[image: image1.jpg]«“+OMa

Open Mobile Alliance

OMA-DS-DataObjEmail-V1_2-20040115-D
Page 12 V(28)

	Email data object specification

Draft Version 1.2 – 15 Jan 2004

	

	Open Mobile Alliance

OMA-DS-DataObjEmail-V1_2-20040115-D

	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
5.
XML Usage
9
5.1
XML Namespaces
9
5.2
XML Attributes
9
5.3
WBXML
9
6.
MIME Usage
9
7.
Data types
10
7.1
datetime
10
7.2
bool
10
7.3
text
11
7.4
int
11
8.
Mark-up Language Description
13
8.1
Email
13
8.2
read
13
8.3
forwarded
13
8.4
replied
13
8.5
received
13
8.6
created
14
8.7
deleted
14
8.8
flagged
14
8.9
RFC2822body
14
8.10
Extension fields
15
8.10.1
Unique naming
15
8.10.2
Ext
15
8.10.3
XNam
15
8.10.4
XVal
16
9.
DTD
17
10.
SyncML Data Synchronization Usage
18
10.1
CTCap
18
10.1.1
texttype
19
10.1.2
attachtype
19
10.2
Data Sync Record and Field Level Filtering
19
10.2.1
Email Media Object Filter
19
10.3
Email object replace example
25
11.
Change History (Informative)
27
A.1
Approved Version History
27
A.2
Draft/Candidate Version 0.7 History
27
Appendix B
<Additional Information>
28

Tables

20Table 1 search keywords

1. Scope

The email data object is presented in this document. The content-specific aspects of synchronization (filtering keywords, etc…) are listed and clarified.

2. References

2.1 Normative References

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
URL:http://www.ietf.org/rfc/rfc2119.txt

	[XML]
	“Extensible Markup Language (XML) 1.0”, World Wide Web Consortium Recommendation, URL:http://www.w3.org/TR/REC-xml

	[RFC2045]
	“Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies”, N. Freed & N. Borenstein, November 1966, URL:http://www.ietf.org/rfc/rfc2045.txt

	[WBXML]
	“WAP Binary XML Content Format Specification.” WAP Forum.

URL:http://www1.wapforum.org/tech/terms.asp?doc=WAP-192-WBXML-20010725-a.pdf

	[RFC2822]
	“Internet Message Format”. P. Resnick, Editor. April 2001
URL:http://www.ietf.org/rfc/rfc2822.txt

	???
	Reference the SyncML itself and the filtering part

	[X.400]
	Hardcastle-Kille, S., "Mapping between X.400(1988) / ISO 10021 and RFC 822", RFC 1327, May 1992.

2.2 Informative References

	
	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Data type
	The schema used to represent a data object (e.g., text/calendar MIME content type for an iCalendar representation of calendar information or text/directory MIME content type for a vCard representation of contact information).

3.3 Abbreviations

	OMA
	Open Mobile Alliance

4. Introduction

The email data object can be used to represent an interpersonal electronic mail object.

5. XML Usage

The email objects are represented in a mark-up language defined by [XML]. The email is an XML application. The email DTD (Document Type Definition) defines the XML document type used to represent email object. The mail DTD can be found in Section 9, but it is not necessary to read the DTD in order to understand it.

Email objects are specified using well-formed XML. However, the email need not be valid XML. That is, the email objects do not need to specify the XML declaration or prolog. They only need to specify the body of the XML document. This restriction allows for the email objects to be specified with greater terseness than well-formed, valid XML documents.

5.1 XML Namespaces

Email objects to date have no elements that may include elements of the other namespaces.

5.2 XML Attributes

In order to simplify the implementation of the email on small devices, the email objects have been intentionally designed to use the XML elements only. Currently no XML attributes are being defined for email objects.
5.3 WBXML

XML can be viewed as more verbose than alternative binary representations. This is often cited as a reason why it may not be appropriate for low bandwidth network protocols. In most cases, email uses shortened element type. This provides a minor reduction in verbosity.

Additionally, the email objects can be encoded in a tokenized, binary format defined by [WBXML]. The use of [WBXML] format is external to specification of the email and should be transparent to any application. The combination of the use of shortened element type names and an alternative binary format makes email competitive, from a compressed format perspective, with alternative, but private, binary representations.

6. MIME Usage

The [RFC2045] Internet standard provides an industry-accepted mechanism for identifying different content types. The email object is identified by a MIME media type. The application/vnd.omads-email MIME content type MUST be used to indicate the email object wherever such indication is required.
7. Data types

The following basic data type definitions are provided for referencing from other parts of this document.
7.1 datetime

Usage: This value type is used to identify values that specify a precise calendar date and time of day.

Description:

The datetime data type is used to identify values that contain a precise calendar date and time of day. The format is based on the [ISO 8601] complete representation, basic format for a calendar date and time of day. The text format is a concatenation of the "date", followed by the LATIN CAPITAL LETTER T character (US-ASCII decimal 84) time designator, followed by the "time" format.

The datetime data type expresses time values in two forms:

The form of date and time with UTC offset MUST NOT be used. For example, the following is not valid for a date-time value:

	...
<datefield>19980119T230000-0800</datefield> <!-- Invalid time format -->
...

FORM #1: DATE WITH LOCAL TIME

The date with local time form is simply a date-time value that does not contain the UTC designator nor does it reference a time zone. For example, the following represents January 18, 1998, at 11 PM:

	...
<datefield>19980118T230000</datefield> <!-- January 18, 1998, 11 PM -->
...

This notation of datetime type is to be used by devices that have no knowledge of the time zone in which they operate. In this case, the datetime value that is being transferred is usually the same as the value that is being stored and shown to the user in the application UI.

FORM #2: DATE WITH UTC TIME

The date with UTC time, or absolute time, is identified by a LATIN CAPITAL LETTER Z suffix character (US-ASCII decimal 90), the UTC designator, appended to the time value. For example, the following represents January 19, 1998, at 0700 UTC:

	...
<datefield>19980119T070000Z</datefield> <!-- January 19,1998,07:00 UTC -->
...

7.2 bool

Usage: To be used for Boolean type fields

Restrictions: A text value that MUST be either “true” to indicate Boolean “true” or “false” to indicate “false”. If the field is not present its value is assumed to be “0”.

Example:

	...

<booleanfield>true</booleanfield> <!-- the field is set to “true” -->

...

7.3 text

Usage: To be used for textual fields

Restrictions: If the field is not present its value is assumed to be an empty string.

Example:

	...

<textfield>Hello World!</textfield>

...

7.4 int

Usage: To be used for integer numeric fields.

Restrictions: The format for the integer values is defined here in an ABNF notation [RFC2234].
	nonzero-digit = "1"/ "2"/ "3"/ "4"/ "5"/ "6"/ "7"/ "8"/ "9"
octal-digit = "0"/ "1"/ "2"/ "3"/ "4"/ "5"/ "6"/ "7"
hexadecimal-digit = "0"/ "1"/ "2"/ "3"/ "4"/ "5"/ "6"/ "7"/ "8"/ "9"
/ "a"/ "b" / "c"/ "d"/ "e"/ "f"
/ "A"/ "B"/ "C"/ "D"/ "E"/ "F"
decimal-constant = nonzero-digit *("0" / nonzero-digit)

hexadecimal-constant = ("0x" / "0X") 1*hexadecimal-digit

octal-constant = "0" 1*octal-digit

integer-value = *1("+" / "-") (decimal-constant / hexadecimal-constant / octal-constant)

Example:

	...

<negativevalue>-1234</negativevalue>

<positivevalue>1234</positivevalue>

<anotherpositivevalue>+0xfffabc5</anotherpositivevalue>

<octal>010</octal> <!-- octal value equivalent to decimal 8 -->

...

8. Mark-up Language Description

8.1 Email

Usage: Indicates the beginning of the object

Parent elements: None

Content model:

	<!ELEMENT Email (read?, forwarded?, replied?, received?, created?, deleted?, flagged?, RFC2822body?, Ext*)>

8.2 read

Usage: Specifies whether the email has been read

Parent elements: Email

Restrictions: bool type field as specified in [DODT].

Content model:

	<!ELEMENT read (#PCDATA)>

8.3 forwarded

Usage: Specifies whether the email has been forwarded

Parent elements: Email

Restrictions: bool type field as specified in [DODT].

Content model:

	<!ELEMENT forwarded (#PCDATA)>

8.4 replied

Usage: Specifies whether the email has been replied

Parent elements: Email

Restrictions: bool type field as specified in [DODT].

Content model:

	<!ELEMENT replied (#PCDATA)>

8.5 received

Usage: Specifies the date and time when the email was received

Parent elements: Email

Restrictions: datetime type field as specified in [DODT].

Content model:

	<!ELEMENT received (#PCDATA)>

8.6 created

Usage: Specifies the date and time when the email was created

Parent elements: Email

Restrictions: datetime type field as specified in [DODT].

Content model:

	<!ELEMENT received (#PCDATA)>

8.7 deleted

Usage: Specifies whether the email has been scheduled for deletion

Parent elements: Email

Restrictions: bool type field as specified in [DODT].

Content model:

	<!ELEMENT deleted (#PCDATA)>

8.8 flagged

Usage: Specifies whether the email has been flagged

Parent elements: Email

Restrictions: bool type field as specified in [DODT].

Content model:

	<!ELEMENT flagged (#PCDATA)>

8.9 RFC2822body

Usage: contains the email header and body as specified in RFC822 / RFC2822

Parent elements: Email

Restrictions: The supporters MUST implement this property. If the field is not present within the object, the object is assumed to have an empty body.

Content model:

	<!ELEMENT RFC2822body (#PCDATA)>

8.10 Extension fields
8.10.1 Unique naming

If an extension field is required, the following naming convention MUST be followed in order to prevent undesirable field name collisions.
x-name
= "x-" vendorid "-" 1*(ALPHA / DIGIT / "-")
;field name
vendorid
= 3*(ALPHA / DIGIT)

;Vendor identification

ALPHA
= %x41-5A / %x61-7A

; A-Z / a-z
DIGIT
= %x30-39

; 0-9
8.10.2 Ext

Usage: Specifies the non-standard, experimental extensions supported by the device. The extensions are specified in terms of the XML element type name and the value.

Parent Elements: Email

Restrictions: The Ext element type MUST specify the extension element name. It may also specify one or more enumerated values. Multiple non-standard extensions can be specified by specifying the Ext element type multiple times. This element type is optional.

Content Model:
	Ext (XNam, XVal*)

Attributes: None.

Example: The following example specifies a non-standard extension, named "CliVer" for a fictitious company, Foo, which takes values of "5.0", "5.01" or "5.02".
	<Ext>

<XNam>x-Foo-CliVer</XNam>

<XVal>5.0</XVal>

<XVal>5.01</XVal>

<XVal>5.02<XVal>

</Ext>

8.10.3 XNam

Usage: Specifies the name of one of the extension element types.

Parent Elements: Ext

Restrictions: The element type is required whenever an Ext element is present.

Content Model:

	XNam (#PCDATA)

Attributes: None.

Example:
	<Ext>
 <XNam>x-Foo-CliVer</XNam>
 <XVal>5.0</XVal>
 <XVal>5.01</XVal>
 <XVal>5.02<XVal>
</Ext>

8.10.4 XVal

Usage: Specifies one of the valid values for an extension element type.

Parent Elements: Ext

Restrictions:
Content Model:

	XVal (#PCDATA)

Attributes: None.

Example:
	<Ext>
 <XNam>x-Foo-CliVer</XNam>
 <XVal>5.0</XVal>
 <XVal>5.01</XVal>
 <XVal>5.02<XVal>
</Ext>

9. DTD

	<!--

application/vnd.omads-email V1.2 Document Type Definition

http://www.openmobilealliance.org/tech/DTD/OMA-DS-DataObjEmail-DTD-V1_2.dtd
Copyright Open Mobile Alliance Ltd., 2002-2003

 All rights reserved

Terms and conditions of use are available from the

Open Mobile Alliance Ltd. web site at

http://www.openmobilealliance.org/useterms.html-->

<?xml version="1.0" encoding="UTF-8"?>

<!-- Root Element -->

<!ELEMENT Email (read?, forwarded?, replied?, received?, created?, deleted?, flagged?, RFC2822body?, Ext*)>

<!ELEMENT read (#PCDATA)>

<!ELEMENT forwarded (#PCDATA)>

<!ELEMENT replied (#PCDATA)>

<!ELEMENT received (#PCDATA)>

<!ELEMENT created (#PCDATA)>

<!ELEMENT deleted (#PCDATA)>

<!ELEMENT flagged (#PCDATA)>

<!ELEMENT RFC2822body (#PCDATA)>

<!ELEMENT Ext (XNam, XVal*)>

<!ELEMENT XNam (#PCDATA)>

<!ELEMENT XVal (#PCDATA)>
<!-- End of DTD Definition -->

10. SyncML Data Synchronization Usage

The following sections describe the content-specific recommendations for using the SyncML protocol with email data objects.

10.1 CTCap

	<CTCap>

<CTType> application/vnd.omads-email</CTType>

<Property>

<PropName>read</PropName>

<DataType>bool</DataType>

<DisplayName>Read</DisplayName>

</Property>

<Property>

<PropName>forwarded</PropName>

<DataType>bool</DataType>

<DisplayName>Forwarded</DisplayName>

</Property>

<Property>

<PropName>replied</PropName>

<DataType>bool</DataType>

<DisplayName>Replied</DisplayName>

</Property>

<Property>

<PropName>received</PropName>

<DataType>datetime</DataType>

<DisplayName>Date received</DisplayName>

</Property>

<Property>

<PropName>created</PropName>

<DataType>datetime</DataType>

<DisplayName>Date created</DisplayName>

</Property>

<Property>

<PropName>RFC2822body</PropName>

<DataType>bin</DataType>

<DisplayName>RFC2822body</DisplayName>

<PropParam>

<ParamName>texttype</ParamName>

<ValEnum>text/plain</ValEnum>

<ValEnum>text/html</ValEnum>

</PropParam>

<PropParam>

<ParamName>attachtype</ParamName>

<ValEnum>image/jpeg</ValEnum>

<ValEnum>image/tiff</ValEnum>

</PropParam>

</Property>

</CTCap>

10.1.1 texttype
This PropParam specifies which content types are recognised for textual part of the message. If no enumeration values specified, means that all types are allowed. If texttype is not present within the CTCap, means that textual information is not required by the sender. This particular case is useful for scenarios in which sender chooses to sync only limited information for the messages (e.g. RFC2822 headers only).
10.1.2 attachtype
This PropParam specifies which content types are recognised for attached objects. If no enumeration values specified, means that all types are allowed. If attachtype is not present within the CTCap, means that attachment objects are not required by the sender. This particular case is useful for scenarios in which sender chooses to sync only limited information for the messages (e.g. RFC2822 headers only).
10.2 Data Sync Record and Field Level Filtering

10.2.1 Email Media Object Filter
Filtering for email objects can be specified using both Record and Field elements.

In the case of Record elements, the set of recommended keywords to support are as follows:

	ct-filter-keyword = email-field | search-keyword

10.2.1.1 email-field
	email-field = <Any field that is defined for the application/vnd.omads-email content type in this document except for the RFC2822body field>

10.2.1.2 search-keyword

In addition to the actual email fields defined in this document, the following set of keywords is recommended to be supported so that they can be specified in a filtering query to limit the amount of items. The types of values to be used with these keywords are described in [DODT].
	Keyword
	Interpretation
	ct-filter-value Type

	BCC
	Contents of the [RFC2822] “Bcc:” destination address field
	text

	CC
	Contents of the [RFC2822] “Cc:” destination address field
	text

	FROM
	Contents of the [RFC2822] “From:” originator field
	text

	IMPORTANCE
	The case-insensitive values "low", "normal" and "high" are allowed as specified by the RFC 1327 [X.400].
	text

	NOATTACH
	Item does not contain attachments
	bool

	NOBODY
	Item does not contain [RFC2822] body (i.e. item is an empty message with only [RFC2822] header fields defined)
	bool

	SIZE
	The number of octets in the content of RFC2822body field
	int

	SUBJECT
	Contents of the [RFC2822] “Subject:” informational field
	text

	TO
	Contents of the [RFC2822] “To:” destination address field
	text

Table 1 search keywords

10.2.1.3 Example 1: Record filtering
In this scenario, the client wishes to synchronize unseen email messages that have been received since June 1, 2003.

1. During the initial sync, the client and server exchange their device info.

2. The client analyses the server’s device info, and the client notes that the server supports receiving filters on the Email data store for queries using the “syncml:filtertype-cgi” grammar.

a. The server includes in its device info the Filter-Rx and FilterCap elements that it supports. This includes the “IMPORTANCE” and “created” keywords.

b. The client doesn’t require filtering on any additional fields, so it determines that this server supports the filter it wishes to send.

	<Datastore>

 <SourceRef>./email/inbox</SourceRef>

 <DisplayName>Email Inbox</DisplayName>

 ...

 <Filter-Rx>

 <CTType>syncml:filtertype-cgi</CTType>

 <VerCТ>1.0</VerCT>

 </Filter-Rx>

 <CTCap>

 ...

 </CTCap>

 <FilterCap>

 <CTType>syncml:filtertype-cgi</CTType>

 <VerCt>1.0</VerCt>

 <FilterKeyword>IMPORTANCE</FilterKeyword>

 <FilterKeyword>created</FilterKeyword>

 </FilterCap>

</Datastore>

3. The client sends an Alert for the Email data store with a filter.

a. It includes a Filter Record element with a Meta Type value of “syncml:filtertype-cgi” to indicate the grammar being used.

b. The filter query in the Item Data element contains a value of “created>20030601T000000Z&AND;IMPORTANCE&NE;low” to constrain the items synchronized to those whose internal date is within or later than June 1, 2003 and importance is either “normal” or “high”.

	<Alert>

 <Data>200</Data>

 <Item>

 <Target>

 <LocURI>./email/inbox</LocURI>

 <Filter>

 <Meta><Type> application/vnd.omads-email</Type></Meta>

 <Record>

 <Item>

 <Meta><Type>syncml:filtertype-cgi</Type></Meta>

 <Data>
 created>20030601T000000Z&AND;IMPORTANCE&NE;low
 </Data>

 </Item>

 </Record>

 </Filter>

 </Target>

 <Source>

 <LocURI>dev-inbox</LocURI>

 </Source>

 </Item>

</Alert>

4. The server receives the Alert with the Filter Record element.

a. It determines that it supports the filter operation for the data store, content type, filter grammar, and properties.

b. It replies with a status code of 200 for the Alert, indicating that it can satisfy the request to sync with filtering.

5. The synchronization process continues normally.

a. The client sends all of its changes to the server (the filter constraint is not imposed on it in this scenario).

b. The server sends changes only for items that satisfy the filter query.

10.2.1.4 Example 2: Content filtering
In this scenario, the client wishes to synchronize only plain text bodies with all attachments removed and truncate the resulting RFC2822body content to 2 kilobytes.

1. During the initial sync, the client and server exchange their device info.

2. The client sends an Alert for the Email data store with a filter. It includes a Filter Field element containing a Property element set to “RFC2822body” containing a MaxSize element set to 2048 (2K), specifying that only “text/plain” type parts of the text can be included.
	<Alert>

 <Data>200</Data>

 <Item>

 <Target>

 <LocURI>./email/inbox</LocURI>

 <Filter>

 <Meta><Type> application/vnd.omads-email</Type></Meta>

 <Field>

 <Item>

 <Meta><Type>application/vnd.syncml-devinf+xml</Type></Meta>

 <Data>

 <Property>

 <PropName>RFC2822body</PropName>

 <MaxSize>2048</MaxSize>

 <PropParam>

 <ParamName>texttype</ParamName>
 <ValEnum>text/plain</ValEnum>

 </PropParam>

 </Property>

 </Data>

 </Item>

 </Field>
 </Filter>

 </Target>

 <Source>

 <LocURI>dev-inbox</LocURI>

 </Source>

 </Item>

</Alert>

3. The server receives the Alert with the Filter Record element.

c. It determines that it supports the filter operation for the data store, content type, filter grammar, and properties.

d. It replies with a status code of 200 for the Alert, indicating that it can satisfy the request to sync with filtering.

4. The synchronization process continues normally.

e. The client sends all of its changes to the server (the filter constraint is not imposed on it in this scenario).

f. Server recalculates the RFC2822body fields for the client to include only plain text. For the items that contain more than 2048 bytes in resulting RFC2822body field, the server truncates the field content.

10.3 Email object replace example

	...

<Sync>

...

<Replace>

<CmdID>6</CmdID>

<Meta>

<Type xmlns='syncml:metinf'> application/vnd.omads-email</Type>

</Meta>

<Item>

<Source>

<LocURI>123</LocURI>

</Source>

...

<Data><![CDATA[

<Email>

<created>20030807T231830Z</created>

<read>false</read>

<RFC2822body>

<--! The content of the email as specified by the RFC 2822 -->

<![CDATA[From: <sender@mail.com>

To: <receiver@mail.com>

...]]>

</RFC2822body>

</Email>]]>

</Data>

</Item>

</Replace>

</Sync>

In this example the device that has previously indicated that it supports “created”, “read” and “RFC2822body” fields for the email object data type receives the update of the object.
11. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 0.8 History

	Document Identifier
	Date
	Sections
	Description

	V0_0
	12 Sep. 03
	
	Created

	OMA-DS-2003-0509R02
	26 Oct. 03
	9.2.1
	RFC1327 referenced as the source of values for “IMPORTANCE” keyword

	OMA-DS-2003-0509R03
	28 Nov. 03
	
	Definitions of Datetime and Boolean data types moved into a separate document.

Field extensibility mechanism added.

	OMA-DS-2003-0509R04
	14 Dec. 03
	9.3
	Removed default folder table as it was agreed to list default folder identifiers in Folder object speck

	OMA-DS-2003-0509R05
	29 Dec. 03
	4
	Introduction section filed to do not reference SyncML

	
	
	5.1
	XML Namespaces section modified

	
	
	6
	Media type changed to xml/vnd.omads-email

	
	
	7.10
	New field extension mechanism created

	
	
	9.2.1.X
	Filtering sections modified to allow header-only and no-attachment content filtering. Examples added.

	
	
	9.2.1.X
	Filtering sections modified to do not reference the IMAP

	
	
	9.3
	Boolean field examples made use “true”/”false” instead of “1”/”0”

	OMA-DS-2003-0509R06
	07 Jan. 04
	7.1
	Email element content model: Ext element added

	
	
	8
	DTD fixed

	
	
	9.1
	Texttype and attachtype PropParam added to allow filtering out textual body and attachments

	
	
	9.2.1.3, 9.2.1.4
	Filtering examples fixed

	OMA-DS-2003-0509R07
	11 Jan. 04
	2.1
	Unnecessary references deleted

	
	
	6
	Typo fixed

	
	
	8
	DTD header updated to contain document location

	
	
	9.1
	CTCap example missing closing markup added

	
	
	9.2.1.2
	Section break removed

	
	
	9.2.1.3

9.2.1.4
	Filtering examples updated to contain Type of the object to which the filter applies.

	
	
	9.3
	Email object replace example wording added.
Example updated to use CDATA sections where appropriate

	OMA-DS-2003-0509R08
	15 Jan. 04
	7
	Data types section introduced

	
	
	10.2.1.4
	Content filtering example fixed modified to filter out attachments and keep plain text

Appendix B <Additional Information>

(2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20030824]

(2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20030824]

