[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Doc# OMA-DS-2006-0014-smart-sync-meeting-notes
Date: 15 12 2005
Doc# OMA-DS-2006-0014-smart-sync-meeting-notes
Date: 12 12 2005

Input Contribution

	Title:
	Smart Sync Meeting Notes
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	Data Synchronization

	Source:
	DS Working Group,

Christopher Alpaugh, Oracle Corporation

+15149058672

christopher.alpaugh@oracle.com

	Attachments:
	n/a

	Replaces:
	n/a

1 Reason for Contribution

Provide the detailed notes taken by the DS working group during the Athens f2f meeting concerning smart sync, also known as checkpoint sync, continuous sync or fingerprint sync.
2 Summary of Contribution

This contribution:

· contains the unedited notes taken during the Athens f2f meeting based on the review and discussion of document OMA-DS-2005-0226-checksum-slow-synchronization.

3 Detailed Proposal

3.1 Meeting Notes
Smart Sync Notes:

· rename checksum to “record fingerprint” and “datastore fingerprint”

· server needs to keep its own record fingerprints for each record in datastore for each client

· algorithm to run on the LUID and fingerprint table so that we could have extra fast smart slow sync; this algorithm needs to be well-defined and both client and server MUST implement it

· this would be useful for fast sync too; add the master fingerprint to the <Alert> command

· send the fingerprint with the <replace> and <add>

· what about for chunks? server sends back the last fingerprint for a chunk

· server could reply back to the client with the last fingerprint value that it has (if it has any) for the client

· add sending deleted LUID’s with fingerprint sync?

Changes from DS 1.2:

· no more need for suspend/resume

· no need to exchange anchors; server may keep private anchors (implentation dependent)

· no need to differeniate between slow and fast (normal) sync

· server determines the need for the sync type based on the fingerprint status

· 1-way sync is now well-defined and 1-way slow sync problems are eliminated

· all syncs are, on average, faster except initial sync (no improvement)

· some conditions that previously caused slow-sync may now result in a quick-sync that is faster than the old normal sync

Data Fingerprints

There are two different types of fingerprints defined in DS 2.0

1. Data Item Fingerprints

A data item fingerprint is an opaque value that a client MUST be able to generate for each data item that is synchronize with the server. The requirements are:

· two data items that are equivalent and represent exactly the same data MUST generate the same fingerprint

· two data items that are different MUST generate different fingerprints

2. Datastore Fingerprints

A datastore fingerprint is calculated by using the complete set of client LUID’s and data item fingerprints. A datastore fingerprint is a value that both the client and the server MUST be able to calculate using the same algorithm.

Data item fingerprints are used by the server to determine when data items are not synchronized between the client and the server.

Datastore fingerprints are used by the server to determine quickly if the entire client datastore is synchronized with the server.

Sync Anchors

Sync anchors, as described in the DS protocol are no longer required. They have been replaced with datastore fingerprints. The server may still implement sync anchors for its own purposes.

ID Mapping of Data Items

This protocol is based on the principle that the client and the server can have their own ID’s for data items in their databases. These ID’s MAY or MAY NOT match with each other. Because the ID’s can be different, the server MUST maintain the ID mapping table for items. That is, the server knows which client ID (LUID) and which server ID (GUID) points to the same data item.

The server must also maintain for each client LUID the last received client data item fingerprint, received from the client (either as part of a command, such as an <Add> or <Replace> command, or as part of a <Status> command).

This table must be stored on the server and SHOULD be maintained even when a synchronization has not completed successfully, as it can be used to assist in re-establishing a state of synchronization.

Synchronization Scenarios

Case 1 – Initial Sync (a.k.a. SLOW sync)
· no interruptions, initial synchronization, no mapping table exists

· client will authenticate as normal, request a sync with <Alert> 200

· server will respond with <Status> 200

· client begins sending data

· each <Add> and <Replace> command will contain the client LUID and the record fingerprint

· when client has finished, sends </Final>

· server sends data to client

· for each <Add> and <Replace>, the client MUST send a <Status> command with the client LUID and the updated record fingerprint

· at the end of the sync, the server will have a mapping table with a complete set of Client LUID’s / server GUID’s and corresponding client record fingerprints; (also may have server fingerprints (implementation dependent))

· client sends datastore fingerprint

· server determines that the client datastore fingerprint matches the calculated datastore fingeprint (based on server mapping table)

· sync is finished

Case 2 – Empty Sync
· both sides are already in sync having performed a successful initial sync

· no data has actually been modified since the last sync on either the client or the server

· client will authenticate as normal, request a sync with <Alert>

· alert will contain a datastore fingerprint

· server calculates the datastore fingerprint based on the current mapping table LUID/fingerprint set

· server determines that datastore fingerprints match

· server determine that no records have been modified on the server side

· server responds to <Alert> with <status> “No sync needed. Done”

· total of one round trip message exchange and the session completes.

Case 3 – Normal 2-way Sync, some changes on server side only
· both sides are already in sync having performed a successful initial sync

· no data has actually been modified since the last sync on the client

· client will authenticate as normal, request a sync with <Alert>

· alert will contain a datastore fingerprint

· server calculates the datastore fingerprint based on the current mapping table LUID/fingerprint set

· server determines that datastore fingerprints match

· server determines that some records have been modified on the server side

· server sends data to client

· for each <Add> and <Replace>, the client MUST send a <Status> command with the client LUID and the updated record fingerprint

· client sends current datastore fingerprint to server

· server checks the client datastore fingerprint against the mapping table

· if they match, then sync is finished (expected to match)

Case 4 – Normal 2-way Sync, some changes on both sides

· both sides may or may not be in sync

· some records may have been added or modified on both the client and server

· client will authenticate as normal, requests a sync with <Alert>

· client knows that it has changes to send, so does not include a datastore fingerprint

· server accepts the request, notes that there was no datastore fingerprint, so a sync will be required – sends <Status> 200

· if client has changes:

· client begins sending data

· each <Add> and <Replace> command will contain the client LUID and the record fingerprint

· when client has finished, sends </Final>

· if server has changes:

· server sends data to client

· for each <Add> and <Replace>, the client MUST send a <Status> command with the client LUID and the updated record fingerprint

· at the end of the sync, the server should have a mapping table with a complete set of Client LUID’s / server GUID’s and corresponding client record fingerprints; (also may have server fingerprints (implementation dependent))

· client sends current datastore fingerprint to server

· server checks the client datastore fingerprint against the mapping table

· if they match, then sync is finished

· otherwise, the server responds to client with “Send LUID table”

· client sends LUID/record fingerprint data to server

· server sends client <Get> commands for all records that have mismatched fingerprints

· server may also do additional <Add>, <Delete>, <Replace> commands if changes have been detected in server datastore

Case 5 – 1-Way Sync From Server to Client

· both sides are already in sync having performed a successful initial sync

· client may have deleted, modified or new records but does not wish to send them to the server at this time

· client will authenticate as normal, request a 1-way sync with <Alert>

· server determines that some records have been modified on the server side

· server sends data to client

· for each <Add> and <Replace>, the client MUST send a <Status> command with the client LUID and the updated record fingerprint

· client sends current datastore fingerprint to server

· server checks the client datastore fingerprint against the mapping table

· if they match, then sync is finished (expected to match)

Special Cases

Interrupted initial sync – during client sending data to server

· during client sending data to server, communciation was lost

· when the sync is restarted, client starts sync again, does not send a datastore fingerprint

· client can resend records that have changes since the last sync, successful or not

· client sends what it thinks is the rest of its data

· might send duplication, might miss sending some items

· when client thinks its finished, server starts sending records back to client

· when they are finished, client sends datastore fingerprint

· back where we were in case 3

Interrupted initial sync – during server sending data to client

· during server sending data to client, communciation was lost

· when the sync is restarted, client starts sync again, does not send a datastore fingerprint

· client can resend records that have changes since the last sync, successful or not

· client sends what it thinks is the rest of its data

· might send duplication, might miss sending some items

· when client thinks its finished, server starts sending records back to client

· when they are finished, client sends datastore fingerprint

· back where we were in case 3

· server sends new record to client

· client is unable to respond with <status> command

· server doesn’t have a LUID or fingerprint

· when the client sends the LUID /fingerprint map that item will not have a match on the server

· server will respond with “missing item” and client will send missing item to server
Server Anchors
· retrieve initial data from server datastore

· store server anchor

· may need to resend previously sent records if they have been modified on the server datastore

Questions / Validation Concerns

· what happens in case of server losing the mapping table?

· in the spec. it would be good to indicate what happens in each specific error / interruption state

· is there any need for anchors? maybe server needs to keep private anchor (maybe implementation dependent)

· do we send the LUID/fingerprint list up front from the client or only near end of sync if server asks for it?

· should the server request the LUID/fingerprint list near the beginning of the sync (before records are exchanges) or near the end,or both?

· have we covered all looping or stabilization issues?

· are filtering issues covered? what happens if a filter changes?

· what happens with soft deletes?

· how does 1-way sync work?

· 2 kinds of 1-way sync:

· client or server does not send data but wants new data from cient or server; datastore may be out of sync until a 2-way sync is performed

· client or server always sends data; datastore is always in sync

· 1-way sync, as defined in DS 1.2, can be accomplished by skipping the step where there server received the LUID/fingerprint table from the client

· resetting the sync type to 2-way will cause the client and server to be “in-sync” again, via smart slow sync

· 1-way sync (type #2) can be defined as data is only exchanged in one direction, always

· 1-way from server to client:

· server always sends data to client; checks the fingerprint table after sending data; if there are:

· mismatched fingerprints, then those records are send to the client

· fingerprints on the client, but not the server, then delete commands are sent to the client

· fingerprints on the server, but not the client are sent to the client

· server sends changes to the client to insure that the client is always “in-sync” with the server datastore

· 1-way from client to server:

· client always sends data to server

· after receiving data from client, server checks fingerprint table; if there are:

· mismatched fingerprints,then those records are requested from the client; server will replace records with the copies received from the client

· fingerprints on the client, but not the server, those records are requested from the client, server will add records received from client

· fingerprints on the server, but not the client; server will delete those records from the server datastore

· client sends changes to server to insure that the server is always “in-sync” with the client datastore

· more 1-way sync notes:

· need a way to describe the two different types of 1-way sync

· no need to differeniate between 1-way slow and 1-way fast; only one type: sync

Existing Specifications or Documents Affected:

· No specifications are affected since this input is simply meeting notes.
Linked Work Items:

N/A
Linked Affected OMA Groups
· None.

4 Intellectual Property Rights

We are not aware of any IPR associated to this contribution.

5 Recommendation

Note this input contribution and use its content to help refine and discuss the smart sync / continuous sync work.
6 References

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-WID-20040122]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-WID-20040122]

