Doc# OMA-DS-2006-0192-CR_DSPRO_TS_Implement_128R01.doc
Change Request

Doc# OMA-DS-2006-0192-CR_DSPRO_TS_Implement_128R01.doc[image: image1.jpg]
Change Request

Change Request

	Title:
	DSDO Terms Refine
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DS WG

	Doc to Change:
	OMA-TS-DS_Protocol-V2_0-20060509-D.doc

	Submission Date:
	10 Aug 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Chuan YU, China Mobile, yuchuan@chinamobile.com
Linyi TIAN, Huawei Technologies Co., Ltd., tianlinyi@huawei.com

	Replaces:
	n/a

1 Reason for Change

The contribution OMA-DS-2006-0128R01-INP_DSDO_Terms_Refine.doc was agreed during Vancouver meeting. A CR is needed to implement it.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

It is recommended that DS WG agree this contribution
6 Detailed Change Proposal
Change 1: Update elements related to authentication
7.8 Large Object Handling

While synchronizing, object reception can be limited by two factors: the maximum message size the target device can receive (declared in <MaxMsgSize> tag), and the maximum object size the target device can receive (declared in <MaxObjSize> tag).

This feature provides a means to synchronize an object whose size exceeds that which can be transmitted within one message (e.g. the maximum message size – declared in <MaxMsgSize> element – that the target device can receive). This is achieved by splitting the object into chunks that will each fit within one message and by sending them contiguously. The first chunk of data is sent with the overall size of the object and a <MoreData/> signaling that more chunks will be sent. Every subsequent chunk is sent with a <MoreData/> tag, except from the last one: the final chunk is sent with no <MoreData/> tag. The target device, having received the final chunk, has to re-construct the object and consequently acts as it had received it in one piece (e.g. apply the requested command). The appropriate status MUST then be sent to the originator. A command on a chunked object MUST implicitly be treated as atomic, i.e. the recipient can only commit the object once all chunks have been successfully received and reassembled.
Note: This mechanism does not allow sending multiple large objects in the same time. A new large object MUST NOT be added by a sender to any message until the previous large object has been completed. If a large object is chunked across multiple messages, the chunks MUST be sent in contiguous messages. New Sync commands (i.e. Add, Replace, Delete, Copy, Atomic or Sequence) or new Items MUST NOT be placed between chunks of a large object.

6.10.2 Large Object exchange sequence:

This section illustrates and details the process of Large Object Handling. The following figure depicts a normal flow when handling Large Objects between 2 entities: the "Sending Large Object Device" and the "Receiving Large Object Device". Note that these 2 entities can represent a Client or a Server: a Client can send Large Objects to a Server, but a Server can send also Large Objects to a Client.

……………

Note 1: In the previous diagram, LO means "Large Object".
Note 2: Please refer to the section 6.9 for the use of the Alert 222.
Exchange of a Large Object can be summarized with the following sequence:

1. During initialization:

1.1. On the sending device side

1.1.1. Sending device SHOULD use knowledge of the recipient’s <MaxMsgSize> to determine at what size segmentation occurs.

1.2. On the receiving device side

1.2.1. Receiving device MUST have declared the <SupportLargeObjs/> tag in its DevInf. It MUST also specify the value of its <MaxMsgSize> and its <MaxObjSize>.
2. When the first chunk of data is transmitted:

2.1. On the sending device side (Msg #1)

2.1.1. The sender MUST declare in the command element (e.g. add, replace) the overall size of the data element content that is going to be sent, using the <Size> sub-element of a Meta element.

 Note: The <Size> element MUST only be specified for the first chunk of data.

2.1.2. A <MoreData/> empty element MUST be added after the <Data> element.

2.2. On the receiving device side (Resp #1)

2.2.1. On receipt of a data chunk with the <MoreData/> element, the recipient MUST respond with a “Status 213 – Chunked item accepted and buffered” and ask for the next message using the Alert 222 mechanism as defined in section 6.9

Error case behavior:

1- If the Size exceeds the <MaxObjSize> of the recipient, the recipient MUST respond with a "Status 416 - Requested size too big" (the request failed because the specified byte size in the request was too big). The recipient MUST NOT commit the command.
2- If the recipient gets the first chunk with a <MoreData/> element, but no <Size> element, or non filled <Size> element, it MUST respond with a "Status 411 - Size required". The recipient MUST NOT commit the command. The sender MAY attempt to retransmit the entire large object.
3. When extra chunks of data are transmitted:

3.1. On the sending device side (Msg #2)

3.1.1. Meta and Item information SHOULD be repeated on each subsequent message containing chunks of the same large object.

3.1.2. A <MoreData/> empty element MUST be added after the <Data> element.

3.2. On the receiving device side (Resp #2)

3.2.1. On receipt of a data chunk with the <MoreData/> element, the recipient MUST respond with a “Status 213 – Chunked item accepted and buffered” and ask for the next message using the Alert 222 mechanism as defined in section 6.9

Error Case Behavior:

If the recipient detects a new large object or command before the previous item has been completed (by the chunk without the <MoreData/> Element), the recipient MUST respond with an "Alert 223 – End of Data for chunked object not received”. The Alert SHOULD contain the complete source and/or target information from the original command to enable the sender to identify the failed command.

Note: a Status would not suffice here because there would not necessarily be a command ID to refer to. The recipient MUST NOT commit the new and original commands. The sender MAY attempt to retransmit the entire original large object.

4. When the last chunk of data is transmitted:

4.1. On the sending device side (Msg #n)

4.1.1. The last chunk of data MUST NOT be followed with <MoreData/> element.

4.2. On the receiving device side (Resp #n)

4.2.1. On receipt of the last chunk of the large object, the recipient reconstructs the large object from its constituent chunks. It MUST validate that the size of re-constituted object matches the object <Size> supplied in the Meta information by the sender, then apply the requested command. The appropriate status MUST then be sent to the originator.

Error case behavior:

If the sizes do not match then a "Status 424 – Size mismatch” MUST be sent and the recipient MUST NOT commit the command. The sender MAY attempt to retransmit the entire large object.
7.2 OMA DS Content Formats
OMA DS not only provides for a common set of commands, but also identifies a small set of common content formats. The content formats provide a means for exchanging common accepted information, such as contacts, calendars and messages. Support for these content formats is mandatory for conformance to this specification. In addition to these common formats, OMA DS allows for the identification of any other registered format. OMA DS utilizes the MIME content type framework for identifying content formats.
7.4 Data Identifier Mapping

OMA DS does not require that two data stores being synchronized be of the same schema (i.e., aren't homogeneous). Specifically, OMA DS allows for both the data identifiers and the content formats to be different in the two data collections. However, in such cases in order to use OMA DS, the synchronizing applications would need to provide a mapping between data identifiers in one data store and those in another. For example, a document on the data synchronization server could be identified with a 16 byte, globally unique identifier (GUID). The corresponding version of this document on a mobile device could be identified by a small, two byte, and local unique identifier (LUID). Hence, to synchronize the data on the mobile device with the data on the data synchronization server, the synchronizing application would have to map the smaller identifiers of the mobile device to the larger identifiers used by data synchronization server; and visa versa. OMA DS includes the necessary mechanism to specify such an identifier mapping.

7.8.1 Field-level Replace

The SyncML Replace command also provides the capability for the originator to send an update to the recipient without having to transfer the entire item. This technique is also called Field-level changes. This feature is extremely useful for the content in which relatively concise attributes (for example the "read" status of the e-mail) are more likely to change, than substantially larger attributes like the body of the message or the attachments.

Not all content are equally suited for being used with Field-level replace. It is the responsibility of the sender to compose the partial items in the corresponding content format in such a manner that they are unambiguously interpreted by the receiver. Also it is the responsibility of the sender to compose the partial items in the corresponding content format ensuring that the format remains valid. If the sender cannot meet these criteria then it MUST send a replace for the entire item instead of a field-level replace.
7.11 MIME Usage

There are two MIME content types for the OMA Data Synchronization Message. The MIME content type of application/vnd.syncml+xml identifies the clear-text XML representation for the SyncML Message. The MIME content type of application/vnd.syncml+wbxml identifies the WBXML binary representation for the SyncML Message. Section 8 of this specification specifies the MIME content type registration for these two MIME content types.

One of these two MIME content types MUST be used for identifying OMA Data Synchronization Messages within transport and session level protocols that support MIME content types.

7.13 Data Sync Record and Field Level Filtering

Server data stores frequently contain much more data than can fit into small devices. Other aspects of the protocol enable clients and servers to indicate data store capacity and therefore avoid data overflow conditions, however it is often the case that small devices only want to synchronize a particular, prioritised subset of the data that resides in the server’s data store (referred to from this point forth as record filtering). Devices could also allow users to override the level of support for certain properties previously defined in the device info structure (referred to from this point forth as field filtering).
Support for receiving filters MUST be indicated in the device info for each data store. Support MUST be indicated by the inclusion of the Filter-Rx element within the Datastore element. The Filter-Rx element MUST contain a CTType and a VerCT element. The CTType element specifies the filtering grammar supported. For every Filter-Rx element a corresponding FilterCap element MUST be included in the Datastore element specifying any keywords or property names that can be filtered on.

A filter is specified by including the Filter element for the Target of a data store in an Alert command. When a Filter element is present, the Filter Meta Type element MUST be included and MUST correspond to the mime type the filter applies to. Within the Filter element, the Record, Field, and FilterType elements MAY be included and all MAY be present.

The Record element MUST contain an Item containing a Meta Type element representing the filter type used, and one Data element representing the query data. The Data element MUST be a logical expression whereby the expression MUST only contain values defined in the FilterCap element.

The Field element MUST contain an Item containing a Meta Type element representing the device information mime type and one Data element containing one or more Property elements. The mark-up characters of the Data element content MUST be properly escaped according to [XML] specification rules or the CDATA sections MUST be used. The Property elements override the corresponding property in the CTCap element for the current synchronisation session. Only the properties that differ from the properties specified in the CTCap element MAY be specified.

If WBXML encoding is used, no more than one property MAY be specified in the Data element. Specifying more than one property in WBXML document violates the rules for well-formed WBXML documents.

The FilterType element MUST contain a keyword that indicates the type of behavior that the sender is requesting. If the FilterType element is not present, then the FilterType value of “EXCLUSIVE” MUST be assumed.

If an implementation receives a filter record request for a data store that does not support filtering, a status code of 406 (OPTIONAL feature not supported) MUST be returned for the command containing the Filter element. If a filter record request specifying a filter type that is not supported by the data store is received, a status code ‘(415) unsupported MIME content type or content format‘ MUST be returned for the command containing the Filter element. If a filter record request is received which is syntactically incorrect or contains a query that is not supported then a status code of 422 (bad CGI or filter query) MUST be returned for the command containing the Filter element. If any of those error conditions occur, the sender of the filter MAY attempt to resend a new query. If the second query fails as well, a sender SHOULD either remove the filter query or terminate the synchronization.
If an implementation received a filter field request for a data store containing properties not previously defined in the corresponding CTCap element, then a status code of 400 (bad request) SHOULD be returned. Otherwise, the recipient of the filter field request MUST override any properties previously retrieved in the CTCap element in the device info with the properties present in the filter field request. The properties MUST only be overridden for the current synchronization session only.

7.13.2 Filter Query Syntax

The filter query is a logical expression contained in the Filter Record element and is applied to each item in the recipient’s datastore. Often, the values of properties in the data items are compared to literal values supplied by the requestor. Items for which the expression evaluates to true are the set of items for that synchronization session. The filter query is expressed according to a particular grammar. The Record Item Meta Type indicates the grammar of the filter query supplied in the Data element. This enables the protocol to support additional filter grammars without sacrificing interoperability. The list of grammar types an implementation is capable of receiving MUST be indicated through the use of the device info Filter-Rx element.

Comparison items MUST be valid property names or keywords specified in the FilterCap element for the particular filter query grammar being used and all comparison operators MUST be supported for each comparison item.. Literal values used in comparisons MUST be valid for the property or keyword according to the MIME content type being used for the query. Comparisons are performed using the character encoding specified in the MIME content type, where appropriate.

A grammar MAY provide logical operators for conjoining sub-expressions (e.g. AND, OR, NOT) to create arbitrarily complex expressions. A grammar MAY provide mechanisms for selecting items based on the presence of properties.

7.13.2.1 MIME Content type requirements

If an implementation supports receiving filters on a given data store, all expressions that test the values of certain base media object properties for that data store, regardless of the query grammar used, are OPTIONAL. If the expression is unsupported by the recipient, one of the previously listed status codes MUST be returned to the sender. The sender SHOULD then modify the expression based on the device info obtained from the recipient. If no expression can be agreed upon between the sender and the recipient then it is up to the sender to determine if the synchronization can be sent without any Filter element or if the synchronization SHOULD be aborted.

Filtering for all contents types is OPTIONAL and MAY be supported.

7.13.5 Examples

The following examples are provided to further illustrate the usage of filtering in OMA DS 1.2.

7.13.5.1 Contact Content Format
7.13.5.1.1 Example 1

In this scenario, the client wishes to sync only Contact items that fall into the “business” or “personal” group.

1. During the initial sync, the client and server exchange their device info.

2. The client analyses the server’s device info, and the client notes that the server supports receiving filters on the Contacts data store for queries using the “syncml:filtertype-cgi” grammar.

a. The server includes in its device info the Filter-Rx and FilterCap elements that it supports.

b. The client doesn’t require filtering on any additional fields, so it determines that this server supports the filter it wishes to send.
…….

3. The client sends an Alert for the Contacts data store with a filter.

a. It includes the Filter Meta Type element to indicate the MIME content type desired (vCard in this example).

b. It includes a Filter Record element with a Meta Type value of “syncml:filtertype-cgi” to indicate the grammar being used.

c. The filter query in the Item Data element contains a value of “GROUP&iCON;business&OR; GROUP &iCON;personal” to constrain the items synchronized to those that fall into the “business” or “personal” group (case insensitive).
……………

4. The server receives the Alert with the Filter Record element.

a. It determines that it supports the filter operation for the data store, MIME content type, filter grammar, and properties.

b. It replies with a status code of 200 for the Alert, indicating that it can satisfy the request to sync with filtering.

5. The synchronization process continues normally.

a. The client sends all of its changes to the server (the filter constraint is not imposed on it in this scenario).

b. The server sends changes only for items that satisfy the filter query.

7.13.5.1.2 Example 2

In this scenario, the client wishes to sync only Contact items that fall into the “business” or “personal” group. Additionally the client has indicated in its device info that it supports the PHOTO property, but it does not wish to receive the PHOTO property from the server for this synchronization request.

1. During the initial sync, the client and server exchange their device info.

2. The client analyses the server’s device info, and the client notes that the server supports receiving filters on the Contacts data store for queries using the “syncml:filtertype-cgi” grammar.

a. The server includes in its device info the Filter-Rx and FilterCap elements that it supports.

b. The client doesn’t require filtering on any additional fields, so it determines that this server supports the filter it wishes to send.

3. The client sends an Alert for the Contacts data store with a filter.

a. It includes the Filter Meta Type element to indicate the MIME content type desired (vCard in this example).

b. It includes a Filter Record element with a Meta Type value of “syncml:filtertype-cgi” to indicate the grammar being used.

c. The filter query in the Item Data element contains a value of “GROUP&iCON;business&OR;GROUP&iCON;personal” to constrain the items synchronized to those that fall into the “business” or “personal” group (case insensitive).

d. It includes a Filter Field element containing a Property element set to “PHOTO” containing a MaxSize element set to 0 (zero).
……………

4. The server receives the Alert with the Filter Record and Field elements.

a. It determines that it supports the filter operations for the data store, MIME content type, filter grammar, and properties.

b. It replies with a status code of 200 for the Alert, indicating that it can satisfy the request to sync with filtering.

5. The synchronization process continues normally.

a. The client sends all of its changes to the server (the filter constraint is not imposed on it in this scenario).

b. The server sends changes only for items that satisfy the filter query. The server does not send any PHOTO properties since the client has requested that it wishes to receive only 0 bytes of this property for this synchronization request and the value should SHOULD not be truncated.

7.13.5.2 Calendar Content Format
7.13.5.2.1 Example 1

In this scenario, the client wishes to synchronize calendar items that fall within a two week window of time (starting with the current date).

1. During the initial sync, the client and server exchange their device info.

2. The client analyses the server’s device info, and the client notes that the server supports receiving filters on the Calendar data store for queries using the “syncml:filtertype-cgi” grammar.

a. The server includes in its device info the Filter-Rx and FilterCap elements that it supports. This includes the SINCE and BEFORE keywords.

b. The client doesn’t require filtering on any additional fields, so it determines that this server supports the filter it wishes to send.

……………

3. The client sends an Alert for the Calendar data store with a filter.

a. It includes the Filter Meta Type element to indicate the MIME content type desired (iCalendar in this example).

b. It includes a Filter Record element with a Meta Type value of “syncml:filtertype-cgi” to indicate the grammar being used.

c. The filter query in the Item Data element contains a value of “SINCE&EQ;20030606T000000Z&AND;BEFORE&EQ;20030620T000000Z” to constrain the items synchronized to those that occur between June 6, 2003 and June 19, 2003 inclusive, using the “SINCE” and “BEFORE” keywords.

……………

4. The server receives the Alert with the Filter Record element.

a. It determines that it supports the filter operation for the data store, MIME content type, filter grammar, and properties.

b. It replies with a status code of 200 for the Alert, indicating that it can satisfy the request to sync with filtering.

5. The synchronization process continues normally.

a. The client sends all of its changes to the server (the filter constraint is not imposed on it in this scenario).

b. The server sends changes only for items that satisfy the filter query.

7.13.5.2.2 Example 2

In this scenario, the client wishes to synchronize task items (iCalendar vTODO components) that have not been completed and are due within the next 2 weeks (using the DUE iCalendar property). The client also wishes to limit the size of the DESCRIPTION property to 100 bytes and only receive ATTACH properties that are less than 1000 bytes.

1. During the initial sync, the client and server exchange their device info.

2. The client analyses the server’s device info, and the client notes that the server supports receiving filters on the Calendar data store for queries using the “syncml:filtertype-cgi” grammar.

a. The server includes in its device info the Filter-Rx and FilterCap elements that it supports. This includes the STATUS and DUE keywords.

b. The client doesn’t require filtering on any additional fields, so it determines that this server supports the filter it wishes to send.

……………

3. The client sends an Alert for the Calendar data store with a filter.

a. It includes the Filter Meta Type element to indicate the MIME content type desired (iCalendar in this example).

b. It includes a Filter Record element with a Meta Type value of “syncml:filtertype-cgi” to indicate the grammar being used.

c. The filter query in the Item Data element contains a value of “DUE&LE;20030620T000000Z&AND;STATUS&NE;COMPLETED” to constrain the items synchronized to those that are due before June 20, 2003 and have not been completed.

d. It includes a Filter Field element containing a Property element set to “DESCRIPTION” containing a MaxSize element set to 100 and a second property element set to “ATTACH” containing a MaxSize of 1000 with the NoTruncate tag present.

……………

4. The server receives the Alert with the Filter Record element.

a. It determines that it supports the filter operation for the data store, MIME content type, filter grammar, and properties.

b. It replies with a status code of 200 for the Alert, indicating that it can satisfy the request to sync with filtering.

5. The synchronization process continues normally.

a. The client sends all of its changes to the server (the filter constraint is not imposed on it in this scenario).

b. The server sends changes only for items that satisfy the filter query. The server has truncated the DESCRIPTION properties to 100 bytes and has also not sent any ATTACH properties that are larger than 1000 bytes.

�The diagram is not copied here for concision

�The example is not copied here for concision

�The example is not copied here for concision

�The example is not copied here for concision

�The example is not copied here for concision

�The example is not copied here for concision

�The example is not copied here for concision

�The example is not copied here for concision

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

