is completed
Post condition：

None

Notice：

D.2.10 Rights_Release_Message
	Declaration：
STATUS_CODE Rights_Release_Message (f_bytes* roID);
Input：
roID

RO ID of Rights to be released

Output：
None

Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MUTUAL_AUTH_NOT_COMPLETED_ERROR

NO_CARD_ERROR

RIGHTS_NOT_FOUND_ERROR

INVALID_HMAC_ERROR

RIGHTS_NOT_LOCKED_RELEASE_ERROR

RELEASE_FAILURE_ERROR

MEMORY_ERROR

INTERNAL_ERROR
Function:

Release locked Rights stored in SRM
Prior condition：

Mutual authentication is completed
Post condition：

None

Notice：

D.3 Status Codes for API
Table 79: Status Codes
	Error Code
	Description

	SUCCESS
	Success

	INVALID_PARAMETER_ERROR
	Parameter is invalid

	NO_CARD_ERROR
	Card is not inserted

	RIGHTS_NOT_FOUND_ERROR
	Specified Rights do not exist

	NO_ENOUGH_SPACE_ERROR
	No space in SRM

	INVALID_HMAC_ERROR
	HMAC is invalid

	MEMORY_ERROR
	Memory error

	RIGHTS_NOT_LOCKED_UPDATE_ERROR
	The Rights is not locked for update.

	UPDATE_FAILURE_ERROR
	The SRM Agent fails to update Rights.

	INVALID_DRM_AGENT_ERROR
	This DRM Agent hasn’t locked the Rights

	DISABLE_LOCKED_ERROR
	The Rights has already been disabled or locked.

	RIGHTS_NOT_LOCKED_RELEASE_ERROR
	The Rights is not locked for release

	RELEASE_FAILURE_ERROR
	The SRM Agent fails to release Rights.

	OLD_CRL
	CRL in the request is older than the CRL in SRM

	CRL_VERIFICATION_FAILED
	The verification of the CRL signature failed.

	INTERNAL_ERROR
	Uncategorized Internal error

	UNKNOWN_ERROR
	Unknown error

Appendix E. Certificates and CRL
E.1 Certificate Profiles and Requirements
The profile for Device Certificates follows the profile of the DRM Agent Certificates in OMA DRM v2.0 [OMADRMv2]. The DRM Agent Certificate in OMA DRM v2.0 is referred to as Device Certificate in this specification. SRM Agents processing Device Certificates MUST meet all requirements on entities processing user certificates defined in [CertProf]. In addition, SRM Agents:

· MUST be able to process Device Certificates with serial numbers up to 20 bytes long;

· MUST recognize and require the presence of the oma-kp-drmAgent object identifier defined in the extKeyUsage extension in Device Certificates; and

· MUST support the cRLDistributionPoints extension
The profile for SRM Certificates follows the profile for “User Certificates for Authentication” in [CertProf] with the following modifications in Table 80:
Table 80: SRM Certificate Profile
	Fields
	Values

	Version
	Version 3 (Integer value is 2)

	Signature
	MUST be RSA with SHA-1

	Serial Number
	MUST be less than, or equal to, 20 bytes in length

	Issuer Name
	MUST be present and MUST use a subset of following naming attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and stateOrProvinceName.

	Subject Name
	MUST be present and MUST use a subset of the following attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and serialNumber

The structure and contents of an SRM subject name shall be as follows:

[countryName=<Country of manufacturer>]

[organizationName=<Manufacturer company name>]

[organizationalUnitName=<Manufacturing location>]

[commonName=<Model name>]

[serialNumber=<Unique identifier for SRM, as assigned by the Certificate Issuer>]
The serialNumber attribute MUST be present. The countryName, organizationName, organizationalUnitName, and commonName may be present. Other attributes are not allowed and must not be included. For all naming attributes of type DirectoryString, the PrintableString or the UTF8String choice must be used.

Note that the maximum length (in octets) for values of these attributes is as follows: countryName - 2 (country code in accordance with ISO/IEC 3166), organizationName, organizationalUnitName, commonName, and serialNumber - 64.

Example:

C="US";O="DRM SRMs 'R Us"; CN="DRM SRM Mark V"; SN="1234567890"

	Extensions
	The extKeyUsage extension SHALL be present, and contain (at least) the oma-kp-srmAgent key purpose object identifier:
oma-kp-srmAgent OBJECT IDENTIFIER ::= {oma-kp 3}
The oma-kp object identifier is defined as follows:

oma-kp OBJECT IDENTIFIER ::= {oma 1}

oma OBJECT IDENTIFIER ::= {joint-iso-itu-t(2) identified-organizations(23) wap(43) oma(6)}
CAs are recommended to set this extension to critical.

· If CAs include the keyUsage extension (recommended), then both the digitalSignature bit and the keyEncipherment bit must be set, if the corresponding private key is to be used both for authentication and decryption. Otherwise only the applicable bit shall be set. When present, this extension shall be set to critical.

CAs may include the certificatePolicy extension, indicating the policy the certificate has been issued under, and possibly containing a URI identifying a source of more information about the policy.

CAs are recommended to not include any other extensions, but may, for compliance with [RFC3280], include the authorityKeyIdentifier extension. CAs may also include the authorityInfoAccess extension from [RFC3280] for OCSP responder navigation purposes, and the cRLDistributionPoints extension to identify how CRL information is obtained.

CAs MUST NOT include any other critical extensions.

DRM Agents processing SRM Certificates MUST meet all requirements on entities processing user certificates defined in [CertProf]. In addition, DRM Agents:

· MUST be able to process SRM Certificates with serial numbers up to 20 bytes long;

· MUST recognize and require the presence of the oma-kp-srmAgent object identifier defined in the extKeyUsage extension in SRM Certificates; and

· MUST support the cRLDistributionPoints extension
E.2 CRL Profiles and Requirements
The profile for CRLs follows the CRL profile in the Certificate Revocation List (CRL) profile in [RFC3280] with the following modifications in Table 81:

Table 81: CRL Profile

	Fields
	Values

	Version
	Version 2 (Integer value is 1)

	Signature
	MUST be RSA with SHA-1

	Issuer
	MUST be present and MUST use a subset of following naming attributes from Certificate profiles in [OMADRMv2] – countryName, organizationName, organizationalUnitName, commonName, and stateOrProvinceName.

	ThisUpdate
	The issue date of this CRL

	NextUpdate
	The date by which the next CRL will be issued

	RevokedCertificates entries
	See Table 82

	Extensions
	CAs shall include the Key Identifier extension, identifying the public key corresponding to the private key used to sign a CRL.

CAs may also include the CRL Number extension, determining when a particular CRL supersedes another CRL.
CAs are recommended to not include any other extensions, but may, for compliance with [RFC3280], include the Issuing Distribution Point extension from [RFC3280] to identify how CRL information is obtained.

CAs MUST NOT include any other critical extensions.

When there are no revoked Device Certificates or SRM Certificates, the revoked certificates list MUST be absent. Otherwise, revoked Device Certificates or SRM Certificates are listed by the fields in Table 82.

Table 82: RevokedCertificates Entry fields in CRL Profile

	Fields
	Values

	UserCertificate
	Revoked certificate serial number

	RevocationDate
	Date of revocation decision

	CRL Entry Extensions
	CAs may define private CRL entry extensions to carry information unique to them.

Except the private CRL entry extensions, CAs MUST NOT include any other critical extensions.

Appendix F. Move Permission in Rights Object (Normative)
The Move permission in a Rights Object grants the permission to move the Rights Object between devices and SRMs.
F.1 Extension of Permission Model in REL
This document defines the extension of the OMA DRM REL specification [OMADRMv2] to include the Move permission in Rights Objects.
F.1.1 Element <permission>
	Element
	<!ELEMENT o-ex:permission (o-ex:constraint?, o-ex:asset*, o-dd:play?, o-dd:display?, o-dd:execute?, o-dd:print?, oma-dd:export?, o-dd:move?)>

	Semantics
	A single Rights Object can have only one <move> permission. For the other elements, refer to the OMA DRM REL specification.

F.1.2 Element <move>
	Element
	<!ELEMENT o-dd:move (#PCDATA)>

	Semantics
	The <move> element grants move rights over a Rights Object.

The <move> element has the semantics of moving a Rights Object between devices and SRMs.

Appendix G. Change History
(Informative)

G.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

G.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-SRM-V1_0-20060517-D
	17 May 2006
	All
	The initial version of this document.

	OMA-TS-SRM-V1_0-20060622-D
	22 May 2006
	9
	Add Transport Mappings text as agreed in OMA-DLDRM-2006-0227R01

	OMA-TS-SRM-V1_0-20060901-D
	1 Sep 2006
	5, Appendix A
	Revise text as agreed in OMA-DLDRM-2006-0325R02-INP_SRMv1.0_TS_Revision

	OMA-TS-SRM-V1_0-20061103-D
	3 Nov 2006
	1,2,3,4,5, Appendix B,C,D
	Revise text as agreed in OMA-DLDRM-2006-0410-TS-SRM-Read-Data-Flag-correction, OMA-DLDRM-2006-0441-CR_SRM_Revocation_Checking, and OMA-DLDRM-2006-0451-CR_SRM_TS_Anchor_Removal
Delete comments from the OMA specification template

	OMA-TS-SRM-V1_0-20061110-D
	10 Nov 2006
	2, 3, 5, Appendix B
	Revise text as agreed in OMA-DLDRM-2006-0469R01-CR_SRM_TS_CRL_Delivery_Protocol
Delete <Additional Information> appendix

	OMA-TS-SRM-V1_0-20061120-D
	20 Nov 2006
	5.5, Appendix B
	Revise text as agreed in OMA-DLDRM-2006-0475-CR_SRM_Certificate_Profile

	OMA-TS-SRM-V1_0-20061208-D
	8 Dec 2006
	Appendix B
	Revise text as agreed in OMA-DLDRM-2006-0398R03-CR_HTTP_Mapping

	OMA-TS-SRM-V1_0-20070112-D
	12 Jan 2007
	All
	Revise text as agreed in
OMA-DLDRM-2006-0487-CR_SRM_TS_Move_Permission,

OMA-DLDRM-2006-0498R01-CR_SRM_MAKE_Process,

OMA-DLDRM-2006-0500R02-CR_SRM_Multi_CRL_Support,
OMA-DLDRM-2006-0531R01-CR_Rights_Release_Correction,
OMA-DLDRM-2006-0538R01-CR_SRM_roID_List_Retrieval,
OMA-DLDRM-2006-0553R01-CR_Method_for_Describing_Binary_Structures,

OMA-DLDRM-2006-0556R01-CR_Formating_Changes, and OMA-DLDRM-2007-0001-CR_SRM_Additional_Formating_Changes

	OMA-TS-SRM-V1_0-20070116-D
	16 Jan 2007
	5.6.1
	Revise text as agreed in OMA-DLDRM-2006-0520R03-CR_Change_to_Rights_Movement_from_Device_to_SRM
Revise text in section 5.6.1 to be consistent with CR-2006-0556R01, CR-2007-0001, and other parts of the document

	OMA-TS-SRM-V1_0-20070202-D
	2 Feb 2007
	5.6, Appendix B, D
	Revise text as agreed in OMA-DLDRM-2006-0555-CR_SRM_API, OMA-DLDRM-2007-0008-CR_SRM_Common_Data_Structure, and OMA-DLDRM-2007-0011R01-CR_SRM_TS_Restructuring

	OMA-TS-SRM-V1_0-20070313-D
	13 Mar 2007
	2.1, 3.2, 3.4, 3.5, 4.1, 5.4, 5.5, Appendix A, C, D
	Revise text as agreed in
OMA-DRM-2006-0562R02-CR_SRM_Response,

OMA-DRM-2007-0030R04-CR_Replay_Attack_Protection_in_SRM,
OMA-DRM-2007-0062-CR_update_of_2006_0563_561,
OMA-DRM-2007-0072-CR_SRM_HMAC_Reference,
OMA-DRM-2007-0078R02-CR_SRM_System_Diagram,

OMA-DRM-2007-0081-CR_SRM_Error_Codes,

OMA-DRM-2007-0082R01-CR_SRM_Notation,

OMA-DRM-2007-0083-CR_SRM_Optional_Variables,

OMA-DRM-2007-0087R01-CR_RI_Certificate_Delivery,
OMA-DRM-2007-0089-CR_SRM_LROID_Retrieval,

and OMA-DRM-2007-0096-CR_Definition_Handle

	OMA-TS-SRM-V1_0-20070320-D
	20 Mar 2007
	5.1, 5.4.5, Appendix B, D
	Revise text as agreed in
OMA-DRM-2007-0006R05-CR_Rights_Redefinition, and OMA-DRM-2007-0110-CR_SRM_Secure_Storage_Section_Removal

	OMA-TS-SRM-V1_0-20070423-D
	23 Apr 2007
	5.1, 5.2 ,5.3, 5.4, 5.5, 5.6, 5.7.1, 5.7.2, 5.7.3, 5.7.4
	Revise text as agreed in
OMA-DRM-2007-0007R01-CR_SRM_CRLInfo_Exchange,

OMA-DRM-2007-0094R01-CR_Recovery_Handle,
OMA-DRM-2007-0095R01-CR_Definition_OperationLog,
and OMA-DRM-2007-0186R01-CR_SRM_Hello_Message_and_SAC

	OMA-TS-SRM-V1_0-20070503-D
	3 May 2007
	5.1, 5.5, 5.7.5, 5.7.6, 5.7.7, 5.7.8, Appendix B
	Revise text as agreed in
OMA-DRM-2007-0088R02-CR_Recovery_OperationLog,
OMA-DRM-2007-0181R03-CR_Device_to_SRM_Move,

OMA-DRM-2007-0182R01-CR_SRM_to_Device_Move,

OMA-DRM-2007-0183R02-CR_SRM_Local_Rights_Consumption,
OMA-DRM-2007-0184R01-CR_SRM_LROID_to_HandleList,

and OMA-DRM-2007-0185R02-CR_SRM_Data_in_Binary_Format

	OMA-TS-SRM-V1_0-20070511-D
	11 May 2007
	4.1, 5.1, 5.6.4, 5.7.1, 5.7.4, 5.7.8, Appendix H
	Revise text as agreed in
OMA-DRM-2007-0206R02-CR_SRM_SCR_Update,
OMA-DRM-2007-0208-CR_SRM_DP_AP_Removal,
OMA-DRM-2007-0209-CR_SRM_RI_Certificate_Message_Format,
OMA-DRM-2007-0210-CR_SRM_OCSP_related_Message_Format,
OMA-DRM-2007-0211R01-CR_SRM_LCID_Update,
OMA-DRM-2007-0216R01-CR_SRM_Message_ID_and_Status,

and OMA-DRM-2007-0224-CR_SRM_Max_Number_Of_ContentIDs

	OMA-TS-SRM-V1_0-20070522-D
	22 May 2007
	5.1.4, 5.7.4, 5.7.8.3, Appendix B.2.6, Appendix H
	Revise text as agreed in

OMA-DRM-2007-0032R05-CR_List_Rights_Object_Basic_Information_Retrieval,
and OMA-DRM-2007-0231R03-CR_Revocation_Checking_and_Event_Counting
Apply cross references for SCR items

	OMA-TS-SRM-V1_0-20070601-D
	1 June 2007
	2, 3.3, 5.1.1, 5.2, 5.6.4, 5.7.4.6, 5.7.8, 7, Appendix A, B
	Revise text as agreed in
OMA-DRM-2007-0233R03-CR_SRM_WBXML_Encoding,
OMA-DRM-2007-0241-CR_SRM_References_Abbreviations_Update,
and OMA-DRM-2007-0245R01-CR_Event_Counting_Aspects

Appendix H. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].
Items in the SCR table are grouped by functions. Group types of SCR items represent functions as followings:

· CRT: Cryptographic algorithms

· HEL: Device – SRM Hello message

· SAC: Mutual authentication/key exchange and secure authenticated channel

· CRL: CRL processing

· OCSP: OCSP processing

· MOV: Rights Move

· LRC: Local Rights Consumption

· UTIL: Utility messages for Rights Move and Local Rights Consumption

· CERT: Functions for RI’s certificates delivery and verification

· LOG: Operation log

H.1 SCR for Client
The table below enumerates the client conformance requirements on DRM Agents.
	Item
	Function
	Reference
	Requirement

	SRM-CRT-C-001-M
	Hash Algorithms: SHA-1 and associated URI
	Section 5.2
	

	SRM-CRT-C-002-M
	MAC Algorithms: HMAC-SHA1 and associated URI
	Section 5.2
	

	SRM-CRT-C-003-M
	Symmetric Encryption Algorithms: AES-128-CBC and associated URI
	Section 5.2
	

	SRM-CRT-C-004-M
	Asymmetric Encryption Algorithms: RSA-OAEP and associated URI
	Section 5.2
	

	SRM-CRT-C-005-M
	Signature Algorithms: RSA-PSS and associated URI
	Section 5.2
	

	SRM-HEL-C-001-M
	Device – SRM Hello
	Section 5.7.1
	

	SRM-SAC-C-001-M
	Mutual Authentication and Key Exchange: MAKE
	Section 5.7.2
	

	SRM-SAC-C-002-M
	Key Derivation Function
	Section 5.7.3.1
	

	SRM-SAC-C-003-M
	MAC Key update
	Section 5.7.3.3
	

	SRM-CRL-C-001-M
	CRL Number Exchange between Device and SRM
	Section 5.7.4.1
	

	SRM-CRL-C-002-M
	CRL Delivery from Device to SRM
	Section 5.7.4.4
	

	SRM-CRL-C-003-M
	CRL Delivery from SRM to Device
	Section 5.7.4.5
	

	SRM-CRL-C-004-M
	Certificate revocation status checking using cached CRL
	Section 5.7.4
	

	SRM-OCSP-C-001-O
	OCSP Nonce transfer from SRM to Device
	Section 5.7.4.2
	

	SRM-OCSP-C-002-O
	OCSP Response transfer from Device to SRM
	Section 5.7.4.3
	

	SRM-OCSP-C-003-O
	OCSP Request generation
	Section 5.7.4.2
	

	SRM-MOV-C-001-M
	Device to SRM Move
	Section 5.7.5
	SRM-MOV-C-002-M

	SRM-MOV-C-002-M
	Exception Recovery for Device to SRM Move
	Section 5.7.5.1.3, 5.7.5.2.2, 5.7.5.3.3, 5.7.5.4.2
	SRM-LOG-C-001-M AND SRM-UTIL-C-003-M

	SRM-MOV-C-003-M
	SRM to Device Move
	Section 5.7.6
	SRM-MOV-C-004-M AND SRM-UTIL-C-005-M

	SRM-MOV-C-004-M
	Exception Recovery for SRM to Device Move
	Section 5.7.6.1.3, 5.7.6.2.2, 5.7.6.3.3
	SRM-LOG-C-001-M AND SRM-UTIL-C-004-M AND SRM-UTIL-C-005-M

	SRM-MOV-C-005-M
	Rights derivation from RO Payload
	Section 5.1.1
	

	SRM-MOV-C-006-M
	Move permission support
	Appendix F
	

	SRM-LRC-C-001-M
	REK transfer from SRM to Device
	Section 5.7.7.2
	SRM-LRC-C-002-M

	SRM-LRC-C-002-M
	Exception Recovery for REK Transfer to Device
	Section 5.7.7.2.3
	SRM-LOG-C-001-M AND SRM-UTIL-C-004-M

	SRM-LRC-C-003-M
	State Information Update
	Section 5.7.7.3
	SRM-LRC-C-004-M AND SRM-UTIL-C-004-M

	SRM-LRC-C-004-M
	Exception Recovery for State Information Update
	Section 5.7.7.3.3
	SRM-LOG-C-001-M AND SRM-UTIL-C-004-M

	SRM-UTIL-C-001-M
	Handle List transfer from SRM to Device
	Section 5.7.8.1
	

	SRM-UTIL-C-002-M
	Rights Information Transfer to Device
	Section 5.7.8.2
	

	SRM-UTIL-C-003-M
	Handle Removal from SRM
	Section 5.7.8.4
	

	SRM-UTIL-C-004-M
	Rights Enablement in SRM
	Section 5.7.8.5
	

	SRM-UTIL-C-005-M
	Rights Removal from SRM
	Section 5.7.8.6
	

	SRM-UTIL-C-006-M
	Dynamic Code Page Query
	Section 5.7.8.10
	

	SRM-UTIL-C-007-O
	Dynamic Code Page Update
	Section 5.7.8.11
	

	SRM-UTIL-C-008-M
	WBXML Encoding & Decoding
	Section 7
	

	SRM-CERT-C-001-O
	RI Certificate Transfer from Device to SRM
	Section 5.7.8.7
	

	SRM-CERT-C-002-O
	RI Certificate Transfer from SRM to Device
	Section 5.7.8.8
	

	SRM-CERT-C-003-O
	RI Certificate Removal from SRM
	Section 5.7.8.9
	

	SRM-CERT-C-004-M
	RI Certificate Chain processing and validation for Move
	Section 5.1.2
	

	SRM-CERT-C-005-O
	RI Certificate Chain processing and validation for Local Rights Consumption
	Section 5.1.2
	

	SRM-REV-C-001-O
	SRM removal detection
	Section 5.5.1
	

	SRM-LOG-C-001-M
	Operation Log
	Section 5.5.2
	

H.2 SCR for Server
The table below enumerates the client conformance requirements on Rights Issuers and SRM Agents.
H.2.1 SCR for RI
	Item
	Function
	Reference
	Requirement

	SRM-MOV-S-001-M
	Issuing Rights Object with Move permission
	Appendix F
	

H.2.2 SCR for SRM Agent
	Item
	Function
	Reference
	Requirement

	SRM-CRT-S-001-M
	Hash Algorithms: SHA-1 and associated URI
	Section 5.2
	

	SRM-CRT-S-002-M
	MAC Algorithms: HMAC-SHA1 and associated URI
	Section 5.2
	

	SRM-CRT-S-003-M
	Symmetric Encryption Algorithms: AES-128-CBC and associated URI
	Section 5.2
	

	SRM-CRT-S-004-M
	Asymmetric Encryption Algorithms: RSA-OAEP and associated URI
	Section 5.2
	

	SRM-CRT-S-005-M
	Signature Algorithms: RSA-PSS and associated URI
	Section 5.2
	

	SRM-HEL-S-001-M
	Device – SRM Hello
	Section 5.7.1
	

	SRM-SAC-S-001-M
	Mutual Authentication and Key Exchange: MAKE
	Section 5.7.2
	

	SRM-SAC-S-002-M
	Key Derivation Function
	Section 5.7.3.1
	

	SRM-SAC-S-003-M
	MAC Key update
	Section 5.7.3.3
	

	SRM-CRL-S-001-M
	CRL Number Exchange between Device and SRM
	Section 5.7.4.1
	

	SRM-CRL-S-002-M
	CRL Store
	Section 5.7.4.4
	

	SRM-CRL-S-003-M
	CRL Query
	Section 5.7.4.5
	

	SRM-CRL-S-004-M
	Certificate revocation status checking using cached CRL
	Section 5.7.4
	

	SRM-OCSP-S-001-O
	Nonce generation for a secure time stamp using OCSP Response
	Section 5.7.4.2
	

	SRM-OCSP-S-002-O
	OCSP Response processing and validation
	Section 5.7.4.3
	

	SRM-OCSP-S-003-O
	Device revocation status checking using OCSP Response
	Section 5.7.4.3
	

	SRM-OCSP-S-004-O
	CRL issue data validation using OCSP Response
	Section 5.7.4.4
	

	SRM-MOV-S-002-M
	Rights Installation Setup
	Section 5.7.5.1
	

	SRM-MOV-S-003-M
	Rights Installation
	Section 5.7.5.3
	

	SRM-MOV-S-004-M
	Rights Query
	Section 5.7.6.1
	

	SRM-LRC-S-001-M
	REK Query
	Section 5.7.7.2
	

	SRM-LRC-S-002-M
	State Information Update
	Section 5.7.7.3
	SRM-UTIL-S-004-M

	SRM-UTIL-S-001-M
	Handle List Generation
	Section 5.7.8.1
	

	SRM-UTIL-S-002-M
	Rights Information Query
	Section 5.7.8.2
	

	SRM-UTIL-S-003-M
	Handle Removal
	Section 5.7.8.4
	

	SRM-UTIL-S-004-M
	Rights Enablement
	Section 5.7.8.5
	

	SRM-UTIL-S-005-M
	Rights Removal
	Section 5.7.8.6
	

	SRM-UTIL-S-006-O
	Dynamic Code Page Query
	Section 5.7.8.10
	

	SRM-UTIL-S-007-O
	Dynamic Code Page Update
	Section 5.7.8.11
	

	SRM-CERT-S-001-O
	RI Certificate Store
	Section 5.7.8.7
	

	SRM-CERT-S-002-O
	RI Certificate Query
	Section 5.7.8.8
	

	SRM-CERT-S-003-O
	RI Certificate Removal
	Section 5.7.8.9
	

(2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070101-I]
(2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070101-I]

_1237731326.vsd
�

�

HelloRequest (Device Hello)

HelloResponse (SRM Hello)

DRM Agent

SRM Agent

_1239035575.vsd
DRM Agent

SRM Agent

Device

Secure Removable Media

Secure Storage

Operating System

Mass Storage

Trusted Entity

User Equipment

Rights Issuer

ROAP (OMA DRM V2.0)

Out of Scope

_1239106080.vsd
�

�

DRM Agent

SRM Agent

RICertificateQueryRequest

RICertificateQueryResponse

_1241267773.vsd
�

�

DRM Agent

SRM Agent

RightsInfoListQueryRequest

RightsInfoListQueryResponse

_1242452023.vsd
�

�

DRM Agent

SRM Agent

DynamicCodePageQueryRequest

DynamicCodePageQueryResponse

_1242452822.vsd
�

�

DRM Agent

SRM Agent

DynamicCodePageUpdateRequest

DynamicCodePageUpdateResponse

_1239106097.vsd
�

�

DRM Agent

SRM Agent

RICertificateRemovalRequest

RICertificateRemovalResponse

_1239106052.vsd
�

�

DRM Agent

SRM Agent

RICertificateStoreRequest

RICertificateStoreResponse

_1238846774.vsd
�

�

DRM Agent

SRM Agent

OCSPNonceRequest

OCSPNonceResponse

_1238846834.vsd
�

�

DRM Agent

SRM Agent

OCSPProcessRequest

OCSPProcessResponse

_1238846363.vsd
�

�

CRLUpdateResponse

DRM Agent

SRM Agent

CRLUpdateRequest

_1238846666.vsd
�

�

DRM Agent

SRM Agent

CRLInformationExchangeRequest

CRLInformationExchangeResponse

_1238846247.vsd
�

�

CRLRetrievalRequest

DRM Agent

SRM Agent

CRLRetrievalResponse

_1237144959.vsd
�

�

�

DRM Agent

SRM Agent

InstallationSetupResponse

RightsRemovalInDevice�

InstallationSetupRequest

RightsInstallationRequest

RightsInstallationResponse

RightsDisablementInDevice�

_1237639784.vsd
�

�

REKQueryResponse

DRM Agent

SRM Agent

REKQueryRequest

_1237721196.vsd
�

�

DRM Agent

SRM Agent

AuthenticationRequest

KeyExchangeRequest

AuthenticationResponse

KeyExchangeResponse

_1237618928.vsd
�

�

DRM Agent

SRM Agent

HandleListQueryRequest

HandleListQueryResponse

_1237625318.vsd
�

�

DRM Agent

SRM Agent

RightsInfoQueryRequest

RightsInfoQueryResponse

_1229242120.vsd
�

�

{message name}Response

Entity A

Entity B

{message name}Request

_1237139195.vsd
�

�

DRM Agent

SRM Agent

RightsEnablementRequest

RightsEnablementResponse

_1237140151.vsd
�

�

�

DRM Agent

SRM Agent

RightsInstallationInDevice�

RightsRetrievalRequest

RightsRemovalRequest

RightsRetrievalResponse

RightsRemovalResponse

_1237142125.vsd
�

�

DRM Agent

SRM Agent

RightsRemovalRequest

RightsRemovalResponse

_1237105531.vsd
�

�

DRM Agent

SRM Agent

HandleRemovalRequest

HandleRemovalResponse

_1214830163.vsd
�

�

�

Entity C

{action name}�

_1211286387.vsd
Application Layer

Middle Layer

Transformation Layer

SRM Access Layer

