OMA-TS-SCE_DRM-V1_0-20080218-D
Page 2  V(41)


	[image: image1.jpg]
	

	DRM Specification - SCE Extensions

	Draft Version 1.0 – 18 Feb 2008

	Open Mobile Alliance

	 OMA-TS-SCE_DRM-V1_0-20080218-D

	
	

	

	
	


Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner.  Information contained in this document may be used, at your sole risk, for any purposes.  You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance.  The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms.  This copyright permission does not constitute an endorsement of the products or services.  The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.  However, the members do not have an obligation to conduct IPR searches.  The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html.  The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights.  This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions.  Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2006 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
9
4.
Introduction
10
5.
ROAP Extensions from previous version
11
5.1
Overview
11
5.1.1
The 2-pass Move Rights Protocol
11
5.1.2
The 2-pass RO Upgrade Protocol
12
5.2
XML Namespace
13
5.3
Initiating the ROAP
13
5.3.1
ROAP Trigger
13
5.3.2
Initiating ROAP from a BatchRIURL for multiple DCFs
15
5.3.2.1
BatchRIURL header
16
5.4
ROAP Schema extension
16
5.4.1
The RightsInfo type
16
5.5
ROAP Messages
18
5.5.1
Registration
18
5.5.2
RO Acquisition
18
5.5.3
Domain Management
18
5.5.4
Move RI Rights Protocol
18
5.5.5
Move LRM Rights Protocol
21
5.5.6
RO Upgrade
25
6.
Moving Rights via Rights Issuer
28
6.1
Installation of Movable Rights Object
28
6.2
Sending MoveRightsRequest
28
6.3
Processing MoveRightsRequest
28
6.4
Processing MoveRightsResponse
29
7.
Upgrading Rights
31
7.1
Sending ROUpgradeRequest
31
7.2
Processing ROUpgradeRequest
31
7.3
Processing ROUpgradeResponse
32
8.
State Information Format
33
9.
Transport Mapping
34
9.1
Overview
34
9.2
HTTP Transport Mapping
34
9.2.1
Multiple ROs Acquisition Triggered by DCF Headers
34
10.
Key Management
36
10.1
Key Transport Mechanisms
36
10.1.1
Distributing KMAC and KREK under a RI Public Key
36
11.
Security Considerations
37
11.1
Replay Protection of Stateless Rights Object (Normative)
37
Appendix A.
Change History (Informative)
38
A.1
Approved Version History
38
A.2
Draft/Candidate Version 1.0 History
38
Appendix B.
Static Conformance Requirements (Normative)
39
B.1
SCR for XYZ Client
39
B.2
SCR for XYZ Server
39
Appendix C.
Example (Informative)
40
C.1
ROAP Examples
40
C.1.1
Move Rights Trigger
40
C.1.2
RO Upgrade Trigger
40
Appendix D.
<Additional Information>
41


Figures

11Figure 1 the 2-pass Move Rights Protocol


12Figure 2 the 2-pass Move LRM Rights Protocol


13Figure 3 the 2-pass RO Upgrade Protocol




Tables

18Table 1: MoveRightsRequest Message Parameters


20Table 2: MoveRightsResponse Message Parameters




1. Scope

Open Mobile Alliance (OMA) specifications are the result of continuous work to define industry-wide interoperable mechanisms for developing applications and services that are deployed over wireless communication networks. 

The scope of OMA “Digital Rights Management” (DRM) is to enable the distribution and consumption of digital content in a controlled manner. The content is distributed and consumed on authenticated Devices per the usage rights expressed by the content owners. OMA DRM work addresses the various technical aspects of this system by providing appropriate specifications for content formats, protocols, and a rights expression language.

A number of DRM specifications have already been defined within the OMA. The latest accepted release of the OMA DRM enabler ([OMADRM], including [DRMDRM], [DRMDCF], [DRMREL]), is referred to within this document as “OMA DRM 2.1”.

This specification defines the ROAP protocol suite extensions necessary to implement necessary functions, as required per [SCE-RD]. More specifically, this specification will specify the interface ROAP-1.1 as defined in [SCE-AD].
2. References

2.1 Normative References

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[OMADRM]
	The OMA DRM 2.1 enabler as described in “Enabler Release Definition for DRM V2.1, 
Approved Version 2.1”, OMA-ERELD-DRM-V2_1-D, Open Mobile AllianceTM, 
URL:http://www.openmobilealliance.org/

	[DRMDRM]
	“DRM Specification, Draft Version 2.1”, 
OMA-TS-DRM-DRM-V2_1-D, Open Mobile AllianceTM,  
URL:http://www.openmobilealliance.org/

	[DRMREL]
	“DRM Rights Expression Language, Draft Version 2.1”, 
OMA-TS-DRM-REL-V2_1-D, Open Mobile AllianceTM,  
URL:http://www.openmobilealliance.org/

	[DRMDCF]
	“DRM Content Format, Draft Version 2.1”, 
OMA-TS-DRM-DCF-V2_1-D, Open Mobile AllianceTM, 
URL:http://www.openmobilealliance.org/

	[SCE-RD]
	“Secure Content Exchange Requirements, Draft Version 1.0”, 
OMA-RD-SCE-V1_0-20060908-D, Open Mobile AllianceTM,  
URL:http://www.openmobilealliance.org/

	[SCE-AD]
	“Secure Content Exchange Architecture, Draft Version”, 
OMA-AD-SCE-V1_0-D, Open Mobile AllianceTM,  
URL:http://www.openmobilealliance.org/

	[SCE-GEN]
	“SCE Generic Mechnisms, Draft Version”
OMA-TS-SCE_GEN-V1_0-D, Open Mobile AllianceTM,

URL:http://www.openmobilealliance.org/

	[SCE-DRM]
	“DRM Specification – SCE Extensions, Draft Version”, 
OMA-TS-SCE_DRM-V1_0-D, Open Mobile AllianceTM,  
URL:http://www.openmobilealliance.org/

	[SCE-REL]
	“DRM Rights Expression Language – SCE Extensions, Draft Version”, 
OMA-TS-SCE_REL-V1_0-D, Open Mobile AllianceTM,  
URL:http://www.openmobilealliance.org/

	[SCE-DRMCF]
	“DRM Content Format – SCE Extensions, Draft Version”, 
OMA-TS-SCE_DCF-V1_0-D, Open Mobile AllianceTM, 
URL:http://www.openmobilealliance.org/

	[SCE-LRM]
	 “DRM Local Rights Management, Draft Version”, 
OMA-TS-SCE_LRM-V1_0-D, Open Mobile AllianceTM,  
URL:http://www.openmobilealliance.org/

	[SCE-DOM]
	“DRM User Domains, Draft Version”, 
OMA-TS-SCE_DOM-V1_0-D, Open Mobile AllianceTM, 
URL:http://www.openmobilealliance.org/

	[SCE-A2A]
	“DRM Agent-to-Agent transfer, Draft Version”, 
OMA-TS-SCE_A2A-V1_0-D, Open Mobile AllianceTM,  
URL:http://www.openmobilealliance.org/

	[PKCS-1]
	“PKCS #1 v2.1: RSA Cryptography Standard”, RSA Laboratories. June 2002. http://www.rsasecurity.com/rsalabs 

	[SHA-1]
	NIST FIPS 180-2: Secure Hash Standard. August 2002.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

	[XML-DSIG]
	XML-Signature Syntax and Processing. D. Eastlake, J. Reagle, and D. Solo. W3C Recommendation, February 2002. http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

	[XML-Enc]
	XML Encryption Syntax and Processing. D. Eastlake and J. Reagle. W3C Recommendation, December 2002. http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

	[XML-Schema]
	XML Schema Part 1: Structures D. Beech, M. Maloney, and N. Mendelsohn. W3C Recommendation, May 2001. http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/ 

XML Schema Part 2: Datatypes. P. Biron and A. Malhotra. W3C Recommendation, May 2001. 

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

	[OCSP]
	Myers, M., Ankney, R., Malpani, A., Galperin, S. and C. Adams, "Internet X.509 Public Key Infrastructure: Online Certificate Status Protocol - OCSP", RFC 2560, June 1999. http://www.ietf.org/rfc/rfc2560.txt

	[OCSP-MP]
	OMA Online Certificate Status Protocol (profile of [OCSP]) V 1.0, http://www.openmobilealliance.org/

	
	


2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	
	

	
	


3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Constraint
	A restriction on a Permission over DRM Content (DRM V2.0).

	Consume
	To Play, Display, Print or Execute DRM Content on a Device or to render DRM Content on a Render Client. 

	Content
	One or more Media Objects (DRM V2.0).

	Content Issuer
	The entity making content available to the DRM Agent in a Device (DRM V2.0).

	Content Provider
	An entity that is either a Content Issuer or a Rights Issuer (DRM V2.0).

	Device
	A Device is the entity (hardware/software or combination thereof) within a user equipment that implements a DRM Agent. The Device is also conformant to the OMA DRM specifications.  The Device may include a smart card module (e.g. a SIM) (DRM V2.0).

	Domain
	A group of Devices defined by a Rights Issuer such that the Rights Issuer can issue Rights Objects for the group that can be processed by all Devices within the group, and only those Devices (DRM V2.0). 

	DRM Agent
	The entity in the Device that manages Permissions for Media Objects on the Device (DRM V2.0).

	DRM Content
	Media Objects that are consumed according to a set of Permissions in a Rights Object (DRM V2.0).

	DRM Time
	A secure, non user-changeable time source. The DRM Time is measured in the UTC time scale (DRM V2.0).

	Local Rights Manager (LRM)
	An entity that is responsible for aspect(s) of Import and it may also manage an Imported-Content for a limited group of OMA DRM Agents. 

	Move
	To make Rights existing initially on a source Device fully or partially available for use by a recipient Device, such that the Rights or parts thereof that become usable on the recipient Device can no longer be used on the source Device. 

	Rights
	The collection of permissions and constraints defining under which circumstances access is granted to DRM Content. 

	Permission
	Actual usages or activities allowed (by the Rights Issuer) over DRM Content.

	Source Device
	The Device that sends out Rights.

	Recipient Device
	The Device that is final destination which receives Rights.

	State Information
	A set of values representing current state associated with Rights. It is managed by the DRM Agent only when the Rights contain any of the stateful constraints (e.g. interval, count, timed-count, accumulated, etc.).

	Superdistribution
	A mechanism that (1) allows a User to distribute DRM Content to other Devices through potentially insecure channels and (2) enables the User of that Device to obtain a Rights Object for the superdistributed DRM Content (DRM V2.0). 

	User
	The human user of a Device. The User does not necessarily own the Device (DRM V2.0).

	
	


3.3
Abbreviations

	OMA
	Open Mobile Alliance

	ROAP
	Rights Object Acquisition Protocol

	RI
	Rights Issuer

	CI
	Content Issuer

	RO
	Rights Object

	CEK
	Content Encryption Key

	REK
	Rights Encryption Key

	LRM
	Local Rights Manager


4. Introduction

5. ROAP Extensions from previous version
5.1 Overview

5.1.1 The 2-pass Move Rights Protocol
5.1.1.1 The 2-pass Move RI Rights Protocol
The 2-pass Move RI Rights protocol is the protocol by which a Device transfers one or more Rights to the Rights Issuer, and it is used for moving Rights via Rights Issuer. The Rights Issuer SHALL be the same Rights Issuer that originally issued the Rights Object. The protocol assumes that the Device has a valid RI context for the associated RI.
This protocol includes mutual authentication between Device and RI, integrity-protected request and response, transferring of Rights. This protocol ensures the Rights Issuer is able to verify the received Rights Object was originally issued by the same Rights Issuer. This protocol MAY involve OCSP protocol between Rights Issuer and OCSP Responder for checking status of Rights Issuer’s certificate chain. After successful 2-pass Move Rights Protocol execution, the Rights Issuer MUST conduct RO Acquisition Protocol including optional ROAP-ROAcquisition Trigger as [DRMDRM], with the Recipient Device. But the RO Acquisition Protocol itself is not part of this protocol.


[image: image2.emf]Source DeviceRights IssuerOCSP Responder

M

o

v

e

R

I

R

ig

h

ts

R

e

q

u

e

s

t

O

C

S

P

 

R

e

q

u

e

s

t

O

C

S

P

 R

e

sp

o

n

s

e

M

o

v

e

R

I

R

i

g

h

ts

R

e

s

p

o

n

s

e

1

2

a

b

Recipient Device

RO Acquisition Protocol


 Figure 1 the 2-pass Move Rights Protocol
5.1.1.2 The 2 pass Move LRM Rights Protocol
The 2-pass Move LRM Rights Protocol is the protocol by which a Source Device enlists the services of an Rights Issuer to Move Rights (to a designated Recipient Device) that correspond to one or more Imported-Rights-Objects created by an LRM. The Rights Issuer and the LRM SHALL have a trust relationship, and each LRM-created Imported-Rights-Object SHALL contain information indicating whether or not it is eligible to be Moved by an Rights Issuer (and MAY contain information specifying which Rights Issuer(s) are eligible to Move the Rights). This protocol can be used by a Source Device for Moving, via an Rights Issuer, Rights imported into OMA DRM by an LRM to a Recipient Device which has been previously paired with the Source Device by that LRM as described in [SCE-LRM]. This protocol assumes that the Source Device and the Recipient Device each have a valid RI context for the associated Rights Issuer.

This protocol includes mutual authentication between Device and RI, integrity-protected request and response messaging, transferring of Rights, and verification of trust relationship between the Rights Issuer and the LRM. This protocol ensures that the Rights Issuer is able to verify the LRM’s signature over the Rights Object, so as to verify that the Rights Object was originally created by the LRM (where this signature is inserted by a Source Device into the initial Move-via-RI request corresponding to a particular LRM-created Imported Rights Object, and is subsequently replaced by an RI-generated signature).  This protocol also ensures that the REK created by the LRM is not exposed to the Rights Issuer, and that the Rights Issuer cannot successfully issue multiple ROs (derived from the LRM-created Imported Rights Object) to the Recipient Device designated by the Source Device, or issue such ROs to Devices other than the designated Recipient Device. This protocol MAY involve OCSP protocol between Rights Issuer and OCSP Responder for checking status of Rights Issuer’s certificate chain. After successful 2-pass Move LRM Rights Protocol execution, the Rights Issuer MUST conduct RO Acquisition Protocol including optional ROAP-ROAcquisition Trigger as per [DRMDRM2.0], with the Recipient Device. But the RO Acquisition Protocol itself is not part of this protocol. Rather than generating a new REK, the Rights Issuer delivers the encrypted key(s) that it received from the Source Device, and indicates the identity of the LRM that created the Imported-Rights-Object from which the new RI-generated RO is derived.

[image: image3.emf]Source DeviceRights IssuerOCSP Responder

M

o

v

e

L

R

M

R

ig

h

ts

R

e

q

u

e

s

t

O

C

S

P

 

R

e

q

u

e

s

t

O

C

S

P

 R

e

sp

o

n

s

e

M

o

v

e

L

R

M

R

i

g

h

ts

R

e

s

p

o

n

se

1

2

a

b

Recipient Device

RO Acquisition Protocol


 Figure 2 the 2-pass Move LRM Rights Protocol
5.1.2 The 2-pass RO Upgrade Protocol

The 2-pass RO Upgrade protocol is the protocol by which a Device upgrades an existing RO. This protocol is intended for adding permissions to existing Rights managed by the DRM Agent, in the case where the existing Rights don’t contain the required permissions. The added permission can be, for example, for sharing (e.g. Move or Copy). This results in a new Rights Object that replaces the old Rights Object. This protocol includes mutual authentication of Device and RI, integrity-protected request and the secure transfer of the existing RO (and corresponding State Information if it is stateful), User desired permission and new RO which is intended to substitute the existing RO. This protocol ensures the Rights Issuer is able to verify the existing RO coming from the Device was originally issued by itself. This protocol MAY involve OCSP protocol between Rights Issuer and OCSP Responder for checking status of Rights Issuer’s certificate chain. The successful execution of this protocol assumes the Device to have a pre-established RI Context with the RI.

[image: image4.emf]DeviceRights IssuerOCSP Responder

R

O

U

p

g

r

a

d

e

R

e

q

u

e

st

O

C

S

P

 

R

e

q

u

es

t

O

C

S

P

 R

e

s

p

o

n

s

e

R

O

U

p

g

r

a

d

e

R

e

sp

o

n

s

e

1

2

a

b


Figure 3 the 2-pass RO Upgrade Protocol
5.2 XML Namespace

In this version and minor upgrade of the specification, ROAP namespace is used as same with [DRMDRM]. Hence ROAP namespace URI must be “urn:oma:bac:dldrm:roap-1.0”. For the sake of convenience, this specification uses the namespace prefix for ROAP namespace as “roap”, and the namespace prefix for generic XML namespace for SCE as “gen”. For the information of the generic XML namespace for SCE, please refer to [SCE-GEN].
5.3 Initiating the ROAP

5.3.1 ROAP Trigger

In this version of specification, the XML Schema for ROAPTrigger was extended from [DRMDRM]. The following XMLSchema represents ROAPTrigger and the extended parts in this specification were marked as underlined and italic.

<complexType name="BasicRoapTrigger">

  <sequence>

      <element name="riID" type="roap:Identifier"/>

      <element name="riAlias" type="string" minOccurs="0"/>

      <element name="nonce" type="roap:Nonce" minOccurs="0"/>

      <element name="roapURL" type="anyURI"/>

  </sequence>

  <attribute name="id" type="ID"/>

</complexType>

<complexType name="DomainTrigger">

  <complexContent>

    <extension base="roap:BasicRoapTrigger">

      <sequence>

        <element name="domainID" type="roap:DomainIdentifier" minOccurs="0"/>

        <element name="domainAlias" type="string" minOccurs="0"/>

      </sequence>

    </extension>

  </complexContent>

</complexType>

<complexType name="ROAcquisitionTrigger">

  <complexContent>

    <extension base="roap:DomainTrigger">

      <sequence>

        <sequence maxOccurs="unbounded">

          <element name="roID" type="ID"/>

          <element name="roAlias" type="string" minOccurs="0"/>

          <element name="contentID" type="anyURI" minOccurs="0" maxOccurs="unbounded"/>

        </sequence>

      </sequence>

    </extension>

  </complexContent>

</complexType>

<complexType name="ExtendedRoapTrigger">

    <complexContent>

      <extension base="roap:BasicRoapTrigger">

        <sequence>

          <any  minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

        </sequence>

        <attribute name="type" type="string" use="required"/>

      </extension>

    </complexContent>

  </complexType>

<element name=” trgMoveRights”>

<complexType>
<sequence>

<element name=”recipientInfo” type=”string” minOccurs=”0” />

</sequence>
<attribute name="roRequested" type="boolean" default="true" />
</complexType>
</element>

<element name="trgROUpgrade">

<complexType>  

<sequence minOccurs="0" maxOccurs="unbounded">

         <element name="roID" type="ID" minOccurs="0"/>

         <element name="roAlias" type="string" minOccurs="0"/>
         <element name="upgradeInfo" type="string" minOccurs="0"/>

</sequence>
      <attribute name="roRequested" type="boolean" default="true"/>
</complexType>
</element>
<!-- ROAP trigger -->

<element name="roapTrigger" type="roap:RoapTrigger"/>

<complexType name="RoapTrigger">

  <annotation>

    <documentation xml:lang="en">

      Message used to trigger the device to initiate a Rights Object Acquisition Protocol.

    </documentation>

  </annotation>

  <sequence>

    <choice>

      <element name="registrationRequest" type="roap: BasicRoapTrigger "/>

      <element name="roAcquisition" type="roap:ROAcquisitionTrigger"/>

      <element name="joinDomain" type="roap:DomainTrigger"/>

      <element name="leaveDomain" type="roap:DomainTrigger"/>
      <element name="extendedTrigger" type="roap:ExtendedRoapTrigger"/>

    </choice>

    <element name="signature" type="ds:SignatureType" minOccurs="0"/>

    <element name="encKey" type="xenc:EncryptedKeyType" minOccurs="0"/>

</sequence>

<attribute name="version" type="roap:Version"/>

<attribute name=”proxy” type=”boolean”/>

</complexType>
The XML representation of the move Rights trigger is defined by re-using the ExtendedRoapTrigger type and assigning the fixed value “moveRights” for the type attribute. It SHALL be signalled as an <extendedTrigger> element which carries a <trgMoveRights> element as a child element. Consequently, if the <roapTrigger> element carries an <extendedTrigger> element as defined above with the type attribute set to ”moveRights”, the DRM Agent SHALL initiate a ROAP-MoveRightsRequest PDU with the following exceptions. 
In the case that a DRM Agent receives a ROAP Trigger where the <roapTrigger> element carries a <moveRights> element, the DRM Agent SHALL obtain user’s consent and initiate ROAP-MoveRights protocol with the following exceptions. If the DRM Agent has invalid RI Context for the specified <riID> in the trigger, the DRM Agent MUST initiate the 4-pass ROAP-Registration protocol by using <roapURL> element in the trigger.
If the User of Source Device has designated the Recipient Device in the Rights Issuer portal, the Rights Issuer MUST add <recipientInfo> element in the <trgMoveRights> element. The value of <recipientInfo> element  SHOULD be the string which is identifiable by user and it can be e.g. phone number, user name.

Depending on the Rights Issuer policy, Rights Issuer may record Rights Objects while those were issued. In such case, the Rights Issuer doesn’t have to retrieve all information about Rights Object. If the Rights Issuer already recorded the issued Rights Object, the Rights Issuer MUST set roRequested attribute as ‘false’ value in the trigger. If the Rights Issuer didn’t record the Rights Object, the Rights Issuer MUST set roRequested attribute as ‘true’ value or omit roRequested attribute in the trigger.

An RO Upgrade trigger enables the initiation of the ROAP 2-pass RO Upgrade protocol. 
If a <drmTrigger> element (of gen:DrmTrigger type) carries an <body> element (of  type gen:TriggerBody) who in turn carries a child element <trgROUpgrade> , it SHALL be recognized as an RO Upgrade trigger.
The <trgROUpgrade> element MAY carry roID, roAlias and upgradeInfo. The roID and roAlias specifies the RO to be upgraded. The upgradeInfo is textual information for the user to confirm his/her request made in browse session about upgrading an RO, e.g. what existing RO is, what additional permission is. 
When an RO Upgrade trigger is received, the DRM Agent SHALL show the user the upgradeInfo (if it is present) and obtain the user’s consent on whether or not to initiate 2-pass RO Upgrade protocol.

How a ROAP-ROUpgradeRequest is constructed as per RO Upgrade trigger is specified in section 7.1.
5.3.2 Initiating ROAP from a BatchRIURL for multiple DCFs

This section provides the efficient mechanism for a device to acquire multiple ROs at one time execution of the ROAP instead of multiple execution of the ROAP. This is particularly useful for a device to acquire multiple ROs when devices exchange multiple contents via wired communication, wireless communication or a removable media.

This section applies ONLY to Connected Devices. 

If the DRM Agent receives multiple DCFs with the same BatchRIURL header, the DRM Agent MAY attempt to acquire Rights for multiple DCFs with the same BatchRIURL header with a specified BatchRIURL. The DRM Agent MUST send a request message to the BatchRIURL stored in multiple DCFs, and respond to the ROAP Trigger that will be returned by the Rights Issuer.
5.3.2.1 BatchRIURL header

The BatchRIURL header is an indication to the client that multiple Rights Objects for DRM Contents can be obtained from the Rights Issuer.

BatchRIURL = “BatchRIURL” “:” batchri-url

batchri-url = token

The parameter batchri-url MUST be a URL according to [RFC2396] and a successful request to the URL MUST return a ROAP Trigger as defined in [DRM-v2.1]. If batchri-url is a HTTP URL and the request fails with error code 404 Not Found [RFC2616], the Device SHOULD NOT make further requests to the URL. If the request fails with some other error, the Device MAY retry the request at a later time.

The Device MUST use this batchri-url to obtain multiple rights for multiple DCFs according to [DRM-SCE].
5.4 ROAP Schema extension

5.4.1 The RightsInfo type

The RightsInfo type represents remaining Rights for the specific Rights Object installed in the DRM Agent. All SCE ROAP request message which transfers Rights to Rights Issuer uses this type. E.g. ROAP-MoveRightsRequest, ROAP-ROUpgradeRequest.
<complexType name="RightsInfo">

<element name="roID" type="ID" />
<element name="rights" type="o-ex:rightsType" minOccurs="0" />
<element name="signature" type="ds:SignatureType" minOccurs="0" />
<element name="stateInfo" type="o-ex:constraintType" minOccurs="0" maxOccurs="unbounded" />
<element name="sourceDeviceID" type="roap:Identifier" />
<element name="encKey" type="xenc:EncryptedKeyType" />
<element name="mac" type="base64Binary" />
</complexType>

The element of RightsInfo type SHALL include <roID>, <encKey>, <sourceDeviceID> and  <mac> elements. If the Rights Object is stateful, the element of RightsInfo type SHALL additionally include one or more <stateInfo> element that represents state information (current – retained).
The <encKey> element under the element of RightsInfo type is of type xenc:EncryptedKeyType from [XML-Enc]. It contains a wrapped concatenation of a MAC key, KMAC and a RO Encryption Key, KREK (For detail, see the section 10). The Id attribute of this element SHALL be present and SHALL have the same value as the value of the URI attribute of the <ds:RetrievalMethod> element in the <ds:KeyInfo> element inside the <rights> element. The <ds:KeyInfo> child element of the <encKey> element SHALL identify the wrapping key. The <ds:KeyInfo> element SHALL be the <roap:X509SPKIHash> element, identifying the RIs Public Key through the (SHA-1) hash of the DER-encoded subjectPublicKeyInfo value in the RI’s certificate

The <mac> element provides integrity protection through a MAC on the canonical version conforming to [DRMDRM] of the element of RightsInfo type (excluding the <mac> elements) using the MAC key, KMAC wrapped in the <encKey> element. The MAC algorithm SHALL be the same algorithm that was negotiated as part of the registration with the RI i.e. the MAC algorithm stored in the RI Context.
When DRM Agent construct element of the RightsInfo type in the request message, the DRM Agent must follow the below. For example, if the instance element of the RightsInfo type is <rightsInfo> element, then

· Add <roID> element under <rightsInfo> element. The value of the <roID> element must be same with original RO.

· If ‘roRequested’ attribute in the corresponding trigger has “true” value, or the user initiates the protocol, then the DRM Agent MUST additionally add <rights>, <signature> elements under the <rightsInfo> element. The <rights> and <signature> elements must be identical to the element stored at the installation time.

· If the Rights Object to be transferred is stateful, add <stateInfo> element, according to the section xx.

· Add <encKey> element and <mac> element in the <rightsInfo> element.
· Prepare the RO Encryption Key, KREK which is from original RO.
· Randomly generate a 128-bit long MAC Key, KMAC. 

· Encrypt the RO Encryption Key, KREK and MAC Key, KMAC using the RI’s Public Key (see section 10.1.1).
· Package the encrypted RO Encryption Key, KREK and MAC Key, KMAC into the <encKey> element.
· Calculate a MAC on the canonical version of the <rightsInfo> element (excluding the <mac> element) using the MAC key KMAC.  using MAC algorithm from the RI Context.
· Set the value of the <mac> element of the <rightsInfo> element equal to the calculated value.
· Add <sourceDeviceID> element in the <rightsInfo> element. The source device ID is an ID of the device which sends the request message.
When RI verifies the element of the RightsInfo type in the request message, the RI must follow the below. For example, if the instance element of the RightsInfo type is <rightsInfo> element, then
· Check if <sourceDeviceID> element under the <rightsInfo> element matches with signer indicated in the signature for request message.

· In case where RI keeps records for <rights> element <signature> element, if ROID in the request message cannot be found from the Rights Issuer’s issue history, the RI responds with response message containing error status.

· TBD: Some sentences are required to indicate the concept that RI keeps a record regarding how many requests it has processed per a particular roID and its related error codes should be defined.
· If the request message contains <rights> and <signature> element, verify signature and check if the signature has been generated by this Rights Issuer. If the signature verification is failed or the signature was not generated by this Rights Issuer, the RI responds with response message containing error status
· Decrypt RO Encryption Key and verify MAC in the <rightsInfo> element.
· Unwrap the RO Encryption Key, KREK and MAC Key, KMAC (see section 10.1.1).

· Calculate a MAC on the canonical version of the <rightsInfo> element (excluding the <mac> element) using the MAC key KMAC. The MAC algorithm to use is defined in the Device Context.
· Check the calculated value against the <mac> element of the <rightsInfo> element. If the calculated value is not equal to value of the <mac> element of the <rightsInfo> element the RI MUST respond with a response message with error status.
· Do AES-UNWRAP of Content Encryption Key using the decrypted RO Encryption Key. If any error occurred during AES-UNWRAP of Content Encryption Key, the RI regards the requesting DRM Agent didn’t package REK properly and send error message to the requesting DRM Agent.

5.5 ROAP Messages

Note: The messages for new protocol in SCE ROAP suite may extend the type defined in [SCE-GEN]. In this section, the requestor of the protocol is a Device and the responder of the protocol is a Rights Issuer. Hence the value of <reqID> element must be an identifier of the Device, and the value of <resID> element must be an identifier of the Rights Issuer in this section.
5.5.1 Registration

5.5.2 RO Acquisition

5.5.3 Domain Management

5.5.4 Move RI Rights Protocol

The ROAP Move RI Rights Protocol enables a DRM Agent to move its remaining Rights that was originally created by a Rights Issuer to other DRM Agent through the interaction with the Rights Issuer. Since it extends existing ROAP protocol, the physical distance between two DRM Agents does not matter.

While DRM 2.1 RO Upload Protocol transfers Rights which had been issued from RI to the requesting DRM Agent, the ROAP Move RI Rights Protocol transfers Rights which was originally created by the RI. The Rights may come directly from not only RI but also other DRM Agents.

5.5.4.1 Move RI Rights Request
The ROAP-MoveRightsRequest message is sent from the Device to the Rights Issuer for transferring Rights. The message is an element of type gen:Request, in which the element are present:
	element / attribute
	usage
	value

	reqID
	M 
	Default, as specified in [SCE-GEN], section xyz

	resID
	M
	Default, as specified in [SCE-GEN], section xyz

	nonce
	M
	Default, as specified in [SCE-GEN], section xyz

	time
	M
	Default, as specified in [SCE-GEN], section xyz

	certificateChain
	O
	Default, as specified in [SCE-GEN], section xyz

	reqInfo
	M
	Specified below

	signature
	M
	Specified below


Table 1: MoveRIRightsRequest Message Parameters
Signature is a digital signature on this message (besides the Signature element itself). The signature method conforms to [DRMDRM].
The “xsi:type” attribute of <reqInfo> element in Move RI Rights Request message MUST be set as “roap:MoveRIRightsReqInfo”. The type of “roap:MoveRIRightsReqInfo” is defined as below.


<complexType name="MoveRIRightsReqInfo">
<complexContent>

  <extension base=”gen:RequestInformation”>



<sequence>




<element name="rcptDevID" type="gen:Identifier" minOccurs=”0”/>




<element name="rightsInfo" type="roap:RightsInfo" maxOccurs=”unbounded”/>



<element name="extensions" type="gen:Extensions" minOccurs=”0”/>


</sequence>
       </extension>

    </complexContent>


</complexType>

The <reqInfo> element in Move RI Rights Request message includes optional <rcptDevID> element, one or more <rightsInfo> element and optional <extensions> element, besides the elements defined in the type gen:RequestInformation.

The <rcptDevID> element represents the identifier of Recipient Device.
The <rightsInfo> element contains information about Rights being transferred to Rights Issuer.
The <extensions> element contains following extensions which are defined for the ROAP-MoveRIRightsRequest message:

Peer Key Identifier: An identifier for an RI public key stored in the Device. If the identifier matches the stored RI ID, it means the Device has already stored the RI ID and the corresponding RI certificate chain, and the RI need not send down its certificate chain in its response message.

No OCSP Response: Presence of this extension indicates to the RI that there is no need to send any OCSP responses since the Device has cached a complete set of valid OCSP responses for this RI.

OCSP Responder Key Identifier: This extension identifies an OCSP responder key stored in the Device. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

The Device MUST send the Peer Key Identifier extension if, and only if, it has stored the RI public key corresponding to the stored RI ID. The Device MUST send the No OCSP Response extension if, and only if, it has a complete set of valid OCSP responses for the RI’s certificate chain. The Device MUST send the OCSP Responder Key Identifier extension if, and only if, it has stored an OCSP Responder key for this RI. 

If there was preceding ROAP-MoveRIRights Trigger and its roRequested attribute value was ‘true’, or the request message is sent without preceding ROAP-MoveRIRights Trigger, the <rightsInfo> element within <moveRIRightsRequest> element SHALL include one <rights> element and one <signature> elements. If there was no preceding ROAP-MoveRIRights Trigger or the trigger doesn’t include <recipientInfo> element, the <moveRIRightsRequest> element SHALL include one <recipientDeviceID> element. If the trigger includes <recipientInfo> element, since the Rights Issuer already knows the ID of the recipient device, the <moveRIRightsRequest> element SHALL NOT include any <recipientDeviceID> element. For the detail of RightsInfo type, please refer to section 5.4.1.
5.5.4.2 MoveRIRightsResponse

The ROAP-MoveRIRightsResponse message is sent from the the Rights Issuer to the Device as a response against ROAP-MoveRIRightsRequest message. This message expresses if RI assures received Rights Object will be successfully stored. The message is an element of type gen:Response, in which the element are present:
	element / attribute
	usage
	value

	status
	M
	Default, as specified in [GEN], section xyz

	errorMessage
	O
	Default, as specified in [GEN], section xyz

	errorRedirectURL
	O 
	Default, as specified in [GEN], section xyz

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	nonce
	M
	Default, as specified in [GEN], section xyz

	certificateChain
	O
	Default, as specified in [GEN], section xyz

	ocspResponse
	O
	Default, as specified in [GEN], section xyz

	rspInfo
	M
	Specified below

	signature
	M
	Specified below


Table 2: MoveRIRightsResponse Message Parameters
Signature is a digital signature on this message (besides the Signature element itself). The signature method conforms to [DRMDRM].
The “xsi:type” attribute of <rspInfo> element in Move RI Rights Response message MUST be set as “roap:MoveRIRightsRspInfo”. The type of “roap:MoveRIRightsRspInfo” is defined as below:

<complexType name="MoveRIRightsRspInfo">
<complexContent>

    <extension base=”gen:ResponseInformation”>



<sequence>




<element name="extensions" type="gen :Extensions" minOccurs=”0”/>



</sequence>
      </extension>

    </complexContent>


</complexType>
The <rspInfo> element in Move RI Rights Response message includes optional <extensions> element, besides the elements defined in the type gen:ResponseInformation.

The <extensions> element contains following extensions which are currently defined for ROAP-MoveRIRightsResponse message.

Post Response URL: This allows an RI to have post-interaction with the user of Source Device using a browsing session. In the browsing session, the RI may conduct e.g. billing/charging per amount of transferred Rights, screening of Content and Rights. But the details in the browsing session are beyond the scope of this specification.
Signature is a digital signature on this message (besides the Signature element itself). The signature method conforms to [DRMDRM].

5.5.4.2.1 Message syntax

The <moveRIRightsResponse> element specifies the ROAP-MoveRIRightsResponse message. It has complex type roap:MoveRIRightsResponse, which extends the roap:Response type.

<!--MoveRIRightsResponse -->

 <element name="moveRIRightsResponse" type="roap:MoveRIRightsResponse" />
 <complexType name="MoveRIRightsResponse">

  <annotation>

   <documentation xml:lang="en">

    Message sent from RI to Device in response to a MoveRIRightsRequest message.

   </documentation>

  </annotation>

  <complexContent>

   <extension base="roap:Response">

    <sequence minOccurs="0">

     <element name="deviceID" type="roap:Identifier" />

     <element name="riID" type="roap:Identifier" />

     <element name="nonce" type="roap:Nonce" minOccurs="0" />
     <element name="certificateChain" type="roap:CertificateChain" minOccurs="0"/> 

     <element name="ocspResponse" type="base64Binary" minOccurs="0" maxOccurs="unbounded"/>

     <element name="signature" type="base64Binary" />

     <element name="extensions" type="roap:Extensions" />

    </sequence>

   </extension>

  </complexContent>

 </complexType>
The following schema fragment defines the Post Response URL extension:

<complexType name="postResponseURL">

  <complexContent>

    <extension base="roap:Extension">

      <sequence>

        <element name="prURL" type=”anyURI”/>

      <sequence>

    </extension>

  </complexContent>

</complexType>
The prURL element specifies a URL.  The value of the <prURL> element MUST be a URL according to [RFC2396]. The processing of the <prURL> element is as described in section 6.4.

The critical attribute SHALL be present and the value of the attribute SHALL be “true” and this extension MUST be supported by the Device.

5.5.5 Move LRM Rights Protocol

The ROAP Move LRM Rights Protocol enables a DRM Agent to move its remaining Rights that was originally created by an LRM to other DRM Agent with the aid of a Rights Issuer. 

5.5.5.1 Move LRM Rights Request
The ROAP-MoveLRMRightsRequest message is sent from the source Device to the Rights Issuer for transferring the LRM-Created Rights to the Rights Issuer. The message is an element of type gen:Request, in which the element are present:
	element / attribute
	usage
	value

	reqID
	M 
	Default, as specified in [SCE-GEN], section xyz

	resID
	M
	Default, as specified in [SCE-GEN], section xyz

	nonce
	M
	Default, as specified in [SCE-GEN], section xyz

	time
	M
	Default, as specified in [SCE-GEN], section xyz

	certificateChain
	O
	Default, as specified in [SCE-GEN], section xyz

	reqInfo
	M
	Specified below

	signature
	M
	Default, as specified in [SCE-GEN], section xyz


Table X: MoveLRMRightsRequest Message Parameters
The “xsi:type” attribute of <reqInfo> element in Move LRM Rights Request message MUST be set as “roap:MoveLRMRightsReqInfo”. The type of “roap:MoveLRMRightsReqInfo” is defined as below.


<complexType name="MoveLRMRightsReqInfo">
<complexContent>

  <extension base=”gen:RequestInformation”>

   <!--multiple sequences are used when moving to multiple Devices-->
<sequence maxOccurs=”unbounded”>
  <element name=”recipientDeviceId” type=”gen:Identifier”/>

<!--multiple rights are used when moving multiple RO to a single Device-->

         <element name=”lrmRightsInfo” type=”roap:LRMRightsInfo” maxOccurs=”unbounded”/>
</sequence>
</extension>

</complexContent>

</complexType>
<complexType name="LRMRightsInfo">
<sequence>   
<element name="rights" type="o-ex:rightsType"/>
<choice>
<element name="lrm_Signature" type="ds:SignatureType"/>
<element name="ri_for_lrm_Signature" type="ds:SignatureType"/>
</choice>
<element name="stateInfo" type="o-ex:constraintType" minOccurs="0" maxOccurs="unbounded" />
<element name="enc_REK" type="xenc:EncryptedKeyType"/>
  </sequence>
</complexType>
Besides the elements defined in the type gen:RequestInformation, the <reqInfo> element in Move LRM Rights Request message includes one mandatory <recipientDeviceId> element, one or more mandatory <lrmRightsInfo> element.

The <recipientDeviceId> element represents the identifier of the recipient Device, i.e. it is the hash of the public key of recipient Device.
The <lrmRightsInfo> element conveys the information about the Rights that was created by the LRM and is being transferred to the Rights Issuer. 

The <lrmRightsInfo> element includes one mandatory <rights> element, one mandatory <lrmSignature> element or <ri_for_lrm_Signature> element, multiple optional <stateInfo> elements, and one mandatory <enc_REK> element. These child elements are specified as below:
· The <rights> element

The <rights> element is of type o-ex:rightsType specified in [TBD]. It is integrity protected by the LRM if this corresponds to the first Move LRM Rights Request message. It is integrity protected by the RI for all subsequent Move LRM Rights Request messages corresponding to the same initially- LRM-created RO. The LRM ID is present within the <rights> element in either case.
· The <lrm_Signature> element

The <lrm_Signature> element is of ds:SignatureType type. It is the signature over the <rights> element by the LRM who creates the RO that the source Device is attempting to transfer to the Rights Issuer.
· The <ri_for_lrm_Signature> element

The <ri_for_lrm_Signature> element is of ds:SignatureType type. It is the signature over the <rights> element by the RI that handled the first successful Move LRM Rights Request message for the LRM-created RO. All subsequent Move LRM Rights Request messages corresponding to this RO MUST be handled by the same RI.

· The <stateInfo> element

The <stateInfo> element is of o-ex:constraintType type. It can occur for multiple times under <lrmRightsInfo> element. All the <stateInfo> elements together represent the State Information of the RO.

· The <enc_REK> element
The <enc_REK> is of type xenc:EncryptedKeyType.The value of [enc_REK / keyInfo / X509SPKIHash / hash] element is the hash of the public key of the RI, and the value of  [enc_REK / CipherData / CipherValue] is C specified below:

L=AES-WRAP(pairingKey, REK)
K = pairingKeyID | pairingKeyUpdateNumber | L
KEK = KDF(I2OSP(Z, mLenRI), NULL, kekLen) 
C2 = AES-WRAP(KEK, K) 

C1 = I2OSP(RSA.ENCRYPT(PubKeyRI, Z), mLenRI)
C = C1 | C2
Where the KDF() function, the I2OSP() function, the AES-WRAP() function, the RSA.ENCRYPT() function and the kekLen are the same as specified in [DRM2.x], and the mLenRI is the length of the modulus of the RI’s RSA public key in octets, and the Z is a random integer generated by the source Device (who sending the MoveLRMRightsRequest message) based on the modulus of the RI’s RSA public key in the same way as specified in [DRM2.x]. The pairingKey is a secret key known only to the source Device and the recipient Device. 

After receiving C, the RI splits it into C1 and C2 and decrypts C1 using its private key (consisting of a private exponent d and the modulus m), yielding Z:
C1 | C2 = C
c1 = OS2IP(C1, mLen)
Z = RSA.DECRYPT(PrivKeyRI, c1) = c1d mod m
where the function OS2IP() and the function RSA.DECRYPT() are the same as specified in [DRM2.x] . Using Z, the RI can derive KEK, and from KEK unwrap C2 to yield K:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

K = AES-UNWRAP(KEK, C2)
The K is used by the RI to form an <encKey> element in <roPayload> in subsequent RO Acquisition protocol:
· Set the value of the [encKey / keyInfo / X509SPKIHash/hash] element as the hash of the public key of the designated recipient Device.

· Set the value of [encKey / CipherData / CipherValue] as K. 
· Set the value of other elements inside <encKey> element in the same way as specified in [DRM2.x]
After recovering the K, the recipient Device yields REK by using pairingKeyID | pairingKeyUpdateNumber to determine which pairingKey value to use when unwrapping the L:

REK = AES-UNWRAP(pairingKey, L)
The recipient Device MUST reject the Rights Object unless the pairingKeyID is associated with the DEA that corresponds to the LRM that is identified within the <rights> element. pairingKeyID values SHALL be globally unique across all DEA entities.

The recipient Device MUST reject the Rights Object if the pairingKeyUpdateNumber is less than or equal to the largest pairingKeyUpdateNumber that the recipient Device has already used relative to that pairingKeyID. Each successive pairingKey value is computed deterministically from the immediately previous pairingKey value. 

As an example of management of pairingKeys, consider the following: Set the initial pairingKey value to the PairingSecret that is made available to both Devices via a Pairing, where the PairingSecret is specified to be a 128-bit value. Thus the pairingKey value corresponding to pairingKeyUpdateNumber=0, say pairingKey0, is equal to the PairingSecret. The pairingKey value corresponding to pairingKeyUpdateNumber=1, say pairingKey1, equals 128-bit truncation of SHA-1 hash of pairingKey0, The pairingKey value corresponding to pairingKeyUpdateNumber=2, say pairingKey2, equals 128-bit truncation of SHA-1 hash of pairingKey1,… 
Upon receiving the LRM-RICreateRORequest message, the RI MUST verify the signature of the source Device. If the verification is successful, then the RI MUST issue an RO by a subsequent ROAcquisiton Protocol, based on the information about the Rights indicated by the <reqInfo>, to the designated recipient Device. 

5.5.5.2 MoveLRMRightsResponse

The ROAP-MoveLRMRightsResponse message is sent from the Rights Issuer to the Device as a response against ROAP-MoveLRMRightsRequest message. The message is an element of type gen:Response, in which the element are present:

	element / attribute
	usage
	value

	status
	M
	Default, as specified in [GEN], section xyz

	errorMessage
	O
	Default, as specified in [GEN], section xyz

	errorRedirectURL
	O 
	Default, as specified in [GEN], section xyz

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	nonce
	M
	Default, as specified in [GEN], section xyz

	certificateChain
	O
	Default, as specified in [GEN], section xyz

	ocspResponse
	O
	Default, as specified in [GEN], section xyz

	rspInfo
	M
	Specified below

	signature
	M
	Default, as specified in [GEN], section xyz


Table 3: MoveLRMRightsResponse Message Parameters
The “xsi:type” attribute of <rspInfo> element in Move RI Rights Response message MUST be set as “roap:MoveLRMRightsRspInfo”. The type of “roap:MoveLRMRightsRspInfo” is defined as below:

<complexType name="MoveLRMRightsRspInfo">
<complexContent>

    <extension base=”gen:ResponseInformation”>



<sequence maxOccurs=”unbounded”>




               <choice>

                 <element name="success"/>

                 <element name= "failureReason" type= "string"/>
</choice>



</sequence>
      </extension>

    </complexContent>


</complexType>
The <rspInfo> element in Move LRM Rights Response message includes one or more sequences of choice between <success> element and <failureReason> element.

The <success> element indicates the <reqInfo> corresponding to the sequence was successfully processed and the corresponding Rights can be issued to the designated recipient Device.
The <failureReason> element indicates the reason why the <reqInfo> corresponding to the sequence was not successfully processed.
5.5.6 RO Upgrade
5.5.6.1 RO Upgrade Request
The ROAP-ROUpgrade Request message is sent from the Device to the Rights Issuer to request upgrading one or more existing ROs. It is described in the sections below. The message is an element of type gen:Request, in which the element are present:
	element / attribute
	usage
	value

	reqID
	M 
	Default, as specified in [SCE-GEN], section xyz

	resID
	M
	Default, as specified in [SCE-GEN], section xyz

	nonce
	M
	Default, as specified in [SCE-GEN], section xyz

	time
	M
	Default, as specified in [SCE-GEN], section xyz

	certificateChain
	O
	Default, as specified in [SCE-GEN], section xyz

	reqInfo
	M
	Specified below

	signature
	M
	Specified below


Table 1: ROUpgradeRequest Message Parameters
Signature is a digital signature on this message (besides the Signature element itself). The signature method conforms to [DRMDRM].
The “xsi:type” attribute of <reqInfo> element in RO Upgrade Request message MUST be set as “roap:ROUpgradeReqInfo”. The type of “roap:ROUpgradeReqInfo” is defined as below.


<complexType name="ROUpgradeReqInfo">
<complexContent>

  <extension base=”gen:RequestInformation”>



<sequence maxOccurs=”unbounded”>



<element name="existingRights" type="roap:RightsInfo"/>



<element name="upgradeInfo" type="string" minOccurs="0"/>


</sequence>
       </extension>

    </complexContent>


</complexType>

The <reqInfo> element in RO Upgrade Request message includes one or more sequence of one <existingRights> element and optional <upgradeInfo> element, besides the elements defined in the type gen:RequestInformation.

The <existingRights> element includes the information specifies the existing ROs, corresponding state information (if stateful) and REK etc.
The <upgradeInfo> element contains the same textual information in RO Upgrade trigger. With this element included in the request message, the RI can determine that the user has confirmed his/her request about upgrading RO made in previous browsing session. 
If there was preceding ROAP-ROUpgrade Trigger and its roRequested attribute value was ‘true’, or the request message is sent without preceding ROAP-ROUpgrade Trigger, The <existingRights> element of type roap:Rights SHALL include <rights> and <signature> elements. For the detail of RightsInfo type, please refer to section 5.4.1.

5.5.6.2 RO Upgrade Response
The ROAP-ROUpgradeResponse message is sent from the Rights Issuer to the Device in response to a ROAP-ROUpgradeRequest message. The message is an element of type gen:Response, in which the element are present:
	element / attribute
	usage
	value

	status
	M
	Default, as specified in [GEN], section xyz

	errorMessage
	O
	Default, as specified in [GEN], section xyz

	errorRedirectURL
	O 
	Default, as specified in [GEN], section xyz

	reqID
	M
	Default, as specified in [GEN], section xyz

	resID
	M
	Default, as specified in [GEN], section xyz

	nonce
	M
	Default, as specified in [GEN], section xyz

	certificateChain
	O
	Default, as specified in [GEN], section xyz

	ocspResponse
	O
	Default, as specified in [GEN], section xyz

	rspInfo
	M
	Specified below

	signature
	M
	Specified below


Table 2: ROUpgradeResponse Message Parameters
Signature is a digital signature on this message (besides the Signature element itself). The signature method conforms to [DRMDRM].
The “xsi:type” attribute of <rspInfo> element in RO Upgrade Response message MUST be set as “roap:ROUpgradeRspInfo”. The type of “roap:ROUpgradeRspInfo” is defined as below:

<complexType name="ROUpgradeRspInfo">
<complexContent>

    <extension base=”gen:ResponseInformation”>



<sequence>




<element name="upgradeResult" type="roap:UpgradeResult" maxOccurs="unbounded"/>



</sequence>
      </extension>

    </complexContent>


</complexType>
<complexType name="UpgradeResult">

<complexContent>
<sequence>

<element name="existingROID" type="ID"/>
<choice>
<element name="newRO" type="roap:ProtectedRO"/>

<element name="failureReason" type="string"/>
</choice>
</sequence>
</complexContent>
</complexType>

The <rspInfo> element in RO Upgrade Response message includes one or more <upgradeResult> element, besides the elements defined in the type gen:ResponseInformation.

The <upgradeResult> element contains existingROID and either newRO (of roap:ProtectedRO type) or failureReason. If the RO corresponding existingROID is successfully upgraded, then it is newRO that accompanies existingROID, else it is reason that accompanies existingROID. The newRO carries upgradedRO.
6. Moving Rights via Rights Issuer

All Connected Devices SHALL support Moving Rights via Rights Issuer. The protocol implementation is required only for the Source Device, and the Recipient Device simply uses existing RO Acquisition Protocol in [DRMDRM]. Moving Domain Rights Object and Parent Rights Object is beyond the scope of this protocol.

6.1 Installation of Movable Rights Object

A Rights Issuer can specify if the Rights Object can be moved via the Rights Issuer. Such Rights Object MUST include “move” permission in the <rights> element as specified in [SCE-REL], and MUST include digital signature, <signature> element, which is calculated over the <rights> element inside.

During installation of the Rights Object, if “move” permission is present in <rights> element, DRM Agent SHOULD store the <ro> element and RO Encryption Key, KREK into secure storage. The DRM Agent MUST be able to restore <rights>, <signature> elements and RO Encryption Key. It is RECOMMENDED for the DRM Agent to store a binary equivalent of the <roap:protectedRO> element into the Rights Object container box of the corresponding (P)DCF.

6.2 Sending MoveRightsRequest

MoveRights Protocol can be initiated either by receiving ROAP-MoveRightsTrigger or by user interaction with the Device e.g. the user of the Source Device can select Rights to move using built-in menu in the phone.

For sending ROAP-MoveRightsRequest message, the DRM Agent MUST:

· Let the user select Rights Objects to move. This step is beyond the scope of this specification.

· Make the selected Rights Objects disabled state.

· Construct <rightsInfo> element. (For detail, see the section 5.4.1)

· Generate the request message using the <rightsInfo> element, and attach <signature> element which is generated according to [DRMDRM].

The DRM Agent sends the request message generated in above step to the roapURL in the previous trigger message. If there was no previous trigger, the DRM Agent sends the requested messge to the riURL which is stored in the RI Context.

If any error occurred during sending the request message, the DRM Agent MAY resend the message in best effort manner. How many times the DRM Agent retries is left to implementation. In case of final failure, the DRM Agent must set the Rights Object enabled state.

If any error occurred during sending the request message, the DRM Agent MUST make the Rights Object enabled state and MAY resend the message in best effort manner.
6.3 Processing MoveRightsRequest

If the RI receives a MoveRightsRequest message, the RI MUST process the request message and respond with an appropriate MoveRightsResponse message. To process the MoveRightsRequest message, the RI MUST:

· Check if it has valid Device Context with the Device sending the request message by checking the value of <deviceID> element of the ROAP-MoveRightsRequest message. If the Device Context is unavailable or invalid e.g. expired, the RI MUST respond with NotRegistered error.

· Verify the <signature> element in the request message. The signature verification conforms to [DRMDRM]. If the verification is not successful, the RI MUST respond with appropriate error i.e. SignatureError, NoCertificateChain, InvalidCertificateChain or TrustedRootCertificateNotPresent. 

· Check the value of <time> element in the request message. Processing of the value of <time> element conforms to [DRMDRM]. If the DRM Agent has invalid DRM Time, the RI MUST respond with DeviceTimeError error.

· Verify the <rightsInfo> element in the request message. (For detail, see the section 5.3.1)
· If all above steps were successful, respond with a MoveRightsResponse message that contains the <status> element that has “success” value.
· Generate Rights Object(s) cryptographically bound to the Recipient Device, based on the received Rights Objects and their corresponding State Informations.
When the RI generates the Rights Object(s) for the recipient Device, the RI SHALL modify constraints value from the received Rights Object, with incorporating state information in the request message. If the Rights Object has “count” constraint under “move” permission, the RI SHALL decrease the value of the <o-dd:count> element under “move” permission by 1. After modifying constraint values in the <rights> element in the received Rights Object, the RI MUST add a <signature> element which contains signature value over the <rights> element. The Rights Issuer SHALL use new RO Encryption Key to encrypt Content Encryption Key when the Rights Issuer generates the Rights Object for the Recipient Device.

· Conducts a typical 1-pass or 2-pass RO acquisition protocol ([DRMDRM]). In case of 2-pass RO acquisition protocol, the RI sends an ROAP trigger to the recipient device in order to instruct the recipient device to notify to download the Rights Object generated by RI which is based on the one previously transferred from the source device.
If RI failed to issue the Rights Objects to the Recipient Device, RI may re-generate the Rights Object(s) for the Source Device as same way to generate Rights Object for the Recipient Device.
6.4 Processing MoveRightsResponse

When a DRM Agent receives a MoveRightsResponse message, the DRM Agent MUST:

· Check if <deviceID>, <riID>, <nonce> elements are same with previous request message. If any of these does not match, the DRM Agent regards error condition is met.

· Verify <signature> element in the message. If the verification is failed, the DRM Agent regards error condition is met.

If the status in the response message is success, the DRM Agent MUST:

· In case of move of full Rights, remove the corresponding Rights Objects and (and their State Information if present) which were identified in the request message.

· In case of move of partial Rights, enable the corresponding Rights Objects and update their State Information by amount of transferred rights. E.g. if 3 counts were originally remained and 1 count was transferred to RI, then the DRM Agent decrements the State Information to be 2 counts.

· If the Post Response URL extension is present, the DRM Agent MUST send an HTTP GET request to the URL specified in the value of the <prURL> element of this extension at the first available opportunity. If the request fails with error code 404 Not Found [RFC2616], the Device SHOULD NOT make further requests to the URL. If the request fails with some other error, the Device MAY retry the request at a later time.
If the status in the response message is error or underlying transport protocol has error, the DRM Agent MUST:

· Make the corresponding Rights Objects enabled state.

· Handle error according to [DRMDRM], in case where the status in the response message is error.

7. Upgrading Rights

ROAP-ROUpgrade protocol enables a Device to obtain from Rights Issuer additional permissions for an existing RO which does not have these permissions. For example, if a user owns an RO which does not include <move> permission and hence is not allowed to be Moved directly to another Device, then by ROAP-ROUpgradeProtocol,  the user can obtain from the Rights Issuer a <move> permission for this RO. Under the control of the <move> permission, the RO and its State Information can be Moved directly between Devices. 

How the message in this protocol is sent and processed is described in the sections below.
7.1 Sending ROUpgradeRequest

The ROUpgrade protocol MAY be initiated by a RO Upgrade trigger. When a Device receives a RO Upgrade trigger, it constructs a ROUpgradeRequest message as per the trigger:
· The <trgROUpgrade> element MAY carry <roID> element.

·  If <trgROUpgrade> element carries one or more <roID> elements, it means that which RO(s) to be Upgraded is specified by RI and hence the Device SHALL NOT request for Upgrading any other RO than is specified by <roID> element(s).
· Else it means that which RO to be Upgraded is not specified by the RI and the Device MAY request for Upgrading any valid RO the user wants to Upgrade.
· The <trgROUpgrade> element MAY carry <upgradeInfo> element.

· If it is present, the Device SHALL put it into roUpgradeRequest element in  ROAP-ROUpgradeRequest message
· The <trgROUpgrade> element MAY carry a "roRequested" attribute. 

· If the value of this attribute is not present or is set as "true", it means the Device who receives RO Upgrade trigger SHALL put <rights> element and <signature> element related to existing RO(s) that it attempts to Upgrade into <existingRights> element (of roap:RightsInfo type) in ROAP-ROUpgradeRequest message.

· Else the Device SHALL not put <rights> element and <signature> element into <existingRights> element in ROAP-ROUpgradeRequest message. 
The ROUpgrade protocol MAY also be intiated without RO Upgrade trigger. For example, the user can operate on some UI (User Interface) to initiate an upgrade for an existing RO. In this case, the Device MUST include the original RO that it is attempting to Upgrade into ROUpgrade Request message. During the construction of the ROUpgradeRequest message, the Device MAY form <upgradeInfo> element according to the user’s operation on some UI (User Interface). What the UI is and how the user operates on it to designate what additional permission he/she needs is out of scope of OMA DRM.
For sending ROAP-ROUpgradeRequest message, the Device MUST:

· Disable the RO that it attempts to Upgrade. 
If any error occurred during sending the request message, the Device MAY resend the message in best effort manner.
7.2 Processing ROUpgradeRequest

To process the ROUpgradeRequest message, the RI MUST:

· Check if it has valid Device Context with the Device that sends the ROUpgradeRequest message. If RI finds that the Device Context corresponding to the <deviceID> element of the ROAP-ROUpgradeRequest message is unavailable or invalid e.g. expired, it MUST respond with NotRegistered error. RI MAY form a <reason> element that includes the textual reason for this failure and put it into the response message.
· Verify the Device’s signature on the whole message, using the last <signature> element in the message. The signature verification conforms to [DRMDRM]. If the verification is not successful, the RI MUST respond with SignatureError error. RI MAY form a <reason> element that includes the textual reason for this failure and put it into the response message
· Check the value of <time> element in the request message. Processing of the value of <time> element conforms to [DRMDRM]. If the RI detects that the DRM Agent has invalid DRM Time, the RI MUST respond with DeviceTimeError error. RI MAY form a <reason> extension that includes the textual reason for this failure and put it into the response message
· Verify the RI’s signature on the <rights> element in the request message, using the <signature> element under the <rightsInfo> element. The verification must include the step for checking whether the signature was generated by the RI. If the verification fails, the RI MUST respond with UnknownRO error. RI MAY form a <reason> extension that includes the textual reason for this failure and put it into the response message
· If any <stateInfo> element is supplied under the <rightsInfo> element in the request message, check whether the State Information, indicates that the Rights is still available for the Device that sends the request message, in case the additional permission is about sharing (e.g. Move or Copy) permission. If RI finds the Rights is already not available for the Device, then the RI MUST respond with InvalidRO error. RI MAY form a <reason> extension that includes the textual reason for this failure and put it into the response message
If all the above checks or verifications are successful, then the RI MUST respond with a ROUpgradeResponse message that contains:
·  <status> element with “success” value. 

· new protected ROs that include the Rights indicated by the original RO and corresponding State Information (if exists) and the information of Rights indicated by the <upgradeInfo>.
7.3 Processing ROUpgradeResponse

To process ROUpgradeResponse message, the Device MUST verify the RI’s signature on the response message.

· If the verification succeeds, then the Device MUST check the status in the response message. 

· If the status equals “Success”, then the Device MUST remove permanently the disabled RO specified in section 7.1 and install the new RO included in the response message.

· If the status does not equal “Success”, then the Device MUST re-enable the disabled RO specified in section 7.1.

If the verification fails, then the Device MUST discard the response message, and the Device MAY leave the disabled RO specified in section 7.1 as it is and re-send the ROUpgradeRequest.
8. State Information Format

9. Transport Mapping

9.1 Overview

9.2 HTTP Transport Mapping

9.2.1 Multiple ROs Acquisition Triggered by DCF Headers

[image: image5.emf]Device 1Device 2Rights Issuer

Content DCFs

RO Request

RO Response

HTTP Post

ROAP Trigger


Figure XX: Multiple ROs Acquisition Triggered by DCF Headers
In this case multiple DCFs are superdistributed to a Device, and the DRM Agent uses DCF headers to initiate a ROAP transaction and download multiple Rights Objects.

· A user receives multiple DCFs from another Device, e.g. through MMS, peer-to-peer, removable media, or some other transfer mechanism.

· If multiple DCFs contains the same BatchRIURL header, then the DRM Agent attempts to send a ROAP Trigger request to the RI. If the DRM Agent has an existing RI Context for the Rights Issuer, then the DRM Agent may send an HTTP Post to the BatchRIURL. 

The DRM Agent sends an HTTP Post to the URL specified by the BatchRIURL header.  POST /ro.cgi

Host: www.acme.com
cid1=qw683hgew7d

cid2=qw724eldw5d

· The Rights Issuer returns an HTTP response containing a ROAP Trigger.

HTTP 1.1 200 OK



 Server: CoolServer/1.3.12 

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap-trigger+xml

... [ROAP Trigger] ...

· The ROAP Trigger is used by the DRM Agent on the Device to initiate a ROAP session to download multiple Rights Objects. The POST includes a ROAP-RORequest PDU in the HTTP request body.

POST http://www.acme.com/ro.cgi
 Host: www.acme.com 

 User-Agent: CoolPhone/1.4 

 Accept: application/vnd.oma.drm.roap-pdu+xml, multipart/related 

 Accept-Charset: utf-8

 Content-Length: 125

 Content-Type: application/vnd.oma.drm.roap-pdu+xml

... [ROAP PDU] ...

A previously established RI Context is assumed in the example. If this were not the case, then the ROAP-RORequest would be preceded by a ROAP-Registration transaction.

· The Rights Issuer returns an HTTP response containing a ROAP-ROResponse PDU in the HTTP response body.

HTTP 1.1 200 OK
 Server: CoolServer/1.3.12 

 Content-Length: 986 

 Content-Type: application/vnd.oma.drm.roap-pdu+xml

... [ROAP PDU] ...

10. Key Management

10.1 Key Transport Mechanisms

10.1.1 Distributing KMAC and KREK under a RI Public Key
This section applies when encrypt RO Encryption Key and MAC Key.

KMAC and KREK are each 128-bit long keys generated randomly by the sender. KREK ("Rights Object Encryption Key") is the wrapping key for the content-encryption key KCEK in Rights Objects. KMAC is used for key confirmation of the message carrying KREK.

The asymmetric encryption scheme RSAES-KEM-KWS shall be used with the AES-WRAP symmetric-key wrapping scheme to securely transmit KMAC and KREK to a recipient RI using the RI's RSA public key. An independent random value Z shall be chosen for each encryption operation. For the AES-WRAP scheme, KMAC and KREK are concatenated to form K, i.e.:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

C2 = AES-WRAP(KEK, KMAC | KREK)

C1 = I2OSP(RSA.ENCRYPT(PubKeyRI, Z), mLen)

C = C1 | C2
where kekLen shall be set to 16 (128 bits) and mLen is the length of the modulus of the RI’s RSA public key in octets. In this way, AES-WRAP is used to wrap 256 bits of key data (KMAC | KREK) with a 128-bit key-encryption key (KEK).

After receiving C, the RI splits it into C1 and C2 and decrypts C1 using its private key (consisting of a private exponent d and the modulus m), yielding Z:

C1 | C2 = C

c1 = OS2IP(C1, mLen)

Z = RSA.DECRYPT(PrivKeyRI, c1) = c1d mod m
where OS2IP converts an octet string to a nonnegative integer and is defined in [PKCS-1].

Using Z, the RI can derive KEK, and from KEK unwrap C2 to yield KMAC and KREK.:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

KMAC | KREK = AES-UNWRAP(KEK, C2)

The following URI shall be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsaes-kem-kdf2-kw-aes128
11. Security Considerations
11.1 Replay Protection of Stateless Rights Object (Normative)

The replay cache specified in DRM 2.1 is only applied to stateful ROs. The same replay protection mechanism SHALL be applied to stateless ROs with Move permission if acquired through methods other than 2-pass RO Acquisition and Move protocols.
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	
	
	

	
	
	


A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	OMA-TS-SCE_DRM-V1_0-20061222-D
	22 Dec 2006
	
	Initial Version

	OMA-TS-SCE_DRM-V1_0-20070423-D
	23 Apr 2007
	
	OMA-DRM-2007-0029R02-CR_Replay_Attack_Protection_in_SCE
OMA-DRM-2007-0113R01-CR_SCE_DRM_TS_Ref_and_Terms
OMA-DRM-2007-0138R02-CR_SCE_TS_Move_Rights_via_RI_Overview
OMA-DRM-2007-0154R01-CR_RO_Upgrade_Spec
OMA-DRM-2007-0167R02-CR_SCE_TS_ROAPMoveRightsTrigger

	OMA-TS-SCE_DRM-V1_0-20070904-D
	04 Sep 2007
	
	OMA-DRM-2007-0370R02-CR_SCE_TS_ROAP_RightsInfo_type
OMA-DRM-2007-0251R03-CR_SCE_TS_ROAP_MoveRights

	OMA-TS-SCE_DRM-V1_0-20071004-D
	04 Oct 2007
	
	OMA-DRM-2007-0260R03-CR_SCE_TS_ROAP_ROUpgrade
OMA-DRM-2007-0273R02-CR_Move_LRM_Rights_via_RI

	OMA-TS-SCE_DRM-V1_0_20071122-D
	22 Nov 2007
	
	OMA-DRM-2007-0354R02-CR_TS_SCE_DRM_Multiple_RO_Acquisition
OMA-DRM-2007-0411R01-CR_SCE_ROAP_MoveRights_prURL
OMA-DRM-2007-0535R01-CR_SCE_DRM_Clerical_Error_in_ROUpgrade
OMA-DRM-2007-0542-CR_SCE_DRM_Clerical_error_in_MoveRights
OMA-DRM-2007-0520R02-CR_SCE_DRM_TS_fix

	OMA-TS-SCE_DRM-V1_0_20080218-D
	18 Feb 2008
	
	OMA-DRM-2008-0019R01-CR_Details_of_Move_LRM_RO_via_RI_protocol


Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

The following is a model of a set of SCR tables.  DELETE THIS COMMENT

B.1 SCR for XYZ Client

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF


B.2 SCR for XYZ Server

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF


Appendix C. Example (Informative)

C.1 ROAP Examples

C.1.1 Move Rights Trigger

<roap:roapTrigger

  xmlns:roap="urn:oma:bac:dldrm:roap-1.0"

  xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

  xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

version="1.x
">

  <extendedTrigger id="de32r23r5" type="moveRights">

    <riID>

      <keyIdentifier xsi:type="roap:X509SPKIHash">

        <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

     </keyIdentifier>

    </riID>

    <nonce>MTIzNDU2Nzg5MA==</nonce>

<roapURL>http://ri.example.com/ro.cgi?tid=qw683hgew7e</roapURL>

<moveRightsTrigger roRequested="true" />

</extendedTrigger>

</roap:roapTrigger>
C.1.2 RO Upgrade Trigger

TBD
Appendix D. <Additional Information>





�This value needs to be revised after conclusion of version. 



( 2006 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060925-I]
( 2006 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060925-I]

_1241887410.vsd
�

�

1�

Source Device

Rights Issuer


OCSP Responder


OCSP Request


MoveLRMRightsRequest


MoveLRMRightsResponse



_1241887411.vsd
�

�

1�

Source Device

Rights Issuer


OCSP Responder


OCSP Request


MoveRIRightsRequest


MoveRIRightsResponse



_1248760306.vsd
Device 1


Device 2


Rights Issuer


Content DCFs


RO Request


RO Response


HTTP Post


ROAP Trigger



_1237795123.vsd
�

�

1�

Device

Rights Issuer

OCSP Responder


ROUpgradeRequest


OCSP Request


OCSP Response


ROUpgradeResponse



