[image: image1.jpg]
	OMA-SyncML-InteropWP-V0_1-20040416-D
	Page 19 V(30)

	SyncML Common Object Interoperability White Paper
Draft Version – 16 April 2004

	

	Open Mobile Alliance

OMA-SyncML-InteropWP-V0_1-20040416-D

	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2003-2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
5.
Issues Common to vCard 2.1 and vCalendar 1.0
9
5.1
Multiple properties of the same type
9
5.1.1
Problem description
9
5.1.2
Solution
10
5.2
Deleted and Unsupported Properties
12
5.2.1
Problem description
12
5.2.2
Solution
13
5.3
Encodings and character sets
16
5.3.1
Problem description
16
5.3.2
Solution
16
5.4
Unsupported Properties
16
5.4.1
Problem description
16
5.4.2
Solution
17
5.5
Folding techniques
17
5.5.1
Problem Description
17
5.5.2
Solution
18
6.
VCard 2.1 Issues
19
6.1
Telephone types
19
6.1.1
Problem description
19
6.1.2
Solution
19
7.
vCalendar 1.0 Issues
20
7.1
Time zone support
20
7.1.1
Problem description
20
7.1.2
Solution
20
7.2
Local and UTC-based times
22
7.2.1
Problem description
22
7.2.2
Solution
22
7.3
All day events
22
7.3.1
Problem description
22
7.3.2
Solution
23
7.4
Untimed Events
24
7.4.1
Problem description
24
7.5
Reminders
25
7.5.1
Problem description
25
7.5.2
Solution
25
7.6
Recurring events
26
7.6.1
Problem description
26
7.6.2
Solution
26
7.7
Summary and description fields
27
7.7.1
Problem description
27
7.7.2
Solution
27
Appendix A.
Change History (Informative)
28
A.1
Approved Version History
28
A.2
Draft/Candidate Version <current version> History
28

Figures

Error! Bookmark not defined.Figure 1: Example Figure

Tables

Error! Bookmark not defined.Table 1: Example Table

1. Scope

This document provides a set of guidelines for programmers developing synchronization applications which will make use of SyncML as a data transport.

The requirements stated in the solution to the problems outlined in this document are for interoperability purposes; they are not intended to be a redefinition of any existing specification.

This document currently covers interoperability issues pertaining to the Versit vCard and vCalendar specifications but should not be limited to these specifications. These specifications are currently the most popular for exchanging of contact and calendar.
 As interoperability synchronization issues pertaining to other specifications become apparent, additions to this document will be welcomed.

2. References

2.1 Normative References

	vCard
	“vCard The Electronic Business Card” Version 2.1. http://www.imc.org/pdi/vcard-21.doc

	vCalendar
	“vCalendar The Electronic Calendaring and Scheduling Exchange Format” Version 1.0. http://www.imc.org/pdi/vcal-10.doc

	DevInfo
	“SyncML Device Information”, Open Mobile Alliance(, OMA-SyncML-DevInfo-V1_2”, URL:http:www.openmobilealliance.org/tech/docs.

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2405]
	“Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies”. N. Freed, N. Borenstein. November 1996.
URL:http://www.ietf.org/rfc/rfc2405.txt

	[RFC2406]
	“Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types”. N. Freed, N. Borenstein. November 1996.
URL:http://www.ietf.org/rfc/rfc2406.txt

2.2 Informative References

	[RFC822]
	“STANDARD FOR THE FORMAT OF ARPA INTERNET TEXT MESSAGES”. David H. Crocker. August 1982. URL:http://www.ietf.org/rfc/rfc822.txt

	[RFC2822]
	“Internet Message Format”. P. Resnick. April 2001. URL:http://www.ietf.org/rfc/rfc2822.txt

	[RFC2445}
	“Internet Calendaring and Scheduling Core Object Specification (iCalendar)” URL:http://www.ietf.org/rfc/rfc2445.txt

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

<<The following is a table - add definitions in new rows as needed – delete this advisory line>>

	LWSP
	Linear White SPace

	UTC-based time
	A time which is expressed with respect to UTC

	Local time
	A time which is not bound to a specific time zone. This time is expressed with respect to the current time.

	Current time
	The time as seen by inhabitants of a time zone taking into account any daylight savings adjustments that may apply.

	
	

3.3 Abbreviations

<<The following is a table - add abbreviations in new rows as needed – delete this advisory line>>
	OMA
	Open Mobile Alliance

	DevInfo
	Device Information

	
	

4. Introduction

SyncML is, first and foremost, a synchronization protocol. By separating the protocol from the data formats it synchronizes, SyncML achieves a high degree of flexibility. In an attempt to leverage existing data format standards, SyncML chose a number of widely used and well documented formats including vCard (initially version 2.1) and vCalendar (initially version 1.0). Like the protocol itself these data formats are flexible and extensible. This flexibility comes with a price, however, as evidenced by the number of interoperability problems that various SyncML solution vendors have encountered when trying to use the vCard and vCalendar specifications to synchronize contacts and calendar data. When these specifications were written this flexibility was favored because it allowed PIM application vendors to adapt the vCard and vCalendar data formats to their native formats. This works well until you try to map the various interpretations of the data formats to one another through synchronization.

This document catalogs the set of vCard and vCalendar interoperability problems that have the greatest likelihood of affecting end users and thereby impacting the overall value of the SyncML brand. Although the vCard and vCalendar specifications do not define rigid formats, it is in the best interest of all SyncML vendors to work together to agree to common “best practices” regarding the usage of vCard and vCalendar for data synchronization.

The interoperability problems described in this document are divided into separate sections, each with the following parts: problem description with optional example and solution with optional example. The first two parts provide an overview of the problems while the third offers guidelines that when used by all SyncML vendors will ensure a positive end-user experience.

This version of the document addresses the major interoperability issues, the remaining less serious problems may be addressed in subsequent versions.
5. Issues Common to vCard 2.1 and vCalendar 1.0

5.1 Multiple properties of the same type

5.1.1 Problem description

Some devices support multiple properties of the same type (i.e., with the same parameters) but the vCard and vCalendar formats do not provide a well-defined way to distinguish these properties from one another. Although this problem is common to both the vCard and vCalendar formats it is most commonly encountered with vCard objects.

Additionally, if the receiving device supports fewer properties of a given type than the sending device (e.g. up to five telephone types are supported but a vCard is received that contains six) then the receiving device must determine which properties to use for synchronization purposes.

Versit also does not impose any ordering restrictions on the properties and it is permissible for devices to send back properties in any order. It is therefore not possible to assume that the first property that was sent to a device will be the first property that will be received from the device when performing a re-synchronization.

The same is also true for property parameters. Versit does not impose an order in which parameters should be sent nor require that the order of parameters is maintained. This means that it is possible that the order of parameters will be changed by a device during re-synchronization.

The example above clearly shows that it is not possible to use the parameters of a property to properly identify individual properties of the same type. In fact the problem is further aggravated by the fact that some devices may not even support the same parameter set as others – making it even more difficult to identify changes.

5.1.2 Solution

Devices that support multiple properties of the same type (i.e., the same property name) SHOULD use an extension vCard/vCalendar property parameter to uniquely refer to each property. Following the Versit recommendations and using “SYNCML” as the vendor name, this extension property parameter has the following format:

PropertyName[;Params][;X-SYNCMLREF = #]:Value
Where # indicates the sequence number of the property.

The property number MUST start at 1 and will be incremented each time a new property of the same type is added to a vCalendar or vCard. Each new property of the same type will therefore be assigned a unique number.

EMAIL;INTERNET;X-SYNCMLREF=1:john.doe@abc.com

EMAIL;INTERNET;X-SYNCMLREF=2:jdoe@an.other.com

This will enable changes to properties to be tracked in a way that is not dependant on the parameters supported by the device. When more than one entry of the same property type occurs, the device SHOULD add a property number parameter to each of the properties.

When only one property exists, it SHOULD implicitly be assigned the property number 1. The inclusion of the parameter is OPTIONAL when only one property of a specific type exists, however it is necessary to make this assignment explicitly in the event that another device adds a second property of the same type.

Numbering is linked to the property type and numbering of different properties SHOULD be done independently of each other. Numbers SHOULD NOT be re-used for the same property; for example, if there are two properties of the same type and the second one is deleted, then when a new property is added it SHOULD be assigned number 3.

The assignment of a property number is independent to the maximum number of properties of the same type that a device can support. The MaxOccur item in the DevInfo (see section 5.2.2 of this document for further information) conveys the maximum number of properties (and not parameters) of the same type a device can support. A device SHOULD be capable of assigning and distinguishing property numbering of values between 1 and at least 255 irrespective of the MaxOccur value for the property.

When importing a vCalendar or vCard containing multiple properties of the same type that exceed in number the maximum supported by the device, the choice of which properties to retain remains up to the device. However, the device SHOULD ensure that any properties of the same type that are subsequently added are assigned a number greater than the maximum property number received during the import process.

5.2 Deleted and Unsupported Properties

5.2.1 Problem description

There are two ways that a synchronizing device can potentially indicate that it has deleted a property. The first is only to remove the property value but not the property, the second is to remove the property completely.

In the first case, it is clear that the device has deleted an entry, but requires the device keep sending this blank field potentially forever to ensure that all devices it syncs with will be aware of the deletion. It also complicates the handling of multiple properties of the same type. How many deleted entries should be maintained when transmitting?
In the second case, it is not obvious if entries have been deleted, or ignored (either because of limited capacity or complete lack of support for the property concerned).

The problem is that, without knowing whether an exporting device supports the property and how many instances of that property is supported, an importing device has no idea whether the property is missing because it has been deleted or because the exporting device does simply not support it.

5.2.2 Solution

Using the DevInfo mechanism provided by the SyncML specification, a device SHOULD provide a list of the properties supported. For each property the list SHOULD contain:

· The property name using the PropName element type,

· The parameters supported for the property using the ParamName element type,

· The maximum occurrences of the same property supported if such a limit exists using the MaxOccur element type.

If the exporting device provides a list of supported properties, it is then possible for a synchronizing device to determine if a Property has been deleted or ignored.

A device SHOULD only modify or delete properties that are in its list of supported properties.

5.2.2.1 Exporting

When exporting a vCard or vCalendar, the device should indicate that a property has been deleted if it is supported by the exporting device and either:

a) If, when the vCard or vCalendar was imported, the number of occurrences of a property of the same type were less than or equal to the maximum number supported by the importing device, the entire property SHOULD be deleted from the exported vCard or vCalendar.

b) If, when the vCard or vCalendar was imported, the number of occurrences of a property of the same type is larger than the maximum number supported by the importing device, it is RECOMMENDED that only the property value is deleted and the property itself is not removed from the entity. This is to implicitly show that a property has been deleted. If it is simply omitted, then the receiving device will not be able to determine which of the properties has been deleted. This implicit property deletion SHOULD only be sent to the server once after which the device need not retain this deletion information.
When exporting a vCalendar or vCard, the device SHOULD indicate that a Parameter has been deleted by removing it from the parameters associated with the property concerned.

A device MAY export properties that it does not support providing that they have not been modified in any way since their importation. The position of these properties within the entity MAY be changed.

5.2.2.2 Importing

When importing a vCalendar or vCard a device SHOULD assume that a Property has been deleted if it is supported by the importing device and either:

a) The property is imported with a NULL value field, or

b) The number of multiple properties of that type currently contained by the local device is less than the maximum number supported by the remote device and a property is missing from the imported set.

When importing a vCalendar or vCard, a device SHOULD assume that a Property Parameter has been deleted only if the parameter is supported by the remote device and is absent from the property.

5.3 Encodings and character sets

5.3.1 Problem description

SyncML is an international standard and as such it must be able to support a wide range of character sets. Although the vCard and vCalendar specifications describe the usage of various character sets, their usage can be confusing at times. A separate but related feature of vCard and vCalendar objects is encodings. This interoperability issue is intended to clarify the usage guidelines for each of these concepts.

5.3.2 Solution

The vCard and vCalendar specifications both refer to RFC 2046 for specifying the rules of the CHARSET parameter. RFC 2046, section 4.1.2 states:

The default character set, which must be assumed in the absence of a charset parameter, is US-ASCII.
NOTE: The iCalendar 2.0 (RFC 2445) specification specifies UTF-8 for a default character set.
If a vCard/vCalendar encoder is using a character set other than US-ASCII it MUST specify the character set using the charset parameter. An exception to this rule is stated in section 2.1.6 of the vCard 2.1 specification:

Some transports (e.g., MIME based electronic mail) may also provide a character set property at the transport wrapper level. This property can be used in these cases for transporting a vCard data stream that has been defined using a default character set other than ASCII (e.g., UTF-8).

If a SyncML message is sent over a transport that supports specifying a character set then a device MAY omit the CHARSET parameter for properties whose character set matches the one specified at the transport level.

The rules for quoted-printable (QP) transfer encoding are covered in section 6.7 of RFC 2045. The rules are too long to include here but one noteworthy item, given in the formal quoted-printable grammar, is that safe characters (those which do not need to be QP encoded) are defined to be any character "...with decimal value of 33 through 60 inclusive, and 62 through 126..."

The following steps are the recommended process for using the ENCODING and CHARSET parameters in vCard and vCalendar objects.

1. Given a string in some character set, check to see if the string's character set matches the character set specified at the transport level. If it is not then convert the string to the desired character set.

2. If the string's character set is US-ASCII then no CHARSET parameter is required; if the string's character is not US-ASCII and the character set does not match the one specified at the transport level, then you MUST include the CHARSET parameter and specify which character set is used.

3. Check to see if any unsafe QP characters exist in the string. If there is one or more unsafe characters then you must encode each of the unsafe characters and specify the QUOTED-PRINTABLE encoding parameter.

5.4 Unsupported Properties

5.4.1 Problem description

One of the biggest challenges in any synchronization solution is mapping properties from one device to another. If a device supports more properties than another, or properties that are not clearly defined in the vCard or vCalendar specifications, then the other device must define how it handles these properties. This is particularly noticeable with property extensions but not necessarily restricted to them.

The problem lies in determining what device B should do with the two properties it does not support and what happens when this record is modified on device B and synced back to device A.

5.4.2 Solution

A device that receives a vCard or vCalendar object that contains properties the device does not support SHOULD either choose to ignore these properties, or store them in a way that allows them to be sent back to the original device unchanged.

Using the first option and the example above, device B would send a vCard that looks like something like to device A:

N:new-last;new-first

Using the second option the vCard would look like this:

N:new-last;new-first

EMAIL:first@last.com

X-PGPPUBKEY:...

Where the EMAIL and X-PGPPUBKEY properties are duplicates of what the original device sent in its vCard.

A SyncML device SHALL NOT require that other SyncML devices support extended properties or any other property that is not specifically referenced in its device information.

5.5 Folding techniques

5.5.1 Problem Description

Folding allows for long lines of text to be separated onto many lines to increase the readability of the text. The Versit specification refers to RFC822 for how this should be implemented but also gives a brief description of how folding is to be performed.

Unfortunately, the Versit consortium specification introduces an ambiguity in the folding process by stating that “wherever there may be a linear white space, a CRLF immediately followed by at least one LWSP-char may be inserted”. By using the term “at least one”, it implies that folding may introduce more than one LWSP character, which is does not agree with RFC822 (or the more recent RFC2822 which supersedes RFC822).

This will only present problems when folding is to be performed on a line that contains more than one LWSP character between normal text characters. If folding is to be performed at this point in the text, then it would not be possible to determine if more than one LWSP character had been inserted.

5.5.2 Solution

Devices SHOULD fold long lines around the last LWSP character before a non-LWSP character should there be more than one LWSP separating non-LWSP characters.

Devices SHOULD also only perform wrapping on property value fields and not on their names or parameters.

6. VCard 2.1 Issues

6.1 Telephone types

6.1.1 Problem description

The vCard spec defines the following parameters for use with the telephone (TEL) property: PREF, WORK, HOME, VOICE, FAX, MSG, CELL, PAGER, BBS, MODEM, CAR, ISDN, VIDEO, all of which can be in any combination for a given telephone number. Although most database implementations have tried to rationalize the combinations available they differ in choices and because the vCard specification does not mandate any combinations, no assumptions can be made. This can lead to interoperability problems when devices represent the corresponding information in differing ways, for example one device may represent mobile numbers as TEL;CELL: and yet receive both TEL;WORK;CELL: and TEL;HOME;CELL: from another device.

Some of these telephone types are generally considered to be mutually exclusive by popular PIMs and others are simply not used.

Some SyncML devices, due to the constraints imposed by the databases they are syncing, have no choice but to interpret some of these properties as ambiguous with respect to others, and other properties as invalid.

For example, if a device supports only TEL;HOME: and TEL;WORK;CELL:, it will be unable to map a vCard from another device that contains TEL;HOME;WORK;CELL: without making an arbitrary decision, since both supported property types can map to the new vCard.

6.1.2 Solution

Devices that support telephone types SHOULD use the property parameter extension proposed in section 5.1.2 to uniquely refer to each property (X-SYNCMLREF = #, where # indicates the sequence number of the property). This will enable telephone numbers to be mapped between devices in a way that is independent of the parameters supported or other database-related constraints.

The policy for mapping property parameters between devices is up to the receiving device; the X-SYNCMLREF parameter ensures that the chosen relationship is maintained irrespective of changes to the property/parameter combination.

7. vCalendar 1.0 Issues

7.1 Time zone support

7.1.1 Problem description

One of the biggest problems faced by calendar synchronization is the problem of time zone support. Synchronization of calendars in different time zones with servers that may themselves be in different time zones can lead to duplicated events and/or events occurring at the incorrect time.

This problem is due largely to the fact that not all devices support the UTC format of present dates and times. This is often the case in devices that do not maintain time zone information, or calendar applications that do not store events in a UTC format.

7.1.2 Solution

The DevInfo specification states that servers are not allowed to send UTC based times to devices which do not support UTC. This will require them to convert all UTC-based times into local times.
Any device which has to convert UTC-based times to local times SHOULD include the Versit time zone (TZ) property to indicate which time zone the conversion was made with respect to.

An event containing local times and a corresponding time zone property that is received from a device which does not support UTC should be interpreted as an event which is expressed with respect to UTC.

1.
2.
3.

It is also possible that devices which do not provide UTC support are still capable of simple time zone management. In this case, it is acceptable for them to modify the local time and time zone property accordingly.

7.2 Local and UTC-based times

7.2.1 Problem description

The Versit specification does not provide any guidelines on when to use a local time or UTC time format other than to recommend that UTC format should be used whenever possible.

There are in fact two distinct types of events that a device supporting UTC can offer. The first type are events that occur at a specific time regardless of the time zone that the device is in. These are called time zone independent events or local time. For example an alarm event which goes of at 6am in the morning.

The second is an event occurrence that changes with respect to the device’s current time if the time zone the device is in changes. This event is fixed relative to UTC. For example a telephone conference between colleagues in different time zones should be specified with respect to UTC to ensure that even if the time zone for one colleague changes, the conference still takes place at the mutually correct time.

The Versit specification does not provide any guidance on when to use the appropriate event type.

7.2.2 Solution

Local Time SHOULD be used as follows:

· All devices that do not fully support UTC

· All events which are specified as local time events
UTC Time should be used as follows:

· On all devices supporting UTC and for all events which are not required to occur independently of the time zone of the device.

· If the device does not support the notion of time zone independent events, the events should be represented in UTC. This will cause the time of the event to change when the UTC offset of the device changes.

7.3 All day events

7.3.1 Problem description

The vCalendar specification does not define a standard way to represent events that last all day (all day events). There are in fact a number of possible variations as is demonstrated by the following example

7.3.2 Solution
In the interests of interoperability, only one of the above representations is used; devices SHOULD represent an all day event as an event starting at 00h00 and ending at 00h00 of the following day. The date field for both the start and end times SHOULD represent the date on which the all day event occurs. In order to indicate 00h00 of the following day, the ISO8601 format 24:00:00 MUST be used. It is this specific pattern that should be used to identify all day events. All day events represent events which are not related to a time zone. Local time SHOULD be used when representing the all day event. I.e. No trailing ‘Z” should be added to the time values.
This format is, however, valid for an actual 24-hour meeting that would start at midnight. In order to prevent confusion between all day events and events that have an actual 24 hour duration starting at midnight (UTC), events with 24hr duration should use different dates to indicate the start and end time of the event. I.E. use midnight (00h00) as that start and end time for the event.

7.3.3

7.4 Untimed Events

7.4.1 Problem description

The vCalendar specification does not define a standard way to represent events that have no duration at all. There are in fact a number of possible variations as is demonstrated by the following example:

It is also common practice to represent such events with an end time that is equal to a start time. In order to remove the ambiguity that events with only a start or an end time can pose, devices SHOULD write an identical start and an end time to indicate an event without duration. It is this specific pattern that should be used to identify untimed events. It is possible that untimed events can be represented using either the local time or the UTC-based time. I.E. The ‘Z’ at the end of the date can be ignored for the patterns matching untimed events.

By making use of a UTC format on devices that support UTC, the untimed event start time will be linked to the time one of the device and will change if the time zone changes. See section 7.2.1.
7.5 Reminders

7.5.1 Problem description

There are a number of problems with reminders:

1. The AALARM property for audible alarms or DALARM for a visual reminder may represent alarms in vCalendar. This is an important piece of information that should not be lost when synching however support for both of these properties is optional in vCalendar.

2. If a calendar only supports visual alarms and it is synching with a calendar that only supports audible alarms or vice versa is it acceptable for one type to be converted to another? Is this indeed possible?

3. If calendar A allows alarm time of up to a month, for example, and calendar B only for up to a week, could this result in any problems?

4.
7.5.2 Solution

Information about a reminder should never be discarded. If a server determines that a device does not support a specific alarm type, then the alarm SHOULD be re-constructed as a simple event with an additional property parameter extension (X-SYNCML-ALARM) describ

ing the type of the reminder that has been rewritten.
The parameter extension values are AALARM, DALARM, MALARM and PALARM, corresponding to the alarm types in the vCalendar specification.
To distinguish this re-written rule from a regular event without any duration (untimed event), only the DTSTART property should be used.

7.6 Recurring events

7.6.1 Problem description

There are a number of problems with recurring events:

If calendar A allows, for example, their monthly repeats to repeat on any number of days within a month but calendar B only allows them to repeat on one day per week then when synching from A to B which day is chosen?

If after syncing, the entry is edited on B and synced back to A then data loss may occur as all the days except one may get lost.

There are two monthly repeat types and two yearly repeat types, if A supports all 4 but B supports one of each then can one type always be mapped to another? If the entry is edited on B after synching there’s the possibility of it changing from its original repeat type when synched back to A

The vCalendar spec contains a section on an extended recurrence grammar – if few people support this should it be discouraged or should its additional information be simply ignored by a receiving application that only supports the standard recurrence grammar?

7.6.2 Solution

Need to have a new VALENUM defined for the RRULE property. This will allow for the definition of enumerated types that can be used in conjunction with the RRULE property. The addition would be something along the lines of :

	PropName
	ValEnum

	RRULE
	DAILY, WEEKLY, MONTHLYBYPOS, MONTHLYBYDAY, YEARLYBYMONTH, YEARLYBYDAY

The DevInfo for a device supporting only the daily, weekly and monthlybypos recurrence rule would then send the following information

<Property>

<PropName>RRULE</PropName>

<ValEnum> DAILY </ValEnum>

<ValEnum> WEEKLY </ValEnum>

<ValEnum> MONTHLYBYPOS </ValEnum>

</Property>

Still need to work on the issue of re-writing rules. I guess f the change is identical , it should be acceptable, but of the rule results in a change – what then ?

7.7 Summary and description fields

7.7.1 Problem description

Support for both the SUMMARY and DESCRIPTION properties are mandatory according to the vCalendar 1.0 specification. The fact that both are supported does not imply that both have to be used. Different devices have adopted different approaches to how these properties are used when mapping them to their internal calendar properties.

Most calendar applications require some form of text describing the event to be present in order to create a calendar entry. When a device maps this text to a Versit property which is not present in the vCalendar entity it can result in an event being ignored.

7.7.2 Solution

If a device requires a textual description in order to create a calendar entry, events SHOULD NOT be ignored either the SUMMARY or the DESCRIPTION field is present. Devices requiring the SUMMARY property SHOULD make use of the DESCRIPTION property if the SUMMARY property is not present. Devices requiring the DESCRIPTION property SHOULD make use of the SUMMARY property if the DESCRIPTION property is not present.
This solution could result in a device exporting an event containing both a SUMMARY and DESCRIPTION field following the importation of an event containing the non-mandatory property. This is still a preferable behavior to ignoring the event.

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	
	
	

	
	
	

A.2 Draft/Candidate Version <current version> History

<<This section is available in pre-approved versions – it should be removed in the actual approved versions>>

	Document Identifier
	Date
	Sections
	Description

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Example

If a user contact has three home phone numbers then a device could send them in a vCard as follows:

TEL;HOME;VOICE:+44 123 01

TEL;HOME;VOICE:+44 123 02

TEL;HOME;VOICE:+44 123 03

The properties and type are all identical. If sent to a device that only supports 2 telephone properties and then a resynchronisation performed – it could become very difficult to determine which properties have changed.

Case 1, A device supporting 2 telephone entries takes the first two and changes the second telephone number. The resynchronisation will contain:

TEL;VOICE;HOME:+44 123 01

TEL;VOICE;HOME:+44 123 04

There is no way the server could know which of the properties were taken by the device (02 or 03) and therefore, which one it should update.

Case 2, A device supporting 3 telephone entries, modifies the type. The resynchronisation will contain:

TEL;HOME;VOICE:+44 123 01

TEL;HOME;VOICE:+44 123 02

TEL;WORK;VOICE:+44 123 03

There is no way for the server to know if the original TEL;HOME;VOICE:+44 123 03 field was omitted due to the maximum of 3 telephone entries supported – and a work telephone number added, or if the 3rd home telephone number has been replaced.

Solution Example 1

Device A contains three telephone numbers that are exported to Device B, which receives the following data:

TEL;HOME;VOICE;X-SYNCMLREF=1:+44 1234

TEL;HOME;VOICE;X-SYNCMLREF=2:+44 4567

TEL;HOME;VOICE;X-SYNCMLREF=3:+44 8910

The user of Device A subsequently realises that the second telephone number is actually a work number and changes the second number accordingly. When the synchronisation is repeated, Device A sends the following information to Device B:

TEL;HOME;VOICE;X-SYNCMLREF=1:1234

TEL;WORK;VOICE;X-SYNCMLREF=2:4567

TEL;HOME;VOICE;X-SYNCMLREF=3:8910

Device B then compares the X-SYNCMLREF parameters and determines that the new data is in fact a change to the existing telephone number (rather than a new number) and updates its internal data accordingly.

Solution Example 2

Device A contains three telephone numbers that are exported to Device B, which receives the following data:

TEL;HOME;VOICE;X-SYNCMLREF=1:+44 123 01

TEL;HOME;VOICE;X-SYNCMLREF=2:+44 123 02

TEL;HOME;VOICE;X-SYNCMLREF=3:+44 123 03

Device B only supports two telephone numbers and takes the last two. The last telephone number is edited on Device B and resynchronised to Device A, sending the following data:

TEL;HOME;VOICE;X-SYNCMLREF=2:+44 123 02

TEL;HOME;VOICE;X-SYNCMLREF=3:+44 123 05

Device A then compares the X-SYNCMLREF parameters and determines that its third telephone entry must be updated to the new telephone number.

Example

Given the following vCard synced from device A to device B:

N:my name

TITLE:my title

ADR:my address

Device A can subsequently indicate that the TITLE property has been deleted using either of the following formats:

N:my name

TITLE:

ADR:my address

or

N:my name

ADR:my address

We refer to the first representation as the blank property format and the second representation as the missing property format.

DevInfo Example

An example of the devinfo structure for a device that is capable of supporting up to 5 telephone fields (With HOME, WORK, VOICE parameters) and an address field (With DOM, INTL, POSTAL parameters) is:

<CTCap>

	<CTType>text/x-vcard</CTType>

	<VerCT>2.1</VerCT>

	<Property>

		<PropName>TEL</PropName>

		<MaxOccur>5</MaxOccur>

		<PropParam>

			<ParamName>TYPE</ParamName>

			<ValEnum>WORK</ParamName>

			<ValEnum>VOICE</ParamName>

		</PropParam>

	</Property>

	<Property>

		<PropName>ADR</PropName>

		<MaxOccur>1</MaxOccur>

		<PropParam>

			<ParamName>TYPE</ParamName>

			<ValEnum>DOM</ParamName>

			<ValEnum>INTL</ParamName>

			<ValEnum>POSTAL</ParamName>

		</PropParam>

	</Property>

</CTCap>

Solution Example

Device A supports unlimited TEL properties and contains 5 TEL entries

TEL;X-SYNCMLREF=1:123

TEL;X-SYNCMLREF=2:456

TEL;X-SYNCMLREF=3:789

TEL;X-SYNCMLREF=4:098

TEL;X-SYNCMLREF=5:765

Device B supports up to 3 TEL properties and syncs from Device A. Device B has a policy that takes the last entries received. It therefore now contains:

	TEL;X-SYNCMLREF=3:789

	TEL;X-SYNCMLREF=4:098

	TEL;X-SYNCMLREF=5:765

If Device B now deletes telephone number 765 and syncs this contact back to Device A, using the recommended method (Received TEL properties = 5 whereas it supports only 3), it should export as follows:

	TEL;X-SYNCMLREF=3:789

	TEL;X-SYNCMLREF=4:098

	TEL;X-SYNCMLREF=5:

From this Device A will know that telephone number 765 has been deleted.

Example

Given a device A that supports name, email address and PGP public key; and device B that supports only name; device A might send a vCard to device B as follows:

N:last;first

EMAIL:first@last.com

X-PGPPUBKEY:...

Example

The following are all valid telephone properties according to the vCard 2.1 specification:

TEL;HOME:

TEL;HOME;VOICE:

TEL;WORK;HOME:

TEL;CELL:

TEL;HOME;CELL:

TEL;WORK;CELL:

TEL;HOME;WORK;CELL;FAX:

Example

A device ignorant of time zones sends a calendar entry to a server in local time as follows:

BEGIN:VEVENT

DTSTART:20000730T100000

DTEND:20000730T110000

END:VEVENT

This is sent to a server located in time zone UTC+1. Events are stored by the server in UTC and so the calendar event is translated as follows:

BEGIN:VEVENT

DTSTART:20000730T090000Z

DTEND:20000730T100000Z

END:VEVENT

If this event were to be sent to another time zone ignorant device, the server is forced to convert it to local time before sending. There is no standard specifying how it should do this. It could just drop the “Z” or it could have saved the original zone information but currently this can vary from server to servervaries between server implementations and can lead to duplicated events..it is possible that the times the device could either ignore the event, or perhaps treat the times as local because it does not have enough information to do otherwise.

Solution Example

A server with a current UTC offset UTC-5 is required to send the following event to a device which does not support UTC.

BEGIN:VEVENT

DTSTART:20000730T090000Z

DTEND:20000730T100000Z

END:VEVENT

The server must convert the times to local time. At the same time it should add the time zone property indicating the zone it was converted from.

BEGIN:VCALENDAR

VERSION:1.0

TZ:-5

BEGIN:VEVENT

DTSTART:20000730T040000

DTEND:20000730T050000

END:VEVENT

END:VCALENDAR

Put the solution example here

BEGIN:VEVENT

END:VEVENT

Example

Following is a (non-exhaustive) list of possible formats for all day and/or untimed events:

DTSTART:20010730T000000Z

DTEND:20010730T000000Z

DTSTART:20010730T000000

DTEND:20010730T000000

DTSTART:20010730T000000Z

DTEND:20010730T240000Z

DTSTART:20010730T240000Z

DTEND:20010730T240000Z

DTSTART:20010730T000000Z

DTEND:20010731T000000Z

DTSTART:20010730T240000Z

DTEND:20010730T235900Z

DTSTART:20010730T230000Z

DTEND:20010730T230000Z

Solution Example

An all day event “Christmas Shopping” is to be performed throughout the day on the 24th December 2002:

BEGIN:VEVENT

DTSTART:20021224T000000

DTEND:20021224T240000

DESCRIPTION:Christmas Shopping

END:VEVENT

A 24hr meeting (NOT an all day event) starting at 00h00 UTC, “New year’s preparations”:

BEGIN:VEVENT

DTSTART:20021231T000000Z

DTEND:20030101T000000Z

DESCRIPTION:New years preparations

END:VEVENT

Example

A device maps the SUMMARY field to the mandatory textual description for an event. Receiving the following vCalendar entity results in the successful creation of a calendar entry:

BEGIN:VEVENT

DTSTART:20040229T100000Z

DTSTART:20040229T120000Z

SUMMARY: Sunday Lunch

END:VEVENT

The same device, when receiving the following vCalendar event ignores it because no SUMMARY field is present.

BEGIN:VEVENT

DTSTART:20040229T100000Z

DTSTART:20040229T120000Z

DESCRIPTION: Sunday Lunch

END:VEVENT

Example

Following is a (non-exhaustive) list of possible formats for all day and/or untimed events:

DTSTART:20010730T000000Z

DTEND:20010730T000000Z

DTSTART:20010730T000000

DTEND:20010730T000000

DTSTART:20010730T000000Z

DTEND:20010730T240000Z

DTSTART:20010730T240000Z

DTEND:20010730T240000Z

DTSTART:20010730T000000Z

DTEND:20010731T000000Z

DTSTART:20010730T240000Z

DTEND:20010730T235900Z

DTSTART:20010730T230000Z

DTEND:20010730T230000Z

Solution Example 3

Device A contains three telephone numbers that are exported to Device B, which receives the following data:

TEL;HOME;VOICE;X-SYNCMLREF=89:+44 123 01

TEL;HOME;VOICE;X-SYNCMLREF=98:+44 123 02

TEL;HOME;VOICE;X-SYNCMLREF=248:+44 123 03

Device B only supports two telephone numbers and takes the last two and should return the following data if a Sync is requested:

TEL;HOME;VOICE;X-SYNCMLREF=98:+44 123 02

TEL;HOME;VOICE;X-SYNCMLREF=248:+44 123 03

Example

A device which does not fullynot fully support UTC but maintains a time zone of UTC+2 receives the following event from a server:

BEGIN:VCALENDAR

VERSION:1.0

TZ:-5

BEGIN:VEVENT

DTSTART:20000730T040000

DTEND:20000730T050000

END:VEVENT

END:VCALENDAR

It is acceptable for this devicesthis device to modify and return this entry as follows.

BEGIN:VCALENDAR

VERSION:1.0

TZ:+2

BEGIN:VEVENT

DTSTART:20000730T110000

DTEND:20000730T120000

END:VEVENT

END:VCALENDAR

Example

An event “Defragment HDD” can be defined only as a start date and time as follows:

BEGIN:VEVENT

DTSTART:20010730T210000Z

DESCRIPTION: Defragment HDD

END:VEVENT

Alternatively events can only have a completion time such as “Deposit cheque at bank”, represented by the following:

BEGIN:VEVENT

DTEND:20010730T150000Z

DESCRIPTION: Deposit cheque at bank

END:VEVENT

Solution Example

The event “Defragment HDD” SHOULD be defined as follows:

BEGIN:VEVENT

DTSTART:20010730T210000Z

DTEND:20010730T210000Z

DESCRIPTION: Defragment HDD

END:VEVENT

The event “Deposit cheque at bank” SHOULD be represented as follows:

BEGIN:VEVENT

DTSTART:20010730T150000

DTEND:20010730T150000

DESCRIPTION: Deposit cheque at bank

END:VEVENT

Note: The use of UTC times is optional.

Solution Example

A server wishes to synchronize the following entry to a device which does not support the DALARM property.:property:

BEGIN:VCALENDAR

BEGIN:VEVENT

DTSTART:20010730T150000

DTEND:20010730T150000

DESCRIPTION: Deposit cheque at bank

DALARM:20010730T120000

END:VEVENT

END:VCALENDAR

It SHOULD rewrite the event as two separate events to ensure the display alarm is not lost as follows:

BEGIN:VCALENDAR

BEGIN:VEVENT

DTSTART:20010730T150000

DTEND:20010730T150000

DESCRIPTION: Deposit cheque at bank

END:VEVENT

BEGIN:VEVENT

DSTART;X-SYNCML-ALARM = DALARM:20010730T120000

END:VEVENT

END:VCALENDAR

The event “Defragment HDD” SHOULD be defined as follows:

BEGIN:VEVENT

DTSTART:20010730T210000Z

DTEND:20010730T210000Z

DESCRIPTION: Defragment HDD

END:VEVENT

The event “Deposit cheque at bank” SHOULD be represented as follows:

BEGIN:VEVENT

DTSTART:20010730T150000

DTEND:20010730T150000

DESCRIPTION: Deposit cheque at bank

END:VEVENT

Note: The use of UTC times is optional.

Solution Example

An all day event “Christmas Shopping” is to be performed throughout the day on the 24th December 2002:

BEGIN:VEVENT

DTSTART:20021224T000000

DTEND:20021224T240000

DESCRIPTION:Christmas Shopping

END:VEVENT

A 24hr meeting (NOT an all day event) starting at 00h00 UTC, “New year’s preparations”:

BEGIN:VEVENT

DTSTART:20021231T000000Z

DTEND:20030101T000000Z

DESCRIPTION:New years preparations

END:VEVENT

	(2002, Open Mobile Alliance Ltd. All Rights Reserved. Terms and conditions of use are available from the Open Mobile Alliance(Web site (http://www.openmobilealliance.org/copyright.html).

	Open Mobile Alliance(Confidential
	(2003, Open Mobile Alliance Ltd.
All rights reserved

