[image: image12.jpg]«“+OMa

Open Mobile Alliance

OMA-TS-DS_Protocol–V2_0-20060905509-D
Page 109 V(103)

	DS Protocol

Draft Version 2.0 – 05 Sep 2006

	

	Open Mobile Alliance

OMA-TS-DS_Protocol–V2_0-20060905-D

	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

81.
Scope

92.
References

92.1
Normative References

92.2
Informative References

103.
Terminology and Conventions

103.1
Conventions

103.2
Definitions

103.3
Abbreviations

114.
Introduction

125.
OMA DS Introduction

125.1
SyncML Framework

125.2
Device Roles

135.3
Sync Types

156.
Protocol Fundamentals

156.1
Change Log Information

156.1.1
Multiple devices

156.2
Usage of Sync Anchors

156.2.1
Sync Anchors for Databases

166.2.2
Sync Anchors for Data Items

166.3
ID Mapping of Data Items

176.3.1
Caching of Map Operations

186.4
Conflict Resolution

186.5
Security

186.6
Addressing

186.6.1
Device and Service Addressing

186.6.2
Usage of RespURI and Re-direction Status Codes

196.6.3
Database Addressing

196.6.4
Addressing of Data Items

196.7
Exchange of Device Capabilities

196.8
Device Memory Management

206.9
Multiple Messages in Package

216.10
Large Object Handling

216.10.1 Conformance statements:

226.10.2 Large Object exchange sequence:

256.10.3 Large Object exchange sequence example:

306.11
Hierarchical synchronization

346.12
Sync without Separate Initialization

346.12.1
Robustness and Security Considerations

346.12.2
Example of Sync without Separate Initialization

376.13
Suspend and Resume of synchronization session

376.13.1
Interrupting a synchronization session

406.13.2
Resuming synchronization session

426.14
Busy Signaling

426.14.1
Busy Status from Server

436.14.2
Result Alert from Client

457.
OMA Data Synchronization Usage

457.1
SyncML Data Synchronization Framework

467.2
OMA DS Data Formats

467.3
Capabilities Exchange

477.4
Data Identifier Mapping

477.5
Refreshing Data

477.6
Soft and Hard Data Deletion

477.7
Archiving Data

477.8
Replacing Data

487.8.1
Field-level Replace

487.9
Searching For Data

497.10
Localization

497.11
MIME Usage

497.12
Target and Source Addressing

537.13
Data Sync Record and Field Level Filtering

537.13.1
Filter Behavior Definition

547.13.2
Filter Query Syntax

567.13.3
Indicating Filter Support

577.13.4
Handling Data Outside Filter Criteria

587.13.5
Examples

648.
Security

648.1
Credentials

648.2
Authentication

648.2.1
Authentication Challenge

658.2.2
Authorization

658.2.3
Protocol Layer Authentication

658.2.4
Database Layer Authentication

658.2.5
Authentication Examples

678.3
Integrity

688.3.1
How the HMAC is computed

688.3.2
How the HMAC is specified in the OMA DS message

769.
Sync Initialization

769.1
Initialization Requirements for Client

789.1.1
Example of Sync Initialization Package from Client

809.2
Initialization Requirements for Server

819.2.1
Example of Sync Initialization Package from Server

859.3
Error Case Behaviors

859.3.1
No Packages from Server

859.3.2
No Initialization Completion from Client

859.3.3
Initialization Failure

8610.
Two-Way Sync

8610.1
Client Modifications to Server

8810.1.1
Example of Sending Modifications to Server

8910.2
Server Modifications to Client

9010.2.1
Example of Sending Modifications to Client

9210.3
Data Update Status from Client

9210.3.1
Example of Data Update Status to Server

9310.4
Map Acknowledgement from Server

9410.4.1
Example of Map Acknowledge

9510.5
Slow Sync

9510.6
Error Case Behaviors

9510.6.1
No Packages from Server after Initialization

9510.6.2
No Data Update Status from Client

9510.6.3
No Data Map Acknowledge from Server

9510.6.4
Errors with Defined Error Codes

9611.
One-Way Sync from Client Only

9611.1
Client Modifications to Server

9611.2
Status from Server

9711.3
Refresh Sync from Client Only

9711.4
Error Cases Behavior

9711.4.1
No Packages from Server after Initialization

9711.4.2
Errors with Defined Error Codes

9812.
One-Way Sync from Server only

9812.1
Sync Alert to Server

9812.2
Server Modifications to Client

9812.3
Data Update Status from Client

9912.4
Map Acknowledge from Server

9912.5
Refresh Sync from Server Only

9912.6
Error Cases

9912.6.1
No Packages from Server

9912.6.2
No Data Update Status from Client

9912.6.3
No Map Ack from Server

9912.6.4
Errors with Defined Error Codes

10013.
Protocol Values and Alert Codes

10013.1
Protocol Values

10013.2
Alert Codes

10214.
Examples

10214.1
WBXML Example

106Appendix A.
Static Conformance Requirements (Normative)

106A.1
Conformance Requirements for OMA DS Client

107A.1.1
SCR for Large Object

107A.2
Conformance Requirements for OMA DS Server

108A.2.1
SCR for Large Object

109Appendix B.
Change History (Informative)

109B.1
Approved Version History

109B.2
Draft/Candidate Version 2.0 History

1. Scope

This document specifies the message flows between data synchronization client and server in order to ensure an inter-operable solution across all devices.

Please refer to [DSCONCEPTS] for further information on the OMA DS organization and history.

2. References

2.1 Normative References

	[DSCONCEPTS]
	“Data Synchronization Concepts and Definitions”, Open Mobile Alliance(, OMA-TS-DS_Concepts-V2_0”, URL:http:www.openmobilealliance.org

Please refer to [DSCONCEPTS] for the other Normative References.

2.2 Informative References

	None.
	

Please refer to [DSCONCEPTS] for the other Informative References.

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except Scope and Introduction, are normative, unless they are explicitly indicated to be informative.

Any reference to components of the Data Synchronization XML Schema or XML snippets is specified in this typeface.

3.2 Definitions

Please refer to the [DSCONCEPTS] document.
3.3 Abbreviations
Please refer to the [DSCONCEPTS] document.

4. Introduction

This specification defines a synchronization protocol between an OMA Data Synchronization client and server in the form of message sequence charts. It specifies how to use the SyncML Representation protocol so that interoperating client and server solutions are accomplished.
5. OMA DS Introduction
The purpose of this specification is to define a synchronization protocol using the SyncML Representation protocol [REPPRO]. This protocol is called the OMA Data Sync Protocol (OMA DS). This specification defines the protocol for different sync procedures, which can occur between a synchronizationclient and a synchronizationserver, in the form of message sequence charts (MSC’s). The specification covers the most useful and common synchronization cases (Chapters 8 - 12).

5.1 SyncML Framework

This specification can be implemented by using the SyncML interface from the SyncML Framework (See Figure 2). Not all the features of the SyncML Interface need to be implemented to comply with this specification.

[image: image1.png]AppA

Sync
Engine

Sync
Server
Agent

Transport

(eg., HTTP/ WSP | OBEX)

5.1.1.1 Figure 2 SyncML Framework

The application “A” depicts a networked service that provides data synchronization service for other applications, in this case application “B”, on some networked device. The service and device are connected over some common network transport, such as HTTP.

In the figure above, the ‘Sync Engine’ functionality is completely placed onto the OMA DS server side even if some OMA DS client implementations can in practice provide some sync engine functionality, too. The ‘Sync Server Agent’ and the ‘Sync Client Agent’ use the protocol defined in this specification and the representation protocol [DSREPU] offered by the SyncML interface (‘SyncML I/F’) to communicate with each other.

5.2 Device Roles

Figure 3 depicts a synchronization example in which a mobile phone acts as an OMA DS client and a server acts as an OMA DS server. The client sends SyncML message including the data modifications made in the client to the server. The server synchronizes the data (including possible additions, replaces, and deletions) within the SyncML messages with data stored in the server. After that, the server returns its modifications back to the client.

[image: image2.wmf]

SyncML message, client

modifications

OMA DS client

OMA DS server

SyncML message, server modifications

5.2.1.1 Figure 3 Synchronization Example with Mobile Phone and Server

The example presented the figure above is very simple. However, this example describes the roles of the devices in this specification. That is:

OMA DS Client – This is the device that contains a sync client agent and that sends first its modifications to the server. The client MUST also be able to receive responses from the OMA DS server. Although the OMA DS client has always the role to send its modifications first, in some cases the server can have a role to initiate synchronization. The OMA DS client is typically a mobile phone, PC, or PDA device.

OMA DS Server – This is the device, which contains a sync server agent and sync engine, and which usually waits that the OMA DS client starts synchronization and sends the clients modification to the server. The server is responsible for processing the sync analysis when it has received the client modifications. In addition, it can be able to initiate synchronization if unsolicited commands from the server to the client are supported on the transport protocol level. Typically, the OMA DS server is a server device or PC.

5.3 Sync Types

This specification defines seven different sync types. These are introduced in Table 1.

Table 1 OMA DS Sync Types

	Sync Scenario
	Description
	Reference

	Two-way sync
	A normal sync type in which the client and the server exchange information about modified data in these devices. The client sends the modifications first.
	Chapter 9

	Slow sync
	A form of two-way sync in which all items are compared with each other on a field-by-field basis. In practice, this means that the client sends all its data from a database to the server and the server does the sync analysis (field-by-field) for this data and the data in the server.
	Chapter 9.5

	One-way sync from client only
	A sync type in which the client sends its modifications to the server but the server does not send its modifications back to the client.
	Chapter 10

	Refresh sync from client only
	A sync type in which the client sends all its data from a database to the server (i.e., exports). The server is expected to replace all data in the target database with the data sent by the client.
	Chapter 10.3

	One-way sync from server only
	A sync type in which the client gets all modifications from the server but the client does not send its modifications to the server.
	Chapter 11

	Refresh sync from server only
	A sync type in which the server sends all its data from a database to the client. The client is expected to replace all data in the target database with the data sent by the server.
	Chapter 11.5

	Server Alerted Sync
	A sync alert type, which provides the means for a server to alert the client to perform synchronization. When the server alerts the client, it also tells it which type of synchronization to initiate.
	Chapter 12

6. Protocol Fundamentals

In this chapter, the common features and requirements for all sync types are defined.

6.1 Change Log Information

This protocol requires that devices (the client and server) are able to keep tracks of changes that have happened between synchronizations. I.e., they are responsible for maintaining the change log information about the modifications associated with data items of a database. The types of the modifications can be e.g., replace, addition, and deletion. This protocol does not specify in which format this change log information is maintained inside devices. However, when synchronization is started, the devices MUST be able to specify, which data items have changed. To specify the changed data items, the unique identifiers are used (See also Chapter 6.3). To indicate the type of a modification, the different operations (e.g., Replace) are used.

6.1.1 Multiple devices

If a device synchronizes with multiple devices, the change log information MUST be able to indicate all modifications related to a previous synchronization with each device.

6.2 Usage of Sync Anchors

6.2.1 Sync Anchors for Databases

To enable sanity checks of synchronization, this protocol uses sync anchors (See Definitions) associated with databases (e.g., a calendar database). There are two sync anchors, Last and Next (See [META]), which are always sent at the initialization of sync. The Last sync anchor describes the last event (e.g., time) when the database was synchronized from the point of sending device and the Next sync anchor describes the current event of sync from the point of sending device. Thus, both the client and the server send their own anchors to each other. The sync anchors are sent within the Meta information of an Alert operation by using the Meta Information DTD as defined by the SyncML Common specifications. The receiving device MUST echo the Next sync anchor back to the transmitting device in the Status for the Alert command (Data of the Item element inside Status).

The utilization of sync anchors is implementation specific but in order to enable the utilization, the Next sync anchor of another device needs to be stored until the next synchronization. The server MUST store the Next sync anchor sent by the client to enable this utilization.

If the device stores the Next sync anchor, it is able to compare during the next synchronization whether the sync anchor is the same as the Last sync anchor sent by another device. If they are matching, the device is able to conclude that no failures have happened since last sync. If they are not matching, the device can request a special action from another device (e.g., slow sync).

The stored sync anchors MUST NOT be updated before the synchronization session is finished.

The synchronization session is finished after a device is not going to send and is not expecting to receive any SyncML messages from other device, and the synchronization was successful on the Sync command level (i.e. no other than 200-class statuses has been returned for Sync commands). Also the transport level (directly under SyncML level) communication has to be properly ended before synchronization can be seen as finished. If the communication between synchronizing devices is not ended properly according to transport level specification, devices MUST NOT update their sync anchors. However, if the interrupted session is to be resumed then the value of the ‘Next’ anchor MUST be updated (See the Section 6.12.2).

6.2.1.1 Example of Database Sync Anchor Usage

In this example, a sync client and server synchronize twice (sync sessions #1 and #2) with each other. After the sync session #1, the persistent memory of the sync client is reset. Because of that, the database anchors do not match at the sync session #2, the sync server notifies this, and it initiates the slow sync with the client.

The sync session #1 is started at 10:10:10 AM on the 10th of October 2001. The previous synchronization (before the sync session #1) was started at 09:09:09 AM on the 9th of September 2001. At this synchronization session, the slow sync is not initiated because the sync anchors match. I.e., the sync server has the sync event (09:09:09 AM on the 9th of September, 2001).

The sync session #2 is started at 11:11:11 AM on the 11th of November 2001. Because the memory of the sync client was reset after the sync session #2, the sync server initiates the slow sync.

In the figure below, both the sync sessions are depicted. Only the initialization phases and the client sync anchors are shown in the figure.

[image: image3.wmf]

OMA DS Client

OMA DS Server

Pkg #1: Last (20010909T090909Z), Next(20011010T101010Z)

Pkg #2: OK

Sync Session #1

The Sync Server

has stored the client

sync event

(09:09:09 AM,

9/9/2001).

…

Sync Session #1 completed, the sync server updates the sync anchor.

The Sync Server

has stored the client

sync event

(10:10:10 AM,

10/10

/2001).

The persistent storage of the client is reset.

Sync Session #2

Pkg #1: Last (00000000T000000Z), Next(20011111T111111Z)

Pkg #2: Refresh required ('508')

…

The sent and the

stored anchors

do not match.

Figure 4 Example of Sync Anchor Usage

6.2.2 Sync Anchors for Data Items

This protocol does not specify the functionality to transfer the sync anchors associated with individual data items. If this functionality is desired, it MUST be provided inside the data items if it is included. An example is the Sequence Number property of vCalendar, the electronic calendaring and scheduling exchange format [IMCVCAL].

6.3 ID Mapping of Data Items

This protocol is based on the principle that the client and the server can have their own ID’s for data items in their databases. These ID’s MAY or MAY NOT match with each other. Because the ID’s can be different, the server MUST maintain the ID mapping table for items. That is, the server knows which client ID (LUID) and which server ID (GUID) points to the same data item.

Figure 5 shows an example of an ID mapping table after synchronization. In this example the mapping table in the server is depicted as a separate from the actual database.

[image: image4.wmf]

 Client Device

 Client Database:

LUID

Data

11

Car

22

Bike

33

Truck

44

Shoes

Server Device

Server Database:

GUID

Data

1010101

Car

2121212

Bike

3232323

Truck

4343434

Shoes

Server Mapping Table:

GUID

LUID

1010101

11

2121212

22

3

232323

33

4343434

44

Figure 5 Example: ID Mapping of Data Items

The LUID’s are always assigned by the client device. This means that even if the server adds an item to the client device, the client assigns a LUID for this item. In this case, the client returns the LUID of the new item to the server. The Map operation is used for this. After the Map operation is sent by the client, the server is able to update its mapping table with the client LUID.

When a server is adding a new item to a client, it MUST NOT send its actual GUID if the size of the actual GUID is exceeding the maximum size of the temporary GUID defined by the client. If size of the actual GUID’s exceeds the maximum size, the server MUST use a smaller temporary GUID when adding an item to the client. The maximum size of the temporary GUID is defined in the device information document of the client.

If the server has modified an existing item (i.e., an item which is on both the devices), the server MUST identify the item by using the client LUID for this item, when the modification (e.g., replace or deletion) is synchronized with the client. In the case of the client modifications, items are also identified with LUID’s, when the modifications are sent to the server. The server can map a LUID to its own GUID by utilizing the mapping table.

6.3.1 Caching of Map Operations

After an OMA DS server has requested one or more additions to be done by the OMA DS client, and the client has completed these additions to its database and allocated LUID’s for them, the client has a possibility to cache the Map operations associated with these LUID’s. The client MAY cache the Map operations, if the server has explicitly indicated that it does not require a response to its sync message. However, the client is always allowed to send the Map operations back to the server immediately after adding the items to the client database. This is the case even if the server has indicated that it does not require a response.

If the map items are cached, the Map operations are sent back to the server at the beginning of a subsequent synchronization session (in Pkg #3 from the client to the server). That is, the server MUST receive the Map operations before it is able to process any client updates related to the items with which the Map operations are associated.

If the OMA DS server has the control of a transport protocol (e.g., acting as a OBEX client), it MUST always request a response to the Sync command, which it has sent to the client. Thus, the server MUST NOT disconnect before it has got a response to the Sync command from the client.

6.4 Conflict Resolution

Conflicts happen because of modifications on the same items on the server and the client databases. (For example the same calendar item has been manually updated on the both sides.) In general a sync engine on the server resolves them. This protocol with the SyncML Representation protocol provides the functionality to notify the client about the resolved conflicts.

Although the server is in general assumed to include the sync engine functionality, the possibility that the client would also provide some sync engine functionality is not excluded. In this case, the client MAY also resolve conflicts. Then, the server only returns back to the client a notification that a conflict or conflicts have happened and the client can resolve the conflicts.

There are multiple policies to resolve the conflicts and the SyncML Representation protocol provides the status codes (See Chapter 10 in REPPRO) for some common policies. Thus, if the sync engine of the server resolves a conflict, it can send information about the conflict and how the conflict was resolved. This notification happens by using the Status elements. The example below depicts a case that the server sends a status to the client.

<Status>

<CmdID>1</CmdID>

<MsgRef>1</MsgRef>

<CmdRef>2</CmdRef>

<Cmd>Replace</Cmd>

<SourceRef>1212</SourceRef>

<Data>208</Data> <!-- Conflict, originator wins -->

</Status>

The administration, and how the conflict resolution policy is configured, is out of the scope of this protocol and the SyncML Representation protocol.

6.5 Security

This protocol requires the support for the basic authentication and the MD5 digest access authentication on the server layer (i.e., in SyncHdr). Both the sync client and the server MAY initiate a challenge for authentication and the device receiving the authentication challenge MUST send the authorization credentials back.

The authentication procedure used by this protocol is defined in Chapter 7.

6.6 Addressing

6.6.1 Device and Service Addressing

The device or service addressing within the SyncML SyncHdr element is done by using the URI scheme defined in the SyncML representation specification. Devices connected to the Internet constantly, MAY refer to the URI-based addressing. E.g., the source would be:

<Source>

<LocURI>http://www.syncml.org/sync-server</LocURI>

</Source>

Devices, which are, for example, connected temporarily, MAY prefer to identify themselves with their own identification mechanism. E.g., the Source element of a mobile phone device could be:

<Source>

<LocURI>IMEI:493005100592800</LocURI>

</Source>

The addressing scheme on the transport level (e.g. HTTP) is independent from the addressing scheme used at the SyncML layer and the two schemes do not need to match.

6.6.2 Usage of RespURI and Re-direction Status Codes

Devices MUST support receiving the RespURI element as specified in the SyncML Representation Protocol specification, but the support of the re-direction status codes (3XX) is OPTIONAL.

6.6.3 Database Addressing

The database addressing within the SyncML operations is done by using the URI scheme defined in the SyncML Representation protocol. Absolute or relative URI’s can be used for the server and client databases. E.g., the source elements for a server database in these two cases can look like:

<Sync>

...

<Target>

<LocURI>./calendar/james_bond</LocURI>

</Target>

...
</Sync>

<Sync>

<Target>

<LocURI>http://www.syncml.org/sync-server/calendar/james_bond</LocURI>

</Target>

...
</Sync>

6.6.4 Addressing of Data Items

The addressing of data items within the SyncML Item elements is done by using the URI-based scheme defined in the SyncML representation specification. Relative URI’s can be used. E.g., the source element for one item can look like:

<Item>

...

<Source>

<LocURI>101</LocURI>

</Source>

...

</Item>
6.7 Exchange of Device Capabilities

This protocol provides the functionality to exchange the device capabilities during the initialization (See Chapter 8). The exchange can be requested by the sync client or the sync server.

The sync client MUST send its device information to the server when the first synchronization is done with a server or when the static device information has been updated in the client. The client MUST also be able to transmit its device information if it is asked by the server. The client SHOULD also support the receiving of the server device information.

The sync server MUST be able to send its device information if requested by the client. The server MUST support the functionality of receiving and processing the client device information when sent by the client or requested by the server itself.

Implementation consideration. The exchange of the device information can require that a quite large amount of data is transferred over the air. Thus, the devices SHOULD avoid requesting the exchange at every time when sync is initialized. In addition, the devices SHOULD consider whether they need to send all device specific data if it is clear that another device cannot utilize it. E.g., if the client indicates that it does not support the vCard3.0 content format, the server SHOULD NOT send the supported properties of vCard3.0 if it supports it.

6.8 Device Memory Management

This protocol with the Meta Information DTD provides possibility to specify the dynamic memory capabilities for databases of a device or for persistent storage on a device. The capabilities specify how much memory there is left for usage. The dynamic capabilities can be specified every time when the synchronization is done. The static memory capabilities are exchanged when the sync initialization is done (See Chapter 6.7 and Chapter 8).

Although the sending of persistent memory capabilities is optional for both the sync clients and servers, the sync clients SHOULD send them and the sync servers MAY send them.

The usage of different types of memory capabilities is dependent on the persistent storage model on a device. Below there is an example how the dynamic memory capabilities of a calendar database on a device are represented, when the Sync command is sent.

<Sync>

<CmdID>1</CmdID>

<Target>

<LocURI>./calendar/james_bond</LocURI>

</Target>

<Source>

<LocURI>./dev-calendar</LocURI>

</Source>

<Meta>

<Mem xmlns=’syncml:metinf’>

<FreeMem>8100</FreeMem>

<!--Free memory (bytes) in Calendar database on a device -->

<FreeId>81</FreeId>

<!--Number of free records in Calendar database-->

</Mem>

</Meta>

<Replace>

...

</Replace>

...

</Sync>

The database-specific memory elements in the Meta element of the Sync command MUST be associated with the source database specified in the Source element of the Sync command.

6.9 Multiple Messages in Package

This protocol provides the functionality to transfer one SyncML package in multiple SyncML messages. This might be necessary if one SyncML package is too large to be transferred in one SyncML message. This limitation might be caused e.g., by the transport protocol or by the limitations of a small footprint device.

If a SyncML package is transferred in multiple SyncML messages, the last message in the package MUST include the Final element (See REPPRO). Other messages belonging to the package MUST NOT include the Final element. The Final element can only be included when all necessary commands belonging to a specific package have been sent. The final element MUST NOT be included if the other end has not closed the preceding package. E.g., if the server is still sending the package #4 to the client, the client MUST NOT close the package #5 prior to receiving the last message belonging to the package #4. The exclusion of the Final element is not to be used to indicate that a logical phase is not completed if an error occurs.

If a device receives a message in which the Final flag is missing and a Sync element for a database is included, the device MUST be able to handle the case that in the next message, there is another Sync element for the same database.

The device, which receives the SyncML package containing multiple messages, MUST be able to ask more messages. This happens by sending an Alert command with a specific alert code, 222 back to the originator of the package, or if there are other SyncML commands to be sent as a response, the Alert command with the 222 alert code MAY be omitted. After receiving the message containing the Final element, the Alert command MUST NOT be used anymore.

More messages are not desirable if errors, which prevent the continuation of synchronization, have occurred.

The receiver of a package MAY start to send its next package at the same time when asking more messages from the originator if this makes sense. Thus, in Chapters 8 - 12, it is specified which commands or elements are allowed to be sent before receiving the final message belonging to a package.

Below, there is depicted an example that the sync client is sending Package #3 in multiple messages (2 messages) and the server also sends Package #4 in multiple messages (2 messages).

[image: image5.wmf]

OMA DS Client

OMA DS Server

Pkg #3, Msg #1: Status for Init, Some of client modifications

Pkg #4, Msg #1: Status for client mod's, Alert for next msg

Pkg #3, Msg #2: Rest of client mod's, Alert for next msg, Final

Pkg #4, Msg #2: Status for client mod's, Server mo

d's, Final

Pkg #5, Msg #1: Status for server mod's, (Map operation

)

…

…

Figure 6 Example of Sending Multiple Messages in a Package

6.10 Large Object Handling

While synchronizing, object reception can be limited by two factors: the maximum message size the target device can receive (declared in <MaxMsgSize> tag), and the maximum object size the target device can receive (declared in <MaxObjSize> tag).

This feature provides a means to synchronize an object whose size exceeds that which can be transmitted within one message (e.g. the maximum message size – declared in <MaxMsgSize> element – that the target device can receive). This is achieved by splitting the object into chunks that will each fit within one message and by sending them contiguously. The first chunk of data is sent with the overall size of the object and a <MoreData/> signaling that more chunks will be sent. Every subsequent chunk is sent with a <MoreData/> tag, except from the last one: the final chunk is sent with no <MoreData/> tag. The target device, having received the final chunk, has to re-construct the object and consequently acts as it had received it in one piece (e.g. apply the requested command). The appropriate status MUST then be sent to the originator. A command on a chunked object MUST implicitly be treated as atomic, i.e. the recipient can only commit the object once all chunks have been successfully received and reassembled.
Note: This mechanism does not allow sending multiple large objects in the same time. A new data object MUST NOT be added by a sender to any message until the previous data object has been completed. If a data object is chunked across multiple messages, the chunks MUST be sent in contiguous messages. New Sync commands (i.e. Add, Replace, Delete, Copy, Atomic or Sequence) or new Items MUST NOT be placed between chunks of a data object.

6.10.1 Conformance statements:

Clients SHOULD support receiving Large Objects and servers MUST support receiving Large Objects.

Supporting Sending Large Objects is optional for both clients and servers.

A client supporting receiving Large Object MUST declare the <SupportLargeObjs/> tag in its DevInf.

Supporting receiving or sending Large Objects implies conformance constraints for several tags.

TAGS:

· SupportLargObjs [DEVINF]
· MaxObjSize [META]
· MaxMsgSize [META]
· Size [META]
· MoreData [REPPRO] – [DSREPU]
STATUS CODES AND ALERTS:

· Status 213 Chunked item accepted and buffered [REPPRO]
· Alert 222 NEXT MESSAGE [DSPROTO] – [DSREPU]
· Alert 223 End of Data for chunked object not received [SYNCPRO] – [DSREPU]
· Status 424 Size Mismatch [REPPRO]
· Status 416 Request entity too large [REPPRO]
· Status 411 Size REQUIRED. The requested command MUST be accompanied by byte size or length information in the Meta element type [REPPRO]
If a device supports receiving Large Objects it MUST declare the maximum size of object (<MaxObjSize> tag) it is capable of receiving as Meta information within the Alert or Sync command, as specified in [META].

 The device MUST also declare and fill the <MaxMsgSize> tag. This tag, also declared as Meta Information, specifies the maximum byte size of any response message to a given request. Knowledge of both <MaxObjSize> and <MaxMsgSize> allows to compute appropriate data chunk size.

6.10.2 Large Object exchange sequence:

This section illustrates and details the process of Large Object Handling. The following figure depicts a normal flow when handling Large Objects between 2 entities: the "Sending Large Object Device" and the "Receiving Large Object Device". Note that these 2 entities can represent a Client or a Server: a Client can send Large Objects to a Server, but a Server can send also Large Objects to a Client.

[image: image6.emf]Sending LO Device Receiving LO Device

Initialization

Msg #1: Sending LO Device sends its first chunk of data

(contains <Size> and <MoreData/>)

(Receiving LO Device Pkg contains <SupportLargeObjs/>, <MaxMsgSize> and <MaxObjSize>)

Resp #1: Receiving LO Device ACK

(Status 213 – «Chunked item accepted and buffered» and Alert 222 – «Next Message»)

Msg #2: Sending LO Device sends its 2nd chunk of data

(contains <MoreData/>)

Resp #2: Receiving LO Device ACK

Sending of other chunks: same exchanges as Msg #2 / Resp #2

Msg #n: Sending LO Device sends its last chunk of data

(DOES NOT contain <MoreData/>)

Resp #n: Receiving LO Device ACK

(Appropriate Status)

<Size>

analysis

<Size>

comparison

(Status 213 – «Chunked item accepted and buffered» and Alert 222 – «Next Message»)

Figure 7 Example of Sending a Large Object (normal case)

Note 1: In the previous diagram, LO means "Large Object".
Note 2: Please refer to the section 6.9 for the use of the Alert 222.
Exchange of a Large Object can be summarized with the following sequence:

1. During initialization:

1.1. On the sending device side

1.1.1. Sending device SHOULD use knowledge of the recipient’s <MaxMsgSize> to determine at what size segmentation occurs.

1.2. On the receiving device side

1.2.1. Receiving device MUST have declared the <SupportLargeObjs/> tag in its DevInf. It MUST also specify the value of its <MaxMsgSize> and its <MaxObjSize>.
2. When the first chunk of data is transmitted:

2.1. On the sending device side (Msg #1)

2.1.1. The sender MUST declare in the command element (e.g. add, replace) the overall size of the data element content that is going to be sent, using the <Size> sub-element of a Meta element.

 Note: The <Size> element MUST only be specified for the first chunk of data.

2.1.2. A <MoreData/> empty element MUST be added after the <Data> element.

2.2. On the receiving device side (Resp #1)

2.2.1. On receipt of a data chunk with the <MoreData/> element, the recipient MUST respond with a “Status 213 – Chunked item accepted and buffered” and ask for the next message using the Alert 222 mechanism as defined in section 6.9

Error case behavior:

1- If the Size exceeds the <MaxObjSize> of the recipient, the recipient MUST respond with a "Status 416 - Requested size too big" (the request failed because the specified byte size in the request was too big). The recipient MUST NOT commit the command.
2- If the recipient gets the first chunk with a <MoreData/> element, but no <Size> element, or non filled <Size> element, it MUST respond with a "Status 411 - Size required". The recipient MUST NOT commit the command. The sender MAY attempt to retransmit the entire data object.
3. When extra chunks of data are transmitted:

3.1. On the sending device side (Msg #2)

3.1.1. Meta and Item information SHOULD be repeated on each subsequent message containing chunks of the same data object.

3.1.2. A <MoreData/> empty element MUST be added after the <Data> element.

3.2. On the receiving device side (Resp #2)

3.2.1. On receipt of a data chunk with the <MoreData/> element, the recipient MUST respond with a “Status 213 – Chunked item accepted and buffered” and ask for the next message using the Alert 222 mechanism as defined in section 6.9

Error Case Behavior:

If the recipient detects a new data object or command before the previous item has been completed (by the chunk without the <MoreData/> Element), the recipient MUST respond with an "Alert 223 – End of Data for chunked object not received”. The Alert SHOULD contain the complete source and/or target information from the original command to enable the sender to identify the failed command.

Note: a Status would not suffice here because there would not necessarily be a command ID to refer to. The recipient MUST NOT commit the new and original commands. The sender MAY attempt to retransmit the entire original data object.

4. When the last chunk of data is transmitted:

4.1. On the sending device side (Msg #n)

4.1.1. The last chunk of data MUST NOT be followed with <MoreData/> element.

4.2. On the receiving device side (Resp #n)

4.2.1. On receipt of the last chunk of the data object, the recipient reconstructs the data object from its constituent chunks. It MUST validate that the size of re-constituted object matches the object <Size> supplied in the Meta information by the sender, then apply the requested command. The appropriate status MUST then be sent to the originator.

Error case behavior:

If the sizes do not match then a "Status 424 – Size mismatch” MUST be sent and the recipient MUST NOT commit the command. The sender MAY attempt to retransmit the entire data object.

6.10.3 Large Object exchange sequence example:

In this example the client sends a large object (for addition) to the server. The server has declared supporting Large Objects handling in its DevInf.
Client initializes a sync session
<SyncML>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>1126272244708</SessionID>

<MsgID>1</MsgID>

<Target>

<LocURI>http://Syncserver.com/sync</LocURI>

</Target>

<Source>

<LocURI>IMEI_number</LocURI>

</Source>

<Cred>

<Meta>

<Format>b64</Format>

<Type>syncml:auth-basic</Type>

</Meta>

<Data>dGVzdDp0ZXN0cHc=</Data>

</Cred>

<Meta>

<MaxMsgSize>3000</MaxMsgSize>

</Meta>

</SyncHdr>

<SyncBody>

<Alert>

<CmdID>1</CmdID>

<Data>201</Data>

<Item>

<Target>

<LocURI>./files</LocURI>

</Target>

<Source>

<LocURI>file:///Files</LocURI>

</Source>

<Meta>

<Anchor xmlns="syncml:metinf">

<Next>1126272244891</Next>

</Anchor>

<MaxObjSize>10000000</MaxObjSize>

</Meta>

</Item>

</Alert>

<Final/>

</SyncBody>

</SyncML>

Server Response

<SyncML>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>1126272244708</SessionID>

<MsgID>1</MsgID>

<Target>

<LocURI>IMEI_number</LocURI>

</Target>

<Source>

<LocURI> http://Syncserver.com/sync </LocURI>

</Source>

<Meta>

<MaxMsgSize>30000</MaxMsgSize>

</Meta>

</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>1</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>

<TargetRef> http://Syncserver.com/sync </TargetRef>

<SourceRef>IMEI_number</SourceRef>

<Data>212</Data>

</Status>

<Status>

<CmdID>2</CmdID>

<MsgRef>1</MsgRef>

<CmdRef>1</CmdRef>

<Cmd>Alert</Cmd>

<TargetRef>./files</TargetRef>

<SourceRef>file:///Files</SourceRef>

<Data>200</Data>

<Item>

<Data>

<Anchor xmlns="syncml:metinf">

<Next>1126272244891</Next>

</Anchor>

</Data>

</Item>

</Status>

<Results>

<!-- … -->

<Item>

<!-- … -->

<Data>

<DevInf xmlns=’syncml:devinf’>

<!-- … -->

<SupportLargeObjs/>

<!-- … -->

</DevInf>

</Data>

</Item>

</Results>

<Alert>

<CmdID>3</CmdID>

<Data>201</Data>

<Item>

<Target>

<LocURI>file:///Files</LocURI>

</Target>

<Source>

<LocURI>./files</LocURI>

</Source>

<Meta>

<Anchor xmlns="syncml:metinf">

<Last>1126271088771</Last>

<Next>1126272246596</Next>

</Anchor>

<MaxObjSize>10000000</MaxObjSize>

</Meta>

</Item>

</Alert>

<Final/>

</SyncBody>

</SyncML>

The client begins to send a large object

<SyncML>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>1126272244708</SessionID>

<MsgID>2</MsgID>

<Target>

<LocURI>http://Syncserver.com/sync?sid=W0JAMmYzNTZmLTExMjYyNzIyNDYxMz</LocURI>

</Target>

<Source>

<LocURI>IMEI_number</LocURI>

</Source>

<Meta>

<MaxMsgSize>3000</MaxMsgSize>

</Meta>

</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>1</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>

<TargetRef>IMEI_number</TargetRef>

<SourceRef>http://Syncserver.com/sync?sid=W0JAMmYzNTZmLTExMjYyNzIyNDYxMz</SourceRef>

<Data>200</Data>

</Status>

<Status>

<CmdID>2</CmdID>

<MsgRef>1</MsgRef>

<CmdRef>3</CmdRef>

<Cmd>Alert</Cmd>

<TargetRef>file:///Files</TargetRef>

<SourceRef>./files</SourceRef>

<Data>200</Data>

<Item>

<Data>

<Anchor xmlns="syncml:metinf">

<Next>1126272246596</Next>

</Anchor>

</Data>

</Item>

</Status>

<Sync>

<CmdID>3</CmdID>

<Target>

<LocURI>./files</LocURI>

</Target>

<Source>

<LocURI>file:///Files</LocURI>

</Source>

<Add>

<CmdID>4</CmdID>

<Meta>

<Type>application/vnd.omads-file+xml</Type>

<Size>2304</Size>

<Version>20050909T094007Z</Version>

</Meta>

<Item>

<Source>

<LocURI>p10.jpg</LocURI>

</Source>

<Data>

<!-- -->

<!-- Big Block Of Data Takes Place Here -->

<!-- -->

</Data>

<MoreData/>

</Item>

</Add>

</Sync>

</SyncBody>

</SyncML>

Server response : Data chunk is accepted

<SyncML>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>1126272244708</SessionID>

<MsgID>2</MsgID>

<Target>

<LocURI>IMEI_number</LocURI>

</Target>

<Source>

<LocURI>http://Syncserver.com/sync?sid=W0JAMmYzNTZmLTExMjYyNzIyNDYxMz</LocURI>

</Source>

</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>2</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>

<TargetRef>http://Syncserver.com/sync</TargetRef>

<SourceRef>IMEI_number</SourceRef>

<Data>200</Data>

</Status>

<Status>

<CmdID>2</CmdID>

<MsgRef>2</MsgRef>

<CmdRef>3</CmdRef>

<Cmd>Sync</Cmd>

<TargetRef>./files</TargetRef>

<SourceRef>file:///Files</SourceRef>

<Data>200</Data>

</Status>

<Status>

<CmdID>3</CmdID>

<MsgRef>2</MsgRef>

<CmdRef>4</CmdRef>

<Cmd>Add</Cmd>

<SourceRef>p10.jpg</SourceRef>

<Data>213</Data>

</Status>

<Alert>

<CmdID>4</CmdID>

<Data>222</Data>

<Item>

<!-- … -->

</Item>

</Alert>

</SyncBody>

</SyncML>

…

Client sends the last chunk of the large object

<SyncML xmlns="SYNCML:SYNCML1.2">

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>1126272244708</SessionID>

<MsgID>3</MsgID>

<Target>

<LocURI>http://Syncserver.com/sync?sid=W0JAMmYzNTZmLTExMjYyNzIyNDYxMz</LocURI>

</Target>

<Source>

<LocURI>IMEI_number</LocURI>

</Source>

<Meta>

<MaxMsgSize>3000</MaxMsgSize>

</Meta>

</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>2</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>

<TargetRef>IMEI_number</TargetRef>

<SourceRef>http://Syncserver.com/sync?sid=W0JAMmYzNTZmLTExMjYyNzIyNDYxMz</SourceRef>

<Data>200</Data>

</Status>

<Alert>

<CmdID>2</CmdID>

<Data>222</Data>

<Item>

<Data>Next Message Please</Data>

</Item>

</Alert>

<Sync>

<CmdID>3</CmdID>

<Target>

<LocURI>./files</LocURI>

</Target>

<Source>

<LocURI>file:///Files</LocURI>

</Source>

<Add>

<CmdID>4</CmdID>

<Meta>

<Type>application/vnd.omads-file+xml</Type>

<Version>20050909T094007Z</Version>

</Meta>

<Item>

<Source>

<LocURI>p10.jpg</LocURI>

</Source>

<Data>

<!-- -->

<!-- Large Object Ends Here -->

<!-- -->

</Data>

</Item>

</Add>

</Sync>

<Final/>

</SyncBody>

</SyncML>

…..
6.11 Hierarchical synchronization

Hierarchical synchronization consists in synchronizing a hierarchical data structure on a server and its equivalent on the client. A hierarchical data structure can be compared to a tree structure that is composed of:

· Branches that are links between a node and its children

· Nodes that contain the information : There are three kind of nodes :

· the root node which has no parent

· internal node which has a unique parent

· terminal node (or leaf) a node with no children

One of the most known tree structure is the filesystem where folders act as nodes and files as leaves

Regarding OMA-DS protocol, hierarchical synchronization mechanism is based on the use of <TargetParent> and <SourceParent> element.

The client uses <SourceParent> to specify the LUID for the parent of the client's side item.

Depending on the existence of the parent item on the client, the server will use TargetParent or SourceParent :

· If the parent exists on the client , the server must use the TargetParent tag that will contain the client's LUID for the parent of the server side's item

· If the parent item doesn't exist on the client, the server must use the SourceParent tag that will contain a temporary GUID for the parent of the server side's item. This case occurs when the server send items that the client has not mapped yet (eg moving a file into a newly created folder)
As an example we propose in the following a possible filesystem synchronization scenario

We suppose the client and server are synchronized. Items mapping table is

	Client's LUID
	Server's GUID
	Object name

	990
	ABCD990
	Urgent

	995
	ABCD995
	Work

	1000
	ABCD1000
	Image1.jpg

	1001
	ABCD1001
	Pictures

	1002
	ABCD1002
	Friends

After the last synchronization the following modifications were made on the client:

· The folder "NewFolder" has been created at the root of the filesystem.

· A file named "NewDocument.doc" has been created in the "NewFolder" folder

· The file "Image1.jpg" has been moved to the "Pictures" folder

Regarding the server modifications made are:

· A new folder "ToBeDone" has been created in the folder "Work"

· A file "ToDoList.doc" has been created in the folder "ToBeDone"

· Subfolder "Urgent" has been moved to "ToBeDone"

For those new resources the partial mapping table can be expressed as:

	Client's LUID
	Server's GUID
	Object name

	
	ABCD997
	ToBeDone

	
	ABCD998
	ToDoList.doc

	1003
	
	NewFolder

	1004
	
	NewDocument.doc

A subsequent synchronization will produce the following package snippets:

Package 3 : Client modifications

<Sync>

<CmdID>7</CmdID>

<Target>

<LocURI>./FileSystem</LocURI>

</Target>

<Source>

<LocURI>Files</LocURI>

</Source>

<Add>

<CmdID>8</CmdID>

<Meta>

<Type xmlns='syncml:metinf'>application/vnd.omads-folder+xml</Type>

</Meta>

<Item>

<Source>

<LocURI>1003</LocURI>

</Source>

<SourceParent>

<LocURI>/</LocURI>

</SourceParent>

<Data> Data containing DataObjFolder should be placed here </Data>

</Item>

</Add>

<Add>

<CmdID>9</CmdID>

<Meta>

<Type xmlns='syncml:metinf'>application/vnd.omads-file+xml</Type>

</Meta>

<Item>

<Source>

<LocURI>1004</LocURI>

</Source>

<SourceParent>

<LocURI>1003</LocURI>

</SourceParent>

<Data>Data containing DataObjFile should be placed here</Data>

</Item>

</Add>

<Move>

<CmdID>10</CmdID>

<Meta>

<Type xmlns='syncml:metinf'>application/vnd.omads-file+xml</Type>

</Meta>

<Item>

<Source>

<LocURI>1000</LocURI>

</Source>

<SourceParent>

<LocURI>1001</LocURI>

</SourceParent>

</Item>

</Move>

</Sync>

The client modification package contains:

· An <Add> command with SourceParent containing "/" and <Source> "1003" (creation of "NewFolder" at the root)

· An <Add> command with SourceParent containing "1003" and <Source> "1004" (creation of "NewDocument.doc" int the "NewFolder" folder)

· A <Move> command with SourceParent containing "1001" and <Source> "1000" (Moving of "image1.jpg" in "Pictures")

Package 4: server modifications

<Sync>

<CmdID>17</CmdID>

<Target>

<LocURI>Files</LocURI>

</Target>

<Source>

<LocURI>./FileSystem </LocURI>

</Source>

<Add>

<CmdID>18</CmdID>

<Meta>

<Type xmlns='syncml:metinf'>application/vnd.omads-folder+xml</Type>

</Meta>

<Item>

<Source>

<LocURI>ABCD997</LocURI>

</Source>

<TargetParent>

<LocURI>995</LocURI>

</TargetParent>

<Data> Data containing DataObjFolder should be placed here </Data>

</Item>

</Add>

<Add>

<CmdID>19</CmdID>

<Meta>

<Type xmlns='syncml:metinf'>application/vnd.omads-file+xml</Type>

</Meta>

<Item>

<Source>

<LocURI>ABCD998</LocURI>

</Source>

<SourceParent>

<LocURI>ABCD997</LocURI>

</SourceParent>

<Data> Data containing DataObjFile should be placed here </Data>

</Item>

</Add>

<Move>

<CmdID>20</CmdID>

<Meta>

<Type xmlns='syncml:metinf'>application/vnd.omads-folder+xml</Type>

</Meta>

<Item>

<Source>

<LocURI>990</LocURI>

</Source>

<SourceParent>

<LocURI>ABCD997</LocURI>

</SourceParent>

</Item>

</Move>

</Sync>

The server modifications package contains:

· An <Add> command with <TargetParent> containing "995" (the client's LUID for the parent of the "ToBeDone" item)
· An <Add> command with <SourceParent> containing "ABCD997" (Since the client has not mapped "ToBeDone" yet we use <SourceParent> and the server side's parent GUID of "ToDoList.doc")
· A move command with <SourceParent> containing "ABCD997" and <Source> containing 990 (Moving "Work" to "ToBeDone")
6.12 Sync without Separate Initialization

Description:
Synchronization can be started without a separate initialization (See the initialization in Chapter 8). This means that the initialization is done simultaneously with sync. This can be done to decrease the number of SyncML messages to be sent over the air.
Conformance statement:
Clients MAY support the feature "Sync without separate initialization".
Servers MUST support the feature "Sync without separate initialization".

Behaviour description when client and server do implement the feature:
When the client initiates the synchronization session, it combines the Package #1 within the Package #3. The Alert command(s) (from the client) in Package #1 is sent within Package #3, in which the Sync command(s) are also placed. The server MUST combine Package #2 within Package #4. The Alert command(s) (from Server) in Package #2 is sent within Package #4, in which the Sync command(s) are also placed.
See the example in Examples.

6.12.1 Robustness and Security Considerations

If the client implementation decides to use sync without a separate initialization, the following considerations SHOULD be taken into account:

· The client sends its modifications to the server before the server gets the sync anchors from the client. Because of this, the client might need to send all data again if the server has a need to request a slow sync.

· Server sync anchor are not received before sending the client modifications. Thus, if the client needs to request a slow sync, earlier data, which was sent in Package #3 to the server, was unnecessarily sent and all data needs to be sent to server.

· The client sends its modifications to the server before there is any possibility for the server to send its credentials (if requested) to the client. I.e., the client cannot be sure whether it is communicating with the correct server.

6.12.2 Example of Sync without Separate Initialization

Here is shown an example, how the client starts sync without a separate sync initialization. Only two packets are shown here (combination of Packages #1 and #3 and the combination of Packages #2 and #4). Package #5 and #6 can follow as defined in the specification.

Combination of Package #1 and #3

<SyncML>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>4</SessionID>

<MsgID>1</MsgID>

<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>

<Source><LocURI>IMEI:493005100592800</LocURI></Source>

<Cred> <!--The authentication is optional.-->

<Meta><Type xmlns=’syncml:metinf’>syncml:auth-basic</Type></Meta>

<Data>QnJ1Y2UyOk9oQmVoYXZl</Data> <!--base64 formatting of “userid:password”-->

</Cred>

</SyncHdr>

<SyncBody>

<Alert>

<CmdID>1</CmdID>

<Data>200</Data> <!-- 200 = TWO_WAY_ALERT -->

<Item>

<Target><LocURI>./contacts/james_bond</LocURI></Target>

<Source><LocURI>./dev-contacts</LocURI></Source>

<Meta>

<Anchor xmlns=’syncml:metinf’>

<Last>234</Last>

<Next>276</Next>

</Anchor>

</Meta>

</Item>

</Alert>

<Sync>

<CmdID>2</CmdID>

<Target><LocURI>./contacts/james_bond</LocURI></Target>

<Source><LocURI>./dev-contacts</LocURI></Source>

<Meta>

<Mem xmlns=’syncml:metinf’>

<FreeMem>8100</FreeMem>

<!--Free memory (bytes) in Calendar database on a device -->

<FreeId>81</FreeId>

<!--Number of free records in Calendar database-->

</Mem>

</Meta>

<NumberOfChanges>1</NumberOfChanges>

<Replace>

<CmdID>3</CmdID>

<Meta><Type xmlns=’syncml:metinf’>text/x-vcard</Type></Meta>

<Item>

<Source><LocURI>1012</LocURI></Source>

<Data><!--The vCard data would be placed here.--></Data>

</Item>

</Replace>

</Sync>

<Final/>

</SyncBody>

</SyncML>

Combination of Package #2 and #4

<SyncML>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>4</SessionID>

<MsgID>1</MsgID>

<Target><LocURI>IMEI:493005100592800</LocURI></Target>

<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>

</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>

<TargetRef>http://www.syncml.org/sync-server</TargetRef>

<SourceRef>IMEI:493005100592800</SourceRef>

<Data>212</Data> <!--Statuscode for OK, authenticated for session-->

</Status>

<Status>

<CmdID>2</CmdID>

<MsgRef>1</MsgRef><CmdRef>1</CmdRef><Cmd>Alert</Cmd>

<TargetRef>./contacts/james_bond</TargetRef>

<SourceRef>./dev-contacts</SourceRef>

<Data>200</Data> <!--Statuscode for OK-->

<Item>

<Data><Anchor xmlns=’syncml:metinf’><Next>276</Next></Anchor></Data>

</Item>

</Status>

<Status>

<CmdID>3</CmdID>

<MsgRef>1</MsgRef><CmdRef>2</CmdRef><Cmd>Sync</Cmd>

<TargetRef>./contacts/james_bond</TargetRef>

<SourceRef>./dev-contacts</SourceRef>

<Data>200</Data> <!--Statuscode for Success-->

</Status>

<Status>

<CmdID>4</CmdID>

<MsgRef>1</MsgRef><CmdRef>3</CmdRef><Cmd>Replace</Cmd>

<SourceRef>1012</SourceRef>

<Data>200</Data> <!--Statuscode for Success-->

</Status>

<Alert>

<CmdID>5</CmdID>

<Data>200</Data> <!-- 200 = TWO_WAY_ALERT -->

<Item>

<Target><LocURI>./dev-contacts</LocURI></Target>

<Source><LocURI>./contacts/james_bond</LocURI></Source>

<Meta>

<Anchor xmlns=’syncml:metinf’>

<Last>20040119T081812Z </Last>

<Next>20040120T093223Z </Next>

</Anchor>

</Meta>

</Item>

</Alert>

<Sync>

<CmdID>6</CmdID>

<Target><LocURI>./dev-contacts</LocURI></Target>

<Source><LocURI>./contacts/james_bond</LocURI></Source>

<NumberOfChanges>2</NumberOfChanges>

<Replace>

<CmdID>7</CmdID>

<Meta><Type xmlns=’syncml:metinf’>text/x-vcard</Type></Meta>

<Item>

<Target><LocURI>1023</LocURI></Target>

<Data><!--The vCard data would be placed here.--></Data>

</Item>

</Replace>

<Add>

<CmdID>8</CmdID>

<Meta><Type xmlns=’syncml:metinf’>text/x-vcard</Type></Meta>

<Item>

<Source><LocURI>10536681</LocURI></Source>

<Data><!--The vCard data would be placed here.--></Data>

</Item>

</Add>

</Sync>

<Final/>

</SyncBody>
</SyncML>
6.13 Suspend and Resume of synchronization session

Interruption can occur in two different ways:

1. User initiated interruption/Pause (Can also be viewed as an intentional pause):

This kind of interruption occurs when user requests to pause the current session and thereby resulting into a negotiation phase between client and server to pause the session.

In order to interrupt the sync session, the client MAY send a message containing ‘Interrupt Sync Session’ with no client side data items and MAY contain statuses to server’s data items. This message can be sent before receiving the complete package from the server.

2. Loss of network coverage or phone malfunction (Can also be viewed as an unintentional pause):

This kind of interruption can be due to loss of network coverage or phone malfunction or for other unknown reasons that lead to an immediate interruption of the sync session and thus not needing a special alert code for interruption.

The interruption MAY occur during any of the synchronization phases - initialization, or during synchronization, or during mapping phase.

6.13.1 Interrupting a synchronization session

The following examples illustrate an interruption for both slow sync and normal sync with the help of SyncML messages.

i Client device initiate synchronization of Contacts, Calendar datastore. Due to maximum message size, client is able to send all contacts modifications, in this example 10 contacts items, but only 5 of 10 calendar modifications.

<SyncML xmlns='SYNCML:SYNCML1.2'>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>1</SessionID>

<MsgID>2</MsgID>

<Target>

<LocURI>http://syncserver.com/servlets/SyncML</LocURI>

</Target>

<Source>

<LocURI>IMEI:004400061769830</LocURI>

</Source>

...

</SyncHdr>

<SyncBody>

<Status>

<!-- Statuses for SyncHdr and so on -->

...

</Status>

<Sync>

<CmdID>4</CmdID>

<Target>

<LocURI>./Contact/Contacts</LocURI>

</Target>

<Source>

<LocURI>./C\System\Data\Contacts.cdb</LocURI>

</Source>

...

<!--10/10 Contact items-->

</Sync>

<Sync>

<CmdID>15</CmdID>

<Target>

<LocURI>./Calendar/Calendars</LocURI>

</Target>

<Source>

<LocURI>./C\System\Data\Calendars.cdb</LocURI>

</Source>

...

<!-- 5/10 Calendar items-->

</Sync>

</SyncBody>

</SyncML>

ii Server responds with statuses of client’s items that were sent in the previous example by the client.

<SyncML xmlns='SYNCML:SYNCML1.2'>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>1</SessionID>

<MsgID>2</MsgID>

<Target>

<LocURI>IMEI:004400061769830</LocURI>

</Target>

<Source>

<LocURI>http://syncserver.com/servlets/SyncML</LocURI>

</Source>

...

</SyncHdr>

<SyncBody>

<Status>

<!-- Statuses for SyncHdr, Sync, 10/10 contact items and 5/10 calendar items -->

...

</Status>

</SyncBody>
</SyncML>

iii User decides to interrupt the sync session and so instead of sending the remaining calendar items, client alerts the server to interrupt the session This interruption is an intentional interruption where the user request for pausing the ongoing synchronization session. Hence, client MUST sent an Alert Code – 224, ‘Interrupt Session ’. The alert message from client to interrupt sync session MAY also contain statuses to server’s data items.

<SyncML xmlns='SYNCML:SYNCML1.2'>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>1</SessionID>

<MsgID>3</MsgID>

<Target>

<LocURI>http://syncserver.com/servlets/SyncML</LocURI>

</Target>

<Source>

<LocURI>IMEI:004400061769830</LocURI>

</Source>

...

</SyncHdr>

<SyncBody>

<Status>

<!-- Statuses for SyncHdr and so on -->

...

</Status>

<Alert>

<CmdID>1</CmdID>

<Data>224</Data> <!-- Alert code to ‘Interrupt Session’ -->

<Item>

<Target>

<LocURI>http://syncserver.com/servlets/SyncML</LocURI>

</Target>

<Source>

<LocURI>>http://IMEI:004400061769830</LocURI>

</Source>

</Item>

</Alert>

<Status>

<CmdID>2</CmdID>

<MsgRef>2</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>

<TargetRef>IMEI:004400061769830</TargetRef>

<SourceRef>http://syncserver.com/servlets/SyncML</SourceRef>

<Data>200</Data>

</Status>

</SyncBody>

</SyncML>

iv Server accepts client’s request to interrupt the session by acknowledging to the client’s alert request.

<SyncML xmlns='SYNCML:SYNCML1.2'>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>1</SessionID>

<MsgID>3</MsgID>

<Target>

<LocURI>IMEI:004400061769830</LocURI>

</Target>

<Source>

<LocURI>http://syncserver.com/servlets/SyncML</LocURI>

</Source>

...

</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>3</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>

<TargetRef>http://syncserver.com/servlets/SyncML</TargetRef>

<SourceRef>IMEI:004400061769830</SourceRef>

<Data>200</Data>

</Status>

<Status>

<CmdID>2</CmdID>

<MsgRef>3</MsgRef>

<CmdRef>1</CmdRef>

<Cmd>Alert</Cmd>

<TargetRef>http://syncserver.com/servlets/SyncML</TargetRef>

<SourceRef>IMEI:004400061769830</SourceRef>

<Data>200</Data>

</Status>

</SyncBody>

</SyncML>

At this point client and server can terminate the session by disconnecting the transport. Since this is an interruption of the session the ‘Last Anchor’ MUST NOT be updated. Also, client and server MUST record that the session was interrupted so that the next session will be a resume instead of a new session. Of course, if for some reason the client wishes to force a slow-sync then it MAY do so by not alerting to resume.

Interupting a synchronization during sending of the last package to the server might lead to unnecessary slow syncs.
6.13.2 Resuming synchronization session

Either interruption occurs intentionally or unintentionally, the resumption of the session is the same as stated in the following sections.

When session gets interrupted client SHOULD try to ‘Resume Session’, even if server acknowledged all clients’ items and no new items are to be sent by client. In resuming the session, client MUST NOT use the same session id as the previous interrupted session but MUST be incremented to next value as specified in section 6.1.22 of [REPPRO]. Client is always allowed to Alert for ‘Slow Sync’ or any other type of sync based on the stored anchor from the last succesful synchronization session.

Additionally, if the interrupted session needs to be resumed then value of the ‘Next’ anchor MUST be updated per the OMA DataSyncProtocol v1.2. Since this is viewed as a resumption of the previous interrupted sync session, the value of the ‘Last’ anchor MUST NOT be updated and does not need to be sent.
Re-sending data items:

In the event of an interruption to the sync session, the operations that have received statuses from the server MUST NOT be re-sent to the server during the resumption of the interrupted sync session. This is applicable for all sync types.
It is preferred that clients do not request suspension of a session within the last message. As well, it is preferred that clients do not request resumption of a session if authentication did not occur before this session. In the result of an unintentional interruption occurring before authentication, it is ideal that the client initiates a new session with the same sync type as the previous attempt.
If the interruption has occurred before server started sending its modifications to the client, in the resuming session client MUST send the remainder of package #3. Client MAY include modifications made between suspended and resuming sessions if sending those operations does not break the consistency of the server datastore.

If the interruption has occurred after server started sending its modifications to the client, client MUST NOT send any modifications in the resuming session. Server MUST send the remainder of the package #4. Server MAY include modifications made between suspended and resuming sessions if sending those operations does not break the consistency of the client datastore.

If the operation sent by the originator did not receive status from the recipient, either the old operation MUST be resent or the latest state of the item MUST be sent.

If the client is not able to deliver a consistent datastore state to the server during resume, client MUST NOT resume.

If the server is not able to delivery a consistent datastore state to the client during resume, server MUST NOT accept the resume request.

Servers MUST maintain the temporary identifiers for the entire synchronization. This means when a session is interrupted during an Add operation from server to client, during resuming the session, server MUST use the same temporary identifiers as used in the interrupted session. Also, if an Add from server to the client has been successful and if the session is interrupted then client MUST send the ‘Map’ operation during the resume session. This is similar to the case when client MAY NOT sent ‘Map’ to the server as outlined in section 9.3 and 6.3.1
The following examples illustrate resumption for both slow sync and normal sync with the help of SyncML messages.
Resuming of the sync session can be indicated by using an Alert code for ‘Resume session’ during the initialization phase i.e. package 1 and package 2.

Client initiated slow-sync:

<?xml version="1.0" encoding="UTF-8"?>

<SyncML xmlns='SYNCML:SYNCML1.2'>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>2</SessionID>

<!--Session id is NOT the same as the previous interrupted session-->

<MsgID>1</MsgID>

...

</SyncHdr>

<SyncBody>

<Alert>

<CmdID>1</CmdID>

<Data>225</Data> <!-- Alert code to ‘Resume Session’ -->

<Item>

<Target>

<LocURI>./Contact/Contacts</LocURI>

</Target>

<Source>

<LocURI>./C\System\Data\Contacts.cdb</LocURI>

</Source>

<Meta>

<Anchor xmlns='syncml:metinf'>

<Next>20021101T124234Z</Next> <!-- Updated -->

</Anchor>

</Meta>

</Item>

</Alert>

...

<Final/>

</SyncBody>

</SyncML>

The alert code for ‘Resume Sync Session’ does not contain the sync type of previous session, which is necessary to know prior to sending and receiving the <Sync> commands. When the client requires a resumption to the server, the latter can choose to either accept the request or to reject it - in order to force a refresh sync. If the server accepts the request, it MUST use the same sync type as for the interrupted session. If it rejects the request, it MUST reply with the status code 508.
If the status code for ‘Resume Sync Session’ is a 200 ‘Success’, alert for sync type in server’s response is used by the server to indicate the type of sync being resumed. If the status code for ‘Resume Sync Session’ is 508 ‘Refresh Required’ then alert for sync type is used by the server to indicate the new sync type.

The following code snippets elaborate how the server accepts or rejects the resume alert and based on that indicates the relevant sync-type, which is either the previous session’s sync-type or forces a refresh sync.
<?xml version="1.0" encoding="UTF-8"?>

<SyncML xmlns='SYNCML:SYNCML1.2'>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>2</SessionID>

<MsgID>1</MsgID>

...

</SyncHdr>

<SyncBody>

...

<Status>

<CmdID>2</CmdID>

<MsgRef>1</MsgRef>

<CmdRef>1</CmdRef>

<Cmd>Alert</Cmd>

<TargetRef>./.Contact/Contacts</TargetRef>

<SourceRef>./C\System\Data\Contacts.cdb</SourceRef>

<Data>200</Data> <!--Server Accepts to Resume previous Sync Session

OR Server Rejects to Resume, instead forces a Refresh, status 508-->

<Item>

<Data>

<Anchor xmlns='syncml:metinf'>

<Next>20021101T124234Z</Next>

</Anchor>

</Data>

</Item>

</Status>

<Alert>

<CmdID>3</CmdID>

<Data>201</Data> <!—Server uses the previous Sync type --> OR

<!—Server uses 201, which is not similar to the resuming previous slow-sync session. The difference being that server has rejected to Resume the previous slow-sync (status to alert for resume MUST be 508) and has forced a ‘Refresh’ i.e a full slow-sync, instead.-->

<Item>

<Target>

<LocURI>./C\System\Data\Contacts.cdb</LocURI>

</Target>

<Source>

<LocURI>./Contact/Contacts</LocURI>

</Source>

<Meta>

<Anchor xmlns='syncml:metinf'>

<Last>1</Last> <!-- Not updated -->

<Next>2</Next> <!-- Updated -->

</Anchor>

</Meta>

</Item>

</Alert>

...

<Final/>

</SyncBody>
</SyncML>

6.14 Busy Signaling

If the server is able to receive the data from the client but it is not able to process the request(s) at a reasonable time
 after receiving the modifications from the client, the server SHOULD send information about that to the client. This happens by sending the Busy Status package back to the client.

After the client has received a busy signal from the server, the client MAY ask for the sync results later or start the synchronization from the beginning. If the client starts the synchronization from the beginning its ‘Last’ sync anchor MUST NOT be updated.

If the server has sent the busy status to the client and it does not get a request from the client (i.e., Result Alert), the server MUST assume that the client has stopped the synchronization and start the synchronization from the beginning. The server MUST NOT update its ‘Last’ sync nor the client ‘Next’ sync anchors.

6.14.1 Busy Status from Server

Informing the client that the server is busy happens by sending the Busy Status package to the client. This can be sent before any package is completely received. The Busy Status package MUST NOT be used to return status information related to any individual data items or command which are in SyncBody of the client request.

The requirements for the elements within the Busy Status package are:

1. Requirements for the elements within the SyncHdr element.

· The value of the VerDTD element MUST be ‘1.2’.

· The value of the VerProto element MUST be ‘SyncML/1.2’.

· Session ID MUST be included to indicate the ID of a sync session.

· MsgID MUST be used to unambiguously identify the message belonging to a sync session and traveling from the server to the client.

· The Target element MUST be used to identify the target device.

· The Source element MUST be used to identify the source device and service.

2. The Status element for the SyncHdr MUST be included in SyncBody.

· The status code (101, in progress) MUST be returned within the Status for the command sent by the client. The status is returned for the SyncHdr command.

3. The Final element MUST NOT be used for the message.

6.14.1.1 Example of Busy Status

<SyncML>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>1</SessionID>

<MsgID>2</MsgID>

<Target>

<LocURI>IMEI:493005100592800</LocURI>

</Target>

<Source>

<LocURI>http://www.syncml.org/sync-server</LocURI>

</Source>

</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>2</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>

<TargetRef>http://www.syncml.org/sync-server</TargetRef>

<SourceRef>IMEI:493005100592800</SourceRef>

<Data>101</Data> <!--Statuscode for Busy-->

</Status>

</SyncBody>

</SyncML>

6.14.2 Result Alert from Client

The result alert is sent to ask results to the last message which was sent to the server. This is done by sending a Result Alert package from the client to the server. A message within this package has the following requirements.

1. Requirements for the elements within the SyncHdr element.

· The value of the VerDTD element MUST be ‘1.2’.

· The value of the VerProto element MUST be ‘SyncML/1.2’.

· Session ID MUST be included to indicate the ID of a sync session.

· MsgID MUST be used to unambiguously identify the message belonging to a sync session and traveling from the client to the server.

· The Target element MUST be used to identify the target device and service.

· The Source element MUST be used to identify the source device.

2. The Alert element MUST be included in SyncBody. There are the following requirements for this Alert element.

· CmdID MUST be used.

· The Item element is used to specify the server and the client device.

· The Data element is used to include the Alert code. The alert code is ‘221’ (See Alert Codes).

3. The Final element MUST NOT be used for the message.

If the server is still busy, when it receives this Result Alert from the client, it MUST again return the Busy Status with the ‘101’ status code back to client. The status code is associated with the SyncHdr and the Alert command sent by the client.

6.14.2.1 Example of Result Alert

<SyncML>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>1</SessionID>

<MsgID>3</MsgID>

<Target>

<LocURI>http://www.syncml.org/sync-server</LocURI>

</Target>

<Source>

<LocURI>IMEI:493005100592800</LocURI>

</Source>

</SyncHdr>

<SyncBody>

<Alert>

<CmdID>1</CmdID>

<Data>221</Data>

<Item>

<Target>

<LocURI>http://www.syncml.org/sync-server</LocURI>

</Target>

<Source>

<LocURI>IMEI:493005100592800</LocURI>

</Source>

</Item>

</Alert>

</SyncBody>

</SyncML>
7. OMA Data Synchronization Usage

The SyncML representation protocol does not specify the data synchronization protocol or "sync engine", but rather specifies a common synchronization framework and format that accommodates different data synchronization models. The SyncML representation protocol specifies what the result of the various synchronization operations must be.

7.1 SyncML Data Synchronization Framework

OMA Data Synchronization not only defines a format, but also a conceptual data synchronization framework and data synchronization protocol. The framework is depicted in Figure 1. In the figure, the scope of the SyncML Data Synchronization Framework is shown by the dotted-line box. The Framework consists of the SyncML representation protocol, as well as a conceptual SyncML Adapter and SyncML Interface. This SyncML Data Synchronization Framework is useful for describing the particular system model associated with OMA Data Synchronization implementations.

The OMA data synchronization protocol is outside the SyncML Data Synchronization Framework, but is essential for providing interoperable data synchronization. The OMA data synchronization protocol is defined by another, companion OMA DS specification [DSPRO].

The application "A" depicts a networked service that provides data synchronization with other applications, in this case application "B", on some networked device. The service and device are connected over some common network transport, such as HTTP. Application "A" utilizes a data synchronization protocol, implemented as the "Sync Engine" process. The data synchronization protocol is manifested on the network by client applications accessing the "Sync Server" network resource. The "Sync Server Agent" manages the "Sync Engine" access to the network and communicates the data synchronization operations to/from the client application. The "Sync Server Agent" performs these capabilities through invocations to functions in the "SyncML I/F" or interface. The "SyncML I/F" is the application programming interface to the "SyncML Adapter". The "SyncML Adapter" is the conceptual process that the originator and recipient of SyncML formatted objects utilize to communicate with each other. The "SyncML Adapter" is also the framework entity that interfaces with the network transport, which is responsible for creating and maintaining a network connection between Application "A" and Application "B". Application "B" utilizes a "Sync Client Agent" to access the network and it's "SyncML Adapter", through invocations of functions in the "SyncML I/F".

Actual server and client implementations might not be implemented in the discrete components identified by this conceptual framework. However, this framework is useful for a common discussion of the components that are necessary to implement a common data synchronization protocol.

Figure 1: SyncML Framework

[image: image7.png]App A
SyncML

\|A/ Framework
Sync icati H App B
En‘gljine application/vnd.syncml ;

® Objects \IA/
Sync Sync
Server . Client
Agent 1. Agent

.
o,
sesssrascane

R—

(e.0., HTTP/WSP/OBEX)

7.2 OMA DS Data Formats

OMA DS not only provides for a common set of commands, but also identifies a small set of common data formats. The data formats provide a common set of media types for exchanging common accepted information, such as contacts, calendars and messages. Support for these data formats is mandatory for conformance to this specification. In addition to these common formats, OMA DS allows for the identification of any other registered format. OMA DS utilizes the MIME content type framework for identifying data formats, called MIME media types.

7.3 Capabilities Exchange

OMA DS supports capabilities exchange. Capabilities exchange is the ability of an OMA DS Client and Server to determine what device, user and application features each supports. The capabilities exchange, from the OMA DS Server perspective, is achieved by using the Get command to retrieve the device information, user information and application information documents from the OMA DS Client. The capabilities exchange, from the OMA DS Client perspective, is achieved by using the Get command to retrieve the analogous documents from the OMA DS Server. These documents contain profile information about support for well-defined features. In addition, the Put command can be used to by the OMA DS Client to push capabilities exchange information to the OMA DS Server.

The capabilities exchange can also be used to establish or administer OMA data synchronization services between an OMA DS Client and Server.

Refer to [SYNCDEVDTD] for further details on the specification of the Device Information DTD.
7.4 Data Identifier Mapping

OMA DS does not require that two data stores being synchronized be of the same schema (i.e., aren't homogeneous). Specifically, OMA DS allows for both the data identifiers and the data formats to be different in the two data collections. However, in such cases in order to use OMA DS, the synchronizing applications would need to provide a mapping between data identifiers in one data store and those in another. For example, a document on the data synchronization server could be identified with a 16 byte, globally unique identifier (GUID). The corresponding version of this document on a mobile device could be identified by a small, two byte, and local unique identifier (LUID). Hence, to synchronize the data on the mobile device with the data on the data synchronization server, the synchronizing application would have to map the smaller identifiers of the mobile device to the larger identifiers used by data synchronization server; and visa versa. OMA DS includes the necessary mechanism to specify such an identifier mapping.

7.5 Refreshing Data

In addition to synchronization, OMA DS includes commands that are not normally thought of as synchronization operations, but are still necessary in a practical data synchronization protocol. For example, OMA DS provides the capability for refreshing the entire data on the OMA DS client with the equivalent synchronization data on the OMA DS server. This could be necessary if the OMA DS client and the OMA DS server versions are no longer "in sync" with each other due to a hardware or power failure in the mobile device, or if the version on the OMA DS client has become corrupted or erased from memory. This capability is provided by the OMA DS client issuing a "refresh" Alert command to the OMA DS server.

7.6 Soft and Hard Data Deletion

The SyncML Delete command provides the capability for a SyncML request to delete data from the recipient's data store. Two forms of deletion are supported. Normally, when a Delete command is specified, it conveys a request to completely delete the specified data from the recipient's data store. The deleted data SHOULD no longer be associated with the originator's synchronization data. This is the semantics of a "Hard Delete". In addition, SyncML provides support for a "Soft Delete" command.

The rationale for a "Soft Delete" is based on the possibility of limited storage resources in a client device. The data is deleted to free-up storage for other, higher priority data on the client device.

The operation of “Soft Delete” is defined in the command section SftDel (see 6.1.23).

On occasions, an exception can occur where a data element on the OMA DS client is "Soft Deleted" and the same data element is "Hard Deleted" on the OMA DS server. This condition will cause a "Soft-Delete Conflict" for that event when a two-way synchronization is attempted. This version of OMA DS does not specify how to negotiate the resolution of such "Soft-Delete Conflicts". However, it does provide status codes to identify Soft-Delete Conflict conditions and to also identify how the conflict might have been resolved.

7.7 Archiving Data

The SyncML Delete command provides the capability for a SyncML request to archive data on the recipient prior to deleting it from the device. This is indicated by the presence of the Archive element type in the Delete command. Some recipients might not support this feature, in which case, the Archive would generate an error condition (i.e., (210) Delete without Archive.).

7.8 Replacing Data

The SyncML Replace command provides the capability for the originator to replace existing data. The command can also be the cause for an "Update Conflict".

7.8.1 Field-level Replace

The SyncML Replace command also provides the capability for the originator to send an update to the recipient without having to transfer the entire item. This technique is also called Field-level changes. This feature is extremely useful for the data types in which relatively concise attributes (for example the "read" status of the e-mail) are more likely to change, than substantially larger attributes like the body of the message or the attachments.

Not all data types are equally suited for being used with Field-level replace. It is the responsibility of the sender to compose the partial items in the corresponding data format in such a manner that they are unambiguously interpreted by the receiver. Also it is the responsibility of the sender to compose the partial items in the corresponding data format ensuring that the format remains valid. If the sender cannot meet these criteria then it MUST send a replace for the entire item instead of a field-level replace.

Example:

It is ambiguous to send the field-level change containing the following vCard

	BEGIN:VCARD
VERSION:2.1
N:Doe;John;;;
TEL;HOME:(321) 654-987
END:VCARD

In this case if the receiving side supports more than one HOME phone number, it will have an ambiguity understanding which one was changed.

Example 2:

It is improper to send the field-level change containing the following vCard

	BEGIN:VCARD
TITLE:Worker
END:VCARD

The vCard format mandates the VERSION and N attributes to be present within the item.

On occasions, an exception can occur where the same data element on both the OMA DS client and the OMA DS server have been updated or replaced. For example, the start and end date/time for the same event might have been changed to different values on the OMA DS client compared to the description on the OMA DS server. This condition will cause an "Update Conflict" for that event when a two-way synchronization is attempted. This version of OMA DS does not specify how to negotiate the resolution of such Update Conflicts. However, it does provide status codes to identify Update Conflict conditions and to also identify how the conflict might have been resolved.

7.9 Searching For Data

The SyncML Search command provides the capability for searching a recipient data store for particular data. This command provides support for any registered search grammar. The specific search grammar is identified by the Type element in the Meta element type within the Search command.

The SyncML Search command can be used to select items within a data store to be used as the source for a subsequent SyncML Sync Command.

In addition, SyncML enables a search or filter to be specified on the Target LocURI element within the Sync command. With this capability, OMA DS clients can specify filter constraints on the database records for a Sync command. For example, a mobile client can specify that the synchronization with a server calendar database is restricted to today's events.

7.10 Localization

The SyncML representation protocol allows an originator to specify the desired localization for the synchronization operation and synchronization data for any registered language. The xml:lang attribute can be specified on any element type to identify the language used in the element type's content model. In addition, a Get and Search command can specify the desired language for results by specifying the Lang element type in the Get or Search command.

The default character set for SyncML representation protocol is UTF-8, as defined in [RFC2279].

7.11 MIME Usage

There are two MIME content types for the OMA Data Synchronization Message. The MIME content type of application/vnd.syncml+xml identifies the clear-text XML representation for the SyncML Message. The MIME content type of application/vnd.syncml+wbxml identifies the WBXML binary representation for the SyncML Message. Section 8 of this specification specifies the MIME content type registration for these two MIME media types.

One of these two MIME content types MUST be used for identifying OMA Data Synchronization Messages within transport and session level protocols that support MIME content types.

7.12 Target and Source Addressing

The Target and Source element types are used in OMA DS to specify target and source routing addresses, respectively, within the LocURI element type. The LocURI SHOULD be either a location URI or location URN, but in certain cases can also be a locally unique identifier (see the table below). In addition, an OPTIONAL display name (i.e., LocName) can be specified within the Target and Source element types to provide a display name for the LocURI value.

In addition, the TargetParent and SourceParent element types MAY be used to provide parent information of the child that is mentioned in the Target or Source LocURI of the sync commands (Add, Replace, Move). Usage of SourceParent and TargetParent has meaning only when synchronizing objects in a datastore with hierarchical structure.

The semantics of the LocURI value is context specific. That is, the location routing address has usage that is specific to the command in which it appears. For instance, in an Alert, the LocURI value in the Target element type addresses a database that is the target of the alert message. Or for another instance, in a MapItem, the LocURI value addresses the identifier for an individual item in a local database.

Where a URI is specified, either an absolute or relative URI value MUST be used. The only time a relative URI MUST be used is when the information in the SyncML message is sufficient for a recipient to construct the absolute URI. For example, the relative URI in the Target element in an Alert command can be converted to the proper absolute URI by prefixing the value from the Target element type found in the SyncHdr.

The following table specifies what the expected value and usage is in each of the contexts for Target, Source, TargetParent and SourceParent element types within a SyncML document.

	Element
	Contextual Address Requirement

	SyncHdr

	Target and Source
	Specifies the address of either the data synchronization server or the client. When addressing the:

Server - MUST use LocURI element type to specify the unique identifier (e.g. absolute URI form of network address) associated with the server within its domain.

Client - MUST use LocURI element type to specify locally unique identifier (e.g. absolute URI form of network address or IMEI URN) associated with the client within its domain.

	RespURI
	Specifies the address to be used in the Target of the response message. The value is an absolute URI. CGI script parameter can be appended to the URI to perform selection filtering such as specifying a date/time after which the response could be performed.

	Sync

	Target and Source
	Specifies the address of either the server database or the local mobile client database. A relative URI can be specified, if the proper absolute URI can be constructed from prefixing the respective Target or Source value from the SyncHdr to this relative URI. When addressing the:

Server Database - MUST use LocURI element type to specify either the absolute or relative URI for the server database.

Client Database - MUST use LocURI element type to specify either the absolute or relative URI for the client database.

For a LocURI value, CGI script parameters MAY be appended to the URI to perform selection filtering on the server target.

	Search

	Target
	If present, specifies the address on the recipient where the search results are to be temporarily stored. A relative URI can be specified, if the proper absolute URI can be constructed from prefixing the respective Target or Source value from the SyncHdr to this relative URI. When addressing the:

Server - MUST use LocURI element type to specify the local URI where the search results are to be stored.

Client - MUST use LocURI element type to specify either the absolute or relative URI where the search results are to be stored.

For a LocURI value, CGI script parameters MAY be appended to the URI to perform selection filtering on the server target.

	Source
	Specifies one or more addresses on the recipient that are to be searched. When addressing the:

Server - MUST use LocURI element type to specify the absolute or relative URI of the databases to be searched.

Client - MUST use LocURI element type to specify the absolute or relative URI of the databases to be searched.

	Map

	Target
	Specifies the recipient database for the Map definition. A relative URI can be specified, if the proper absolute URI can be constructed from prefixing the respective Target or Source value from the SyncHdr to this relative URI. When addressing the:

Server - MUST use LocURI element type to specify the absolute or relative URI of the server database.

Client - MUST use LocURI element type to specify the mobile client database.

	Source
	Specifies the originator database for the Map definition. When addressing the:

Server - MUST use LocURI element type to specify the absolute or relative URI of the server database.

Client - MUST use LocURI element type to specify the mobile client database.

	MapItem

	Target
	Specifies the recipient item identifier. When addressing the:

Server - MUST use LocURI element type to specify the locally unique identifier of the server database item.

Client - MUST use LocURI element type to specify the locally unique identifier of the mobile client item.

	Source
	Specifies the originator item identifier. When addressing the:

Server - MUST use LocURI element type to specify the locally unique identifier of the server database item.

Client - MUST use LocURI element type to specify the locally unique identifier of the mobile client database item.

	Item in an Alert, Exec, Get, Put Commands

	

	Target and Source
	Specifies the address of the database item that is the argument of the SyncML command. When addressing the:

Server - MUST use LocURI element type to specify the relative URI or URN for the server database.

Client - MUST use LocURI element type to specify the relative URI of the mobile client database.

To address individual items within a database using the Get or Put command, URI addressing filtering techniques MUST be used.

	Item in Add, Move, Replace Commands

	SourceParent

	Specifies parent information of the child that is mentioned in the Source or Target LocURI of the sync command if the objects have hierarchical nature.

When addressing the server (client sends to server) – MUST use LocURI element to specify the locally unique identifier for the parent of the client side’s item.

When addressing the client (server sends to client) – MUST use LocURI element to specify the temporary global unique identifier for the parent of the server side’s item. The server MUST only send SourceParent if the client’s unique identifier for the parent of the server side’s item is unknown. In all other cases, the server MUST use TargetParent.

	TargetParent (used only by the servers)
	Specifies parent information of the child that is mentioned in the Target LocURI of the sync command if the objects have hierarchical nature.

When addressing the client (server sends to client) – MUST use the LocURI element to specify the client’s unique identifier for the parent of the server side’s item.

	Item in Add, Copy, Delete, Move, Replace, Results, Status Commands

	Target and Source
	Specifies the address of the database item that is the argument of the SyncML command. When addressing the:

Server - MUST use LocURI element type to specify the absolute URI, relative URI, URN or locally unique identifier for the server database item.

Client - MUST use LocURI element type to specify the absolute URI, relative URI, URN or locally unique identifier for the client database item.

The Target and Source addresses are referenced in the TargetRef and SourceRef element types, respectively. When present, the TargetRef element type contains the value that was in the Target element type in a corresponding command. Respectively, the SourceRef element type contains the value that was in the Source element type in a corresponding command. For example, the TargetRef and SourceRef in a Status contain the respective Target and Source values from the command corresponding to the Status.

7.13 Data Sync Record and Field Level Filtering

Server data stores frequently contain much more data than can fit into small devices. Other aspects of the protocol enable clients and servers to indicate data store capacity and therefore avoid data overflow conditions, however it is often the case that small devices only want to synchronize a particular, prioritised subset of the data that resides in the server’s data store (referred to from this point forth as record filtering). Devices could also allow users to override the level of support for certain properties previously defined in the device info structure (referred to from this point forth as field filtering).
Support for receiving filters MUST be indicated in the device info for each data store. Support MUST be indicated by the inclusion of the Filter-Rx element within the Datastore element. The Filter-Rx element MUST contain a CTType and a VerCT element. The CTType element specifies the filtering grammar supported. For every Filter-Rx element a corresponding FilterCap element MUST be included in the Datastore element specifying any keywords or property names that can be filtered on.

A filter is specified by including the Filter element for the Target of a data store in an Alert command. When a Filter element is present, the Filter Meta Type element MUST be included and MUST correspond to the mime type the filter applies to. Within the Filter element, the Record, Field, and FilterType elements MAY be included and all MAY be present.

The Record element MUST contain an Item containing a Meta Type element representing the filter type used, and one Data element representing the query data. The Data element MUST be a logical expression whereby the expression MUST only contain values defined in the FilterCap element.

The Field element MUST contain an Item containing a Meta Type element representing the device information mime type and one Data element containing one or more Property elements. The mark-up characters of the Data element content MUST be properly escaped according to [XML] specification rules or the CDATA sections MUST be used. The Property elements override the corresponding property in the CTCap element for the current synchronisation session. Only the properties that differ from the properties specified in the CTCap element MAY be specified.

If WBXML encoding is used, no more than one property MAY be specified in the Data element. Specifying more than one property in WBXML document violates the rules for well-formed WBXML documents.

The FilterType element MUST contain a keyword that indicates the type of behavior that the sender is requesting. If the FilterType element is not present, then the FilterType value of “EXCLUSIVE” MUST be assumed.

If an implementation receives a filter record request for a data store that does not support filtering, a status code of 406 (OPTIONAL feature not supported) MUST be returned for the command containing the Filter element. If a filter record request specifying a filter type that is not supported by the data store is received, a status code 415 (unsupported media type or format) MUST be returned for the command containing the Filter element. If a filter record request is received which is syntactically incorrect or contains a query that is not supported then a status code of 422 (bad CGI or filter query) MUST be returned for the command containing the Filter element. If any of those error conditions occur, the sender of the filter MAY attempt to resend a new query. If the second query fails as well, a sender SHOULD either remove the filter query or terminate the synchronization.

If an implementation received a filter field request for a data store containing properties not previously defined in the corresponding CTCap element, then a status code of 400 (bad request) SHOULD be returned. Otherwise, the recipient of the filter field request MUST override any properties previously retrieved in the CTCap element in the device info with the properties present in the filter field request. The properties MUST only be overridden for the current synchronization session only.

7.13.1 Filter Behavior Definition

Filtering allows an implementation (most often a client) to constrain the set of items in a data store it wishes to synchronize against and to further constrain the data returned.

The filter only applies to the recipient, that is, an implementation that sends a filter for a synchronisation session is not constrained in the set of items it might send. Filtering serves a different purpose than the Search command in that Sync using a Filter will allow synchronization with a subset of the data in the data store, whereas the Search will not.

When a Filter has been included within a Sync command, the set of data that is defined by the Filter MUST be fully synchronized during a normal synchronization operation.

If a subsequent Sync command is sent (in a subsequent synchronization session) for the same datastore but with a different Filter command, the set of data that is defined by the new Filter command MUST be fully synchronized during a normal synchronization operation. The recipient of the Filter command MUST no longer send items that were part of the previous filter if those items are no longer part of the new filter.

A recipient MAY choose how to insure that this expectation is met. For example, it might require requesting a slow sync, or it might require re-sending records that have been previously synchronized with a different set of fields.

7.13.2 Filter Query Syntax

The filter query is a logical expression contained in the Filter Record element and is applied to each item in the recipient’s datastore. Often, the values of properties in the data items are compared to literal values supplied by the requestor. Items for which the expression evaluates to true are the set of items for that synchronization session. The filter query is expressed according to a particular grammar. The Record Item Meta Type indicates the grammar of the filter query supplied in the Data element. This enables the protocol to support additional filter grammars without sacrificing interoperability. The list of grammar types an implementation is capable of receiving MUST be indicated through the use of the device info Filter-Rx element.

Comparison items MUST be valid property names or keywords specified in the FilterCap element for the particular filter query grammar being used and all comparison operators MUST be supported for each comparison item.. Literal values used in comparisons MUST be valid for the property or keyword according to the content type being used for the query. Comparisons are performed using the character encoding specified in the content type, where appropriate.

A grammar MAY provide logical operators for conjoining sub-expressions (e.g. AND, OR, NOT) to create arbitrarily complex expressions. A grammar MAY provide mechanisms for selecting items based on the presence of properties.

7.13.2.1 Content type requirements

If an implementation supports receiving filters on a given data store, all expressions that test the values of certain base media object properties for that data store, regardless of the query grammar used, are OPTIONAL. If the expression is unsupported by the recipient, one of the previously listed status codes MUST be returned to the sender. The sender SHOULD then modify the expression based on the device info obtained from the recipient. If no expression can be agreed upon between the sender and the recipient then it is up to the sender to determine if the synchronization can be sent without any Filter element or if the synchronization SHOULD be aborted.

Filtering for all contents types is OPTIONAL and MAY be supported.

7.13.2.1.1 Contacts Media Object Filter

Filtering for vCard 2.1 [IMCVCARD] and vCard 3.0 [RFC2426] objects can be specified using both Record and Field elements. In the case of Record elements, the set of recommended keywords to support are as follows:

ct-filter-keyword = “CATEGORIES” | “GROUP”

 If one chooses to filter based on a property name, some properties like Name (“N”) might have several fields. Individual fields could be indicated using a subscript notation. Thus, “N[1]” refers to the family name and “N[2]” refers to the given name.

7.13.2.1.2 Calendar Media Object Filter

Filtering for vCalendar 1.0 [IMCVCAL] and iCalendar 2.0 [RFC2445] objects can be specified using both Record and Field elements. In the case of Record elements, the set of recommended keywords to support are as follows:

ct-filter-keyword = “SINCE” | “BEFORE” | “STATUS”

The format of the “SINCE” and “BEFORE” keywords MUST be a date-time or date format as specified below.

date-time = date "T" time

date = date-value

date-value = date-fullyear date-month date-mday

date-fullyear = 4DIGIT

date-month = 2DIGIT ;01-12

date-mday = 2DIGIT ;01-28, 01-29, 01-30, 01-31 (based on month/year)

time = time-hour time-minute time-second time-utc

time-hour = 2DIGIT ;00-23

time-minute = 2DIGIT ;00-59

time-second = 2DIGIT ;00-59

time-utc = "Z"

The “SINCE” keyword represents items that are within or later than the specified date while the “BEFORE” keyword represents items that are earlier than the specified date.

Implementations that support receiving filters for calendar media objects are responsible for expanding recurrence rules (“RRULE” properties) to determine if any instances match the filter conditions. Also, when specifying a date-time format, the use of UTC MUST be used in order to avoid time zone ambiguities. Implementations that cannot provide a UTC date-time value MUST provide a date value instead.

7.13.2.2 CGI Syntax

This section specifies a CGI-like filtering syntax. When using this syntax, the Filter Item Meta Type element MUST be ‘syncml:filtertype-cgi’. All implementations that support receiving filter requests MUST support the “syncml:filtertype-cgi” grammar.

The format for the CGI scripting is defined here in an ABNF notation [RFC2234] and the grammar defined here is largely the same as the grammar defined in the OMA DS 1.1.2 specification. If the CGI syntax is supported for a data store, then all of the logical CGI scripting primitives in the following table MUST be supported. CGI syntax queries may contain at most 1 type of logical separator, but they MAY contain several logical separators of the same type. For example, they MAY contain several “&OR;” logical operators but a query cannot contain both an “&AND;” and an “&OR;” logical operator in the same expression. The SPACE character MUST be specified by the hexadecimal encoding as stated by the format specification for Uniform Resource Identifiers.

Since the use of lexographic comparison operators is locale specific (for example the use of the “<” operator), devices SHOULD NOT use these operators when specifying a filter for free form text properties. Instead, the following logical operators SHOULD be used in place: “&EQ;”, “&iEQ;”, “&NE;”, “&iNE;”, “&CON;”, “&iCON;”.

Queries using value-based properties (properties that may only contain specific pre-defined values) SHOULD only use the following operators: “&EQ;”, “&iEQ;”, “&NE;”, “&iNE;”.

VCHAR = %x20-7E ;Visible latin characters within UTF-8 or SPACE character

string-value = 1*VCHAR ;Case sensitive string value

log-equalitycomp = "&EQ;" ;Equal To (case sensitive)

/ "&iEQ;" ;Equal To (case insensitive)

/ "&NE;" ;Not Equal To (case sensitive)

/ "&iNE;" ;Not Equal To (case insensitive)

log-op = log-equalitycomp

/ ">" ;Greater Than (case sensitive)

/ "&iGT;" ;Greater Than (case insensitive)

/ "&GE;" ;Greater Than Or Equal To (case sensitive)

/ "&iGE;" ;Greater Than Or Equal To (case insensitive)

/ "<" ;Less Than (case sensitive)

/ "&iLT;" ;Less Than (case insensitive)

/ "&LE;" ;Less Than Or Equal To (case sensitive)

/ "&iLE;" ;Less Than Or Equal To (case insensitive)

/ "&CON; ;Contains the value (case sensitive)

/ "&iCON; ;Contains the value (case insensitive)

/ "&NCON; ;Does Not Contain the value (case sensitive)

/ "&iNCON; ;Does Not Contain the value (case insensitive)

log-sep = "&OR;" ;Logical OR

/ "&AND;" ;Logical AND

luid-expression = "&LUID;" log-equalitycomp string-value

ct-no-value = “&NULL;” ; No property value for the item

ct-filter-keyword = string-value ; Valid content-type specific filter keywords

ct-filter-value = string-value ; Valid content-type specific property value

ct-expression = ct-filter-keyword (log-op ct-filter-value | log-equalitycomp ct-no-value)

filter-expression = ct-expression | luid-expression filter-query = filter-expression *(log-sep filter-expression)

7.13.3 Indicating Filter Support

Implementations that support filtering MUST indicate their support in the device info. For each data store, a device indicates the list of filter grammars it is capable of receiving in the Filter-Rx element.

7.13.3.1 Minimum Requirements for Filtering support

Implementations that support filtering MUST support receiving the “syncml:filtertype-cgi” grammar. Specifically, they MUST include at least one Filter-Rx element specifying the receiving of the “syncml:filtertype-cgi” grammar.

7.13.4 Handling Data Outside Filter Criteria

The following outlines how to handle synchronizing data outside the filter criteria

1. When using an exclusive filter type, the server not only sends all of its changes to the client, but the server MUST also send Deletes for all client items that are outside the filter criteria. If the client supports the OPTIONAL Soft Delete, the server MAY send Soft Deletes; otherwise, the server MUST send Hard Deletes.
a. First synchronization:

i. A two way slow sync has been negotiated with the client sending a filter query

ii. The client sends all of its data

iii. The server sends all of its data within the filter criteria and Soft or Hard Deletes for any client data outside the filter criteria

b. Subsequent synchronizations:

i. A two way sync has been negotiated with the client sending a filter query

ii. The client sends all of its changes

iii. The server sends all of its changes within the filter criteria and Hard Deletes for any client data outside the filter criteria

2. When using an inclusive filter type, before the client sends any of its changes to the server, the client MAY choose to send Soft Deletes for all items that were outside the filter criteria after the previous synchronization

a. First synchronization:

i. A two way slow sync has been negotiated with the client sending a filter query

ii. The client sends all of its data

iii. The server sends all of its data within the filter criteria

iv. After the sync has completed, the client deletes or archives all data outside of the filter query from the client database and marks them so that soft deletes can be sent in the next synchronization

b. Subsequent synchronizations:

i. A two way sync has been negotiated with the client sending a filter query

ii. The client sends Soft Deletes for all client data outside of the filter query (that has either been deleted or archived) and also sends all of its changes

iii. The server sends all of its changes within the filter criteria

iv. After the sync has completed, the client deletes or archives all data outside of the filter query from the client database and marks them so that soft deletes can be sent in the next synchronization. Note that if a client chooses to delete the items outside of the filter query instead of archiving them, it MUST do so immediately after a synchronization in order to prevent the user from modifying the items between synchronizations and thus potentially losing changes made by users.

3. Both the client and server support equivalent filter queries

a. First synchronization

i. A two way slow sync has been negotiated with the client and server both sending equivalent filter queries yielding identical filter sets

ii. The client sends all of its data within the filter criteria

iii. The server sends all of its data within the filter criteria

b. Subsequent synchronizations

i. A two way sync has been negotiated with the client and server both sending equivalent filter queries

ii. The client sends all of its changes within the filter criteria

iii. The server sends all of its changes within the filter criteria

7.13.5 Examples

The following examples are provided to further illustrate the usage of filtering in OMA DS 1.2.

7.13.5.1 Contact Media Objects

7.13.5.1.1 Example 1

In this scenario, the client wishes to sync only Contact items that fall into the “business” or “personal” group.

1. During the initial sync, the client and server exchange their device info.

2. The client analyses the server’s device info, and the client notes that the server supports receiving filters on the Contacts data store for queries using the “syncml:filtertype-cgi” grammar.

a. The server includes in its device info the Filter-Rx and FilterCap elements that it supports.

b. The client doesn’t require filtering on any additional fields, so it determines that this server supports the filter it wishes to send.

<Datastore>

<SourceRef>./contacts</SourceRef>

<DisplayName>Contacts DB</DisplayName>

...

<Filter-Rx>

<CTType>syncml:filtertype-cgi</CTType>

<VerCt>1.0</VerCT>

</Filter-Rx>

<CTCap>

...

</CTCap>

<FilterCap>

<CTType>syncml:filtertype-cgi</CTType>

<VerCt>1.0</VerCt>

<FilterKeyword>GROUP</FilterKeyword>

<PropName>CATEGORIES</PropName>

</FilterCap>
</Datastore>

3. The client sends an Alert for the Contacts data store with a filter.

a. It includes the Filter Meta Type element to indicate the content type desired (vCard in this example).

b. It includes a Filter Record element with a Meta Type value of “syncml:filtertype-cgi” to indicate the grammar being used.

c. The filter query in the Item Data element contains a value of “GROUP&iCON;business&OR; GROUP &iCON;personal” to constrain the items synchronized to those that fall into the “business” or “personal” group (case insensitive).

<Alert>

<Data>200</Data>

<Item>

<Target>

<LocURI>./contacts</LocURI>

<Filter>

<Meta>

<Type>text/x-vcard</Type>

</Meta>

<Record>

<Item>

<Meta>

<Type>syncml:filtertype-cgi</Type>

</Meta>

<Data> GROUP&iCON;business&OR;GROUP&iCON;personal</Data>

</Item>

</Record>

</Filter>

</Target>

<Source>

<LocURI>dev-contacts</LocURI>

</Source>

</Item>
</Alert>
4. The server receives the Alert with the Filter Record element.

a. It determines that it supports the filter operation for the data store, content type, filter grammar, and properties.

b. It replies with a status code of 200 for the Alert, indicating that it can satisfy the request to sync with filtering.

5. The synchronization process continues normally.

a. The client sends all of its changes to the server (the filter constraint is not imposed on it in this scenario).

b. The server sends changes only for items that satisfy the filter query.

7.13.5.1.2 Example 2

In this scenario, the client wishes to sync only Contact items that fall into the “business” or “personal” group. Additionally the client has indicated in its device info that it supports the PHOTO property, but it does not wish to receive the PHOTO property from the server for this synchronization request.

1. During the initial sync, the client and server exchange their device info.

2. The client analyses the server’s device info, and the client notes that the server supports receiving filters on the Contacts data store for queries using the “syncml:filtertype-cgi” grammar.

a. The server includes in its device info the Filter-Rx and FilterCap elements that it supports.

b. The client doesn’t require filtering on any additional fields, so it determines that this server supports the filter it wishes to send.

3. The client sends an Alert for the Contacts data store with a filter.

a. It includes the Filter Meta Type element to indicate the content type desired (vCard in this example).

b. It includes a Filter Record element with a Meta Type value of “syncml:filtertype-cgi” to indicate the grammar being used.

c. The filter query in the Item Data element contains a value of “GROUP&iCON;business&OR;GROUP&iCON;personal” to constrain the items synchronized to those that fall into the “business” or “personal” group (case insensitive).

d. It includes a Filter Field element containing a Property element set to “PHOTO” containing a MaxSize element set to 0 (zero).

<Alert>

<Data>200</Data>

<Item>

<Target>

<LocURI>./contacts</LocURI>

<Filter>

<Meta>

<Type>text/x-vcard</Type>

</Meta>

<Record>

<Item>

<Meta>

<Type>syncml:filtertype-cgi</Type>

</Meta>

<Data> GROUP&iCON;business&OR;GROUP&iCON;personal</Data>

</Item>

</Record>

<Field>

<Item>

<Meta>

<Type>application/vnd.syncml-devinf+xml</Type>

</Meta>

<Data>

<![CDATA[

<Property>

<PropName>PHOTO</PropName>

<MaxSize>0</MaxSize>

<NoTruncate/>

</Property>

]]>

</Data>

</Item>

</Field>

</Filter>

</Target>

<Source>

<LocURI>dev-contacts</LocURI>

</Source>

</Item>
</Alert>
4. The server receives the Alert with the Filter Record and Field elements.

a. It determines that it supports the filter operations for the data store, content type, filter grammar, and properties.

b. It replies with a status code of 200 for the Alert, indicating that it can satisfy the request to sync with filtering.

5. The synchronization process continues normally.

a. The client sends all of its changes to the server (the filter constraint is not imposed on it in this scenario).

b. The server sends changes only for items that satisfy the filter query. The server does not send any PHOTO properties since the client has requested that it wishes to receive only 0 bytes of this property for this synchronization request and the value should SHOULD not be truncated.

7.13.5.2 Calendar Media Objects

7.13.5.2.1 Example 1

In this scenario, the client wishes to synchronize calendar items that fall within a two week window of time (starting with the current date).

1. During the initial sync, the client and server exchange their device info.

2. The client analyses the server’s device info, and the client notes that the server supports receiving filters on the Calendar data store for queries using the “syncml:filtertype-cgi” grammar.

a. The server includes in its device info the Filter-Rx and FilterCap elements that it supports. This includes the SINCE and BEFORE keywords.

b. The client doesn’t require filtering on any additional fields, so it determines that this server supports the filter it wishes to send.

<Datastore>

<SourceRef>./calendar/events</SourceRef>

<DisplayName>Calendar Agenda DB</DisplayName>

...

<Filter-Rx>

<CTType>syncml:filtertype-cgi</CTType>

<VerCt>1.0</VerCT>

</Filter-Rx>

<CTCap>

...

</CTCap>

<FilterCap>

<CTType>syncml:filtertype-cgi</CTType>

<VerCt>1.0</VerCt>

<FilterKeyword>BEFORE</FilterKeyword>

<FilterKeyword>SINCE</FilterKeyword>

</FilterCap>
</Datastore>

3. The client sends an Alert for the Calendar data store with a filter.

a. It includes the Filter Meta Type element to indicate the content type desired (iCalendar in this example).

b. It includes a Filter Record element with a Meta Type value of “syncml:filtertype-cgi” to indicate the grammar being used.

c. The filter query in the Item Data element contains a value of “SINCE&EQ;20030606T000000Z&AND;BEFORE&EQ;20030620T000000Z” to constrain the items synchronized to those that occur between June 6, 2003 and June 19, 2003 inclusive, using the “SINCE” and “BEFORE” keywords.

<Alert>

<Data>200</Data>

<Item>

<Target>

<LocURI>./calendar/events</LocURI>

<Filter>

<Meta>

<Type>text/x-vcalendar</Type>

</Meta>

<Record>

<Item>

<Meta>

<Type>syncml:filtertype-cgi</Type>

</Meta>

<Data>SINCE&EQ;20020707T000000Z&AND;BEFORE&EQ;20020728T000000Z</Data>

</Item>

</Record>

</Filter>

</Target>

<Source>

<LocURI>dev-agenda</LocURI>

</Source>

</Item>
</Alert>
4. The server receives the Alert with the Filter Record element.

a. It determines that it supports the filter operation for the data store, content type, filter grammar, and properties.

b. It replies with a status code of 200 for the Alert, indicating that it can satisfy the request to sync with filtering.

5. The synchronization process continues normally.

a. The client sends all of its changes to the server (the filter constraint is not imposed on it in this scenario).

b. The server sends changes only for items that satisfy the filter query.

7.13.5.2.2 Example 2

In this scenario, the client wishes to synchronize task items (iCalendar vTODO components) that have not been completed and are due within the next 2 weeks (using the DUE iCalendar property). The client also wishes to limit the size of the DESCRIPTION property to 100 bytes and only receive ATTACH properties that are less than 1000 bytes.

1. During the initial sync, the client and server exchange their device info.

2. The client analyses the server’s device info, and the client notes that the server supports receiving filters on the Calendar data store for queries using the “syncml:filtertype-cgi” grammar.

a. The server includes in its device info the Filter-Rx and FilterCap elements that it supports. This includes the STATUS and DUE keywords.

b. The client doesn’t require filtering on any additional fields, so it determines that this server supports the filter it wishes to send.

<Datastore>

<SourceRef>./calendar/tasks</SourceRef>

<DisplayName>Task DB</DisplayName>

...

<Filter-Rx>

<CTType>syncml:filtertype-cgi</CTType>

<VerCt>1.0</VerCT>

</Filter-Rx>

<CTCap>

...

</CTCap>

<FilterCap>

<CTType>syncml:filtertype-cgi</CTType>

<VerCt>1.0</VerCt>

<PropName>DUE</PropName>

<PropName>STATUS</PropName>

</FilterCap>
</Datastore>

3. The client sends an Alert for the Calendar data store with a filter.

a. It includes the Filter Meta Type element to indicate the content type desired (iCalendar in this example).

b. It includes a Filter Record element with a Meta Type value of “syncml:filtertype-cgi” to indicate the grammar being used.

c. The filter query in the Item Data element contains a value of “DUE&LE;20030620T000000Z&AND;STATUS&NE;COMPLETED” to constrain the items synchronized to those that are due before June 20, 2003 and have not been completed.

d. It includes a Filter Field element containing a Property element set to “DESCRIPTION” containing a MaxSize element set to 100 and a second property element set to “ATTACH” containing a MaxSize of 1000 with the NoTruncate tag present.

<Alert>

<Data>200</Data>

<Item>

<Target>

<LocURI>./calendar/tasks</LocURI>

<Meta>

<Type>text/x-vcalendar</Type>

</Meta>

<Filter>

<Meta>

<Type>text/x-vcalendar</Type>

</Meta>

<Record>

<Item>

<Meta>

<Type>syncml:filtertype-cgi</Type>

</Meta>

<Data>DUE&LE;20030728T000000Z&AND;STATUS&NE;COMPLETED</Data>

</Item>

</Record>

<Field>

<Item>

<Meta>

<Type>application/vnd.syncml-devinf+xml</Type>

</Meta>

<Data>

<![CDATA[

<Property>

<PropName>DESCRIPTION</PropName>

<MaxSize>100</MaxSize>

</Property>

<Property>

<PropName>ATTACH</PropName>

<MaxSize>1000</MaxSize>

</NoTruncate>

</Property>

]]>

</Data>

</Item>

</Field>

</Filter>

</Target>

<Source>

<LocURI>dev-tasks</LocURI>

</Source>

</Item>
</Alert>
4. The server receives the Alert with the Filter Record element.

a. It determines that it supports the filter operation for the data store, content type, filter grammar, and properties.

b. It replies with a status code of 200 for the Alert, indicating that it can satisfy the request to sync with filtering.

5. The synchronization process continues normally.

a. The client sends all of its changes to the server (the filter constraint is not imposed on it in this scenario).

b. The server sends changes only for items that satisfy the filter query. The server has truncated the DESCRIPTION properties to 100 bytes and has also not sent any ATTACH properties that are larger than 1000 bytes.

8. Security
8.1 Credentials

Two examples of credentials exchanged between Data Sync Client and Data Sync Server are shown in the following list.

1. Server Identifier (this is a unique ID that identifies the Data Sync Server), a shared secret.
2. User Identifier (this is a unique ID that identifies the Data Sync Client), a shared secret.
For the purpose of server to client authentication, if a Server Identifier, shared secret and nonce are used, the Server SHALL use a different shared secret for each client it serves, in order that a client cannot pose effectively as this Data Sync Server in a interaction with another Data Sync Client.

The initial provisioning of the credentials for a server, so that the Data Sync Client MAY be capable of authenticating a specific Data Sync Server, is outside of this specification. The mechanism documented in [DMBOOT] MAY be used to achieve this. However, other techniques outside of this specification are not excluded.

8.2 Authentication

In this chapter, the authentication procedures are defined for the any of the hash-function based authentication schemes described in [DSSYNTAX]

8.2.1 Authentication Challenge

If the response code to a request is ‘(407) Credential required’, it means that the credential is required for authentication purpose. In this case, the <Status> command to the request MUST include a <Chal> element which contains a challenge applicable to the requested resource. The Data Sync Client MAY repeat the request with a suitable credential contained in a <Cred> element.
If the status code to a request is ‘(401) Unauthorized’, it means that authorization has been refused for those credentials. The Data Sync Client need not repeat the request with the same credentials.
Both, the sync client and the sync server can challenge for authentication.

If the response code to a request is ‘(212) Authentication accepted’, no further authentication is needed for the remainder of the synchronization session.

If a request includes a credentials and the response code to the request is ‘(200) Command completed successfully’, the same credentials MUST be sent within the next request.
In the case of the hash-function based authentication scenario, whether the response code is 212 or 200, the <Chal> element can be returned. Then, the next nonce in <Chal> MUST be used for computing the digest when the next sync request is sent.
Once authentication has occurred, the authentication scheme for a security layer MUST be kept same for the whole session.

In case of authentication failure:

· The response message indicating the authentication failure on protocol layer (see section 8.3) contains only <Status> commands . A <Status> command MUST be provided for every command received in the request.

· In case the session is continued, the next message containing the proper credentials MUST contain a <Status> for the <SyncHdr> which MUST have the same SessionID as the previous messages and the message MUST be sent to the <RespURI>, if it was specified in the response indicating the authentication failure.

8.2.2 Authorization

The Cred element MUST be included in requests (message or command), which are sent after receiving the 401 or 407 responses if the request is repeated. In addition, it can be sent in the first request from a device if the authentication is mandated through pre-configuration. The content of the Cred element is specified in [DSREPU]. The authentication type is dependent on the challenge (See the previous chapter) or the pre-configuration.
Editor’s Note: This section will be updated according to action item DS-2006-A075.
Protocol Layer and Database Layer SHOULD be revised when standard descriptors are agreed.
8.2.3 Protocol Layer
Authentication

When the authentication is considered, the Data Sync Client MUST support the protocol layer authentication by specifies the credential in the <SyncHdr> element. Within the <Status> command, the challenge for the authentication is carried as defined in section 8.2.1. The authentication can happen in both directions, i.e., the Data Sync Client can authenticate itself to the Data Sync Server and vice versa.

8.2.4 Database Layer
Authentication
The Data Sync Client MAY support database layer authentication. The database layer authentication is accomplished by using the <Cred> element in the <Alert> and <Sync> commands. Within the <Status> element, the challenge for the authentication is carried as defined in section 8.2.1. The authentication can happen in both directions, i.e., the Data Sync Client can authenticate itself to the Data Sync Server and vice versa.

8.2.5 Authentication Examples

8.2.5.1 SHA-256 authentication with a challenge

At this example, the client tries to initiate sync with the server without any credentials (Pkg #1). The server challenges the client (Pkg #2) for the protocol layer authentication using the SHA-256 authentication scheme. The client sends Pkg #1 again with the credentials. The server accepts the credentials and the session is authenticated (Pkg #2). Then the server sends the next nonce to the client, which the client will use when the next sync request is started. In the example, commands in <SyncBody> are not shown although in practice, they would be there.
Editor’s Note: Examples will be updated according to the syntax work
Pkg #1 from Client

 <?xml version="1.0" encoding="UTF-8"?>
 <SyncML xmlns="http://www.openmobilealliance.org/ds/v2_0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SyncHdr Version="2.0" SessionID="1" MsgID="1">
 <TargetURI>http://www.openmobilealliance.org/sync-server</TargetURI>
 <SourceURI>IMEI:493005100592800</SourceURI>
 </SyncHdr>
 <SyncBody>

 </SyncBody>
 </SyncML>
Pkg #2 from Server

 <?xml version="1.0" encoding="UTF-8"?>
 <SyncML xmlns="http://www.openmobilealliance.org/ds/v2_0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SyncHdr Version="2.0" SessionID="1" MsgID="2">
 <TargetURI>IMEI:493005100592800 </TargetURI>
 <SourceURI>http://www.openmobilealliance.org/sync-server</SourceURI>
 </SyncHdr>
 <SyncBody>

 <Status CmdID="1" CmdRef="0" >
 <Code>407</Code> <!-- Credential required-->
 <Chal AuthScheme="syncml:auth-sha256" Encoding="b64">
 <NextNonce>Tm9uY2U=</NextNonce>
 </Chal>
 </Status>

 </SyncBody>
 </SyncML>
Pkg #1 (with credentials) from Client

 <?xml version="1.0" encoding="UTF-8"?>
 <SyncML xmlns="http://www.openmobilealliance.org/ds/v2_0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SyncHdr Version="2.0" SessionID="1" MsgID="2">
 <TargetURI>http://www.openmobilealliance.org/sync-server</TargetURI>
 <SourceURI>IMEI:493005100592800</SourceURI>
 <Cred AuthScheme="syncml:auth-sha256" Encoding="b64">BlahBlahBlahBlah==</Cred>
 <!-- Base64 coded SHA-256 digest for user “Bruce2”, shared secret “OhBehave”, nonce “Nonce” -->
 </SyncHdr>
 <SyncBody>

 </SyncBody>
 </SyncML>
Pkg #2 from Server

 <?xml version="1.0" encoding="UTF-8"?>
 <SyncML xmlns="http://www.openmobilealliance.org/ds/v2_0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SyncHdr Version="2.0" SessionID="1" MsgID="2">
 <TargetURI>IMEI:493005100592800 </TargetURI>
 <SourceURI>http://www.openmobilealliance.org/sync-server</SourceURI>
 </SyncHdr>
 <SyncBody>

 <Status CmdID="1" CmdRef="0" >
 <Code>212</Code> <!--Authenticated for session-->
 <Chal AuthScheme="syncml:auth-sha256" Encoding="b64">
 <NextNonce>BlahBlahBlah=</NextNonce> <!—This nonce is used when the next session is started-->
 </Chal>
 </Status>

 </SyncBody>
 </SyncML>2
8.3 Integrity

The OMA DS provides the messages integrity protection by specifying the hashed message authentication code (HMAC) in the underlying transport header. The message authentication code is computed according to the procedure as described in section 7.3.1.
Both, the Data Sync Client and the Data Sync Server can challenge the other side for integrity protection. The sender SHALL specify the integrity protection challenge in the underlying transport header.

Once integrity protection has occurred, the hashed message authentication code SHALL be used on every message transferred between the Data Sync Client and Data Sync Server.

8.3.1 How the HMAC is computed

The HMAC value SHALL be computed according to the HMAC mechanism specified in [RFC2104]. The HMAC value SHALL be computed as following:
Let H = the Hashing function.
Let Digest = the output of the Hashing function.

Let B64 = the base64 encoding function.
Let userid = User Identifier.

Let secret = Secrete known by the sender and recipient.

Let nonce = Challenge specified by the authenticator
Digest = H(B64(H(userid:secret)):nonce:B64(H(message body)))
The Data Sync Client and Data Sync Server SHALL support SHA-256 hashing function. And other hashing functions are not excluded, e.g. SHA-1.
8.3.2 How the HMAC is specified in the OMA DS message

The HMAC value SHALL be transported along with the original OMA DS message. This is achieved by inserting the HMAC value into a transport header called x-syncml-hmac. This mechanism works identically on HTTP, WAP, OBEX and other transport protocols. The HMAC is computed initially by the sender against the entire message body independent with the message format. Upon receiving a message, the recipient SHALL use the same procedure to compute its own HMAC value and verify whether they are identical in order to ensure the authenticity of the sender, and also the integrity of the message. If the ‘userid’ is incorrect or the HMAC values are not identical, then an authentication failure results SHALL be returned to the sender. Once the integrity protection mechanism is used, the <NextNonce> element SHALL be sent and used for the next HMAC credential check.

The header x-syncml-hmac contains multiple parameters, including the HMAC value, the user or server identifier, and an optional indication of which HMAC algorithm is in use.

The value of the x-syncml-hmac header is defined as a comma separated list of attribute-values pairs. The rule ‘#rule’ and the terms ‘token’ and ‘quoted-string’ are used in accordance to the definition in the HTTP 1.1 specified in [RFC2616].

Here is the formal definition:

syncml-hmac
 = #syncml-hmac-param

syncml-hmac-param = (algorithm | userid | mac)

algorithm = "algorithm" "=" ("SHA-256" | token)

userid
 = "userid" "=" userid-value

mac = "mac" "=" mac-value
userid-value = quoted-string

mac-value = base64-string
Note that a base64-string is any concatenation of the characters belonging to the base64 Alphabet, as defined in [RFC1521].
The following is an example:
x-syncml-hmac: algorithm=SHA-256, userid="Robert Jordan", mac=NTI2OTJhMDAwNjYxODkwYmQ3NWUxN2RhN2ZmYmJlMzk
9.

9.1

·
·
9.2

9.3

9.4

9.5
9.5.1

9.5.2

10. Sync Initialization

The sync initialization implies that the actual synchronization (See Chapters 9-11), i.e., the sync commands, can also be transmitted and processed. Prior to the sync initialization, the OMA DS server might alert the client to trigger synchronization with it (See Chapter 12) but this does not remove the need for the initialization. The sync initialization has the following purposes:

· To process the authentication between the client and the server on the SyncML level.

· To indicate which databases could be synchronized and which protocol type could be used.

· To enable the exchange of service and device capabilities.

The two first ones are done by using the Alert command of the SyncML Representation protocol. These MUST be supported by the client and the server.

The exchange of service capabilities is done by utilizing the Put and Get commands of the SyncML Representation protocol and the Device Information DTD (See also Chapter 6.7).

The initialization procedure is depicted in the figure below. Some parts of the procedure (some responses) can be included in the actual synchronization messages if it is necessary.

[image: image8.wmf]

OMA DS Client

OMA DS Server

Client and server configured properly to enable

 communication with each other

User

Sync order

Pkg #1: Client Initialization package to server

Pkg #2: Server Initialization package to client

Sync will continue according for the sync type(s) defined in the Alert commands.

Pkg #3: Sync package including the completition

of the Sync

initialization.

Figure 7 MSC of Synchronization Initialization

The arrows in all figures in this document represent SyncML packages, which can include one or more messages. The package flow presented above is one OMA DS session that means that all messages have the same OMA DS session ID.
The purpose and the requirements for each of the packages in the figure above are considered in the next sections.

10.1 Initialization Requirements for Client

As described in the previous chapter, the client needs to inform the server which databases it wants to synchronize and which type synchronization is desired. Optionally, the client can also include the authentication information and the service capabilities information into this initialization.

The databases, which are desired to be synchronized, are indicated in the separate Alert commands. I.e., for each database, a separate Alert command MUST be included in the SyncBody. In addition, the Alert command is used to exchange the sync anchors.

The synchronization type is indicated in the Alert command. See the alert codes in Alert Codes.

The authentication information, if it is included, MUST be placed inside the Cred element in the SyncHdr. Either the Basic or the MD5 Digest credential type can be used.

The service capabilities can be sent by using the Put command in the SyncBody element. The client MUST include service and device information, which is applicable from the Device Information DTD, in the data to be sent to the server. The client can also ask the service capabilities of the server. The Get command is used for this operation.

The detailed requirements for the sync initialization package (Pkg #1 in Figure 7) from the client to the server are:

1. Requirements for the elements within the SyncHdr element.

· The value of the VerDTD element MUST be ‘1.2’.

· The VerProto element MUST be included to specify the sync protocol and the version of the protocol. The value MUST be ‘SyncML/1.2’ when complying with this specification.

· Session ID MUST be included to indicate the ID of a sync session.

· MsgID MUST be used to unambiguously identify the message belonging to a sync session and traveling from the client to the server.

· The Target element MUST be used to identify the target device and service.

· The Source element MUST be used to identify the source device.

· The Cred element MUST be included if the authentication is needed.

2. The Alert element(s) for each database to be synchronized MUST be included in SyncBody and the following requirements exist.

· CmdID MUST be used.

· NoResp SHOULD NOT be specified with the Alert command.

· The Data element is used to include the Alert code. The alert code is one of the codes used at the initialization. See the alert codes in Alert Codes.

· Target in the Item element is used to specify the target database.

· Source in the Item element is used to specify the source database.

· The sync anchors of the client MUST be included to specify the previous and current (Last and Next) sync anchors (See also Chapter 6.2.1). The sync anchors are carried inside the Meta element in the Item element.

3. If the service capabilities are sent from the client to the server, the following requirements for the Put command in the SyncBody exist.

· CmdID MUST be used.

· The Type element of the MetaInf DTD MUST be included in the Meta element of the Put command to indicate that the type of the data is the type of the Device Information DTD.

· The Source element in the Item element MUST have a value ‘./devinf12’.

· The Data element is used to carry the device and service information data.

4. If the service capabilities are requested from the server, the following requirements for the Get command in the SyncBody exist.

· CmdID MUST be used.

· The Type element of the MetaInf DTD MUST be included in the Meta element of the Get command to indicate that the type of the data is the type of the Device Information DTD.

· The Target element in the Item element MUST have a value ‘./devinf12’.

5. The Final element MUST be used for the message, which is the last in this package.

10.1.1 Example of Sync Initialization Package from Client

<SyncML>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>4</SessionID>

<MsgID>1</MsgID>

<Target>

<LocURI>http://www.syncml.org/sync-server</LocURI>

</Target>

<Source>

<LocURI>IMEI:493005100592800</LocURI>

</Source>

<Cred> <!--The authentication is optional.-->

<Meta>

<Type xmlns=’syncml:metinf’>syncml:auth-basic</Type>

</Meta>

<Data>QnJ1Y2UyOk9oQmVoYXZl</Data> <!--base64 formatting of “userid:password”-->

</Cred>

<Meta> <!--The Meta is now used to indicate the maximum SyncML message size, which client can receive.-->

<MaxMsgSize xmlns=’syncml:metinf’>5000</MaxMsgSize>

</Meta>

</SyncHdr>

<SyncBody>

<Alert>

<CmdID>1</CmdID>

<Data>200</Data> <!-- 200 = TWO_WAY_ALERT -->

<Item>

<Target>

<LocURI>./contacts/james_bond</LocURI>

</Target>

<Source>

<LocURI>./dev-contacts</LocURI>

</Source>

<Meta>

<Anchor xmlns=’syncml:metinf’>

<Last>234</Last>

<Next>276</Next>

</Anchor>

</Meta>

</Item>

</Alert>

<Put>

<CmdID>2</CmdID>

<Meta>

<Type xmlns=’syncml:metinf’>application/vnd.syncml-devinf+xml</Type>

</Meta>

<Item>

<Source>

<LocURI>./devinf12</LocURI>

</Source>

<Data>

<DevInf xmlns=’syncml:devinf’>

<Man>Big Factory, Ltd.</Man>

<Mod>4119</Mod>

<OEM>Jane’s phones</OEM>

<FwV>2.0e</FwV>

<SwV>2.0</SwV>

<HwV>1.22I</HwV>

<DevId>1218182THD000001-2</DevId>

<DevTyp>phone</DevTyp>

<UTC/>

<SupportLargeObjects/>

<SupportNumberOfChanges/>

<DataStore>

<SourceRef>./contacts</SourceRef>

<DisplayName>Phonebook</DisplayName>

<MaxGUIDSize>32</MaxGUIDSize>

<Rx-Pref>

<CTType>text/x-vcard</CTType>

<VerCT>2.1</VerCT>

</Rx-Pref>

<Tx-Pref>

<CTType>text/x-vcard</CTType>

<VerCT>2.1</VerCT>

</Tx-Pref>

<CTCap>

<CTType>text/x-vcard</CTType>

<VerCT>2.1</VerCT>

<Property>

<PropName>BEGIN</PropName>

<ValEnum>VCARD</ValEnum>

</Property>

<Property>

<PropName>END</PropName>

<ValEnum>VCARD</ValEnum>

</Property>

<Property>

<PropName>VERSION</PropName>

<ValEnum>2.1</ValEnum>

</Property>

<Property>

<PropName>N</PropName>

</Property>

<Property>

<PropName>TEL</PropName>

<MaxOccur>5</MaxOccur>

<PropParam>

<ParamName>TYPE</ParamName>

<ValEnum>VOICE, CELL</ValEnum>

<ValEnum>VOICE, HOME</ValEnum>

</PropParam>

</Property>

<Property>

<PropName>NOTE</PropName>

<MaxOccur>1</MaxOccur>

<MaxSize>255</MaxSize>

<NoTruncate/>

</Property>

<Property>

<PropName>PHOTO</PropName>

<MaxOccur>1</MaxOccur>

<PropParam>

<ParamName>TYPE</ParamName>

<ValEnum>JPEG</ValEnum>

</PropParam>

</Property>

</CTCap>

<SyncCap>

<SyncType>01</SyncType>

<SyncType>02</SyncType>

<SyncType>07</SyncType>

</SyncCap>

</DataStore>

</DevInf>

</Data>

</Item>

</Put>

<Get>

<CmdID>3</CmdID>

<Meta>

<Type xmlns=’syncml:metinf’>application/vnd.syncml-devinf+xml</Type>

</Meta>

<Item>

<Target>

<LocURI>./devinf12</LocURI>

</Target>

</Item>

</Get>

<Final/>

</SyncBody>

</SyncML>

10.2 Initialization Requirements for Server

When the server has received the Initialization package from the client, it completes the initialization phase by responding to the client from the server perspective. To complete the initialization, the server sends its authentication information, sync anchors, and device information back to the client. Also, the server MUST accept the sync type.

The detailed requirements for the sync initialization package (Pkg #2 in Figure 4) from the server to the client are:

1. Requirements for the elements within the SyncHdr element.

· The value of the VerDTD element MUST be ‘1.2’.

· The VerProto element MUST be included to specify the sync protocol and the version of the protocol. The value MUST be ‘SyncML/1.2’ when complying with this specification.

· Session ID MUST be included to indicate the ID of a sync session.

· MsgID MUST be used to unambiguously identify the message belonging to a sync session and traveling from the server to the client.

· The Target element MUST be used to identify the target device and service.

· The Source element MUST be used to identify the source device.

· The Cred element MUST be included if the authentication is needed.

2. The Status MUST be returned for the Alert command sent by the client if the client requested the response. This can be sent before Package #1 is completely received (See Chapter 6.9).

· If the client is not authenticated to use the service, the sync type is wrong (e.g., slow sync needed), or some other error occurs, the server MUST return an error for that.

· The next sync anchor of the client MUST be included in the Data element of Item (See 6.2.1).

3. If the client sent the device information to the server, the server MUST be able to retrieve them and the Status MUST be returned for that command. This can be sent before Package #1 is completely received.

4. If the client requested the device information of the server, the Results element MUST be returned. This can be sent before Package #1 is completely received.

· The Type element of the MetaInf DTD MUST be included in the Meta element in the Results element to indicate that the type of the data is the type of the Device Information DTD.

· The Source element in the Item element MUST have a value ‘./devinf12’.

· The Data element is used to carry the device and service information of the server.

5. The Alert element(s) for each database to be synchronized MUST be included in SyncBody and the following requirements exist.

· CmdID MUST be used.

· NoResp SHOULD NOT be specified with the Sync command.

· The Data element is used to include the alert code. If this is different that the alert code sent by the client, the client SHOULD follow this when synchronization is continued.

· Target is used to specify the target database.

· Source is used to specify the source database.

· The sync anchors of the server MUST be included to specify the previous and current (Last and Next) sync anchors of the server (See also Chapter 6.2.1).

6. If the service capabilities were not asked by the client, the server MAY send them to the client by using the Put command. The following requirements for the Put command in the SyncBody exist.

· CmdID MUST be used.

· The Type element of the MetaInf DTD MUST be included in the Meta element of the Put command to indicate that the type of the data is the type of the Device Information DTD.

· The Source element in the Item element MUST have a value ‘./devinf12’.

· The Data element is used to carry the device and service information data of the server.

7. If the client did not send its service capabilities and the server needs to receive them, the server can request those by using the Get command. The following requirements for the Get command in the SyncBody exist.

· CmdID MUST be used.

· The Type element of the MetaInf DTD MUST be included in the Meta element of the Get command to indicate that the type of the data is the type of the Device Information DTD.

· The Target element in the Item element MUST have a value ‘./devinf12’.

8. The Final element MUST be used for the message, which is the last in this package.

To complete the sync initialization from the client side, the client MUST respond to the commands (Alert, possible Put and Get) sent by the server. The Status elements and the Result element associated with the commands can be returned in the first package occurring in actual synchronization (Refer Package #3 in Two-way synchronization and One-way synchronizations.

10.2.1 Example of Sync Initialization Package from Server

<SyncML>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>4</SessionID>

<MsgID>1</MsgID>

<Target>

<LocURI>IMEI:493005100592800</LocURI>

</Target>

<Source>

<LocURI>http://www.syncml.org/sync-server</LocURI>

</Source>

<Cred> <!--The authentication is optional.-->

<Meta>

<Type xmlns=’syncml:metinf’>syncml:auth-basic</Type>

</Meta>

<Data>QnJ1Y2UyOk9oQmVoYXZl</Data> <!--base64 formatting of “userid:password”-->

</Cred>

</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>1</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>

<TargetRef>http://www.syncml.org/sync-server</TargetRef>

<SourceRef>IMEI:493005100592800</SourceRef>

<Data>212</Data> <!--Statuscode for OK, authenticated for session-->

</Status>

<Status>

<CmdID>2</CmdID>

<MsgRef>1</MsgRef>

<CmdRef>1</CmdRef>

<Cmd>Alert</Cmd>

<TargetRef>./contacts/james_bond</TargetRef>

<SourceRef>./dev-contacts</SourceRef>

<Data>200</Data> <!--Statuscode for OK-->

<Item>

<Data>

<Anchor xmlns=’syncml:metinf’><Next>276</Next></Anchor>

</Data>

</Item>

</Status>

<Status>

<CmdID>3</CmdID>

<MsgRef>1</MsgRef>

<CmdRef>2</CmdRef>

<Cmd>Put</Cmd>

<SourceRef>./devinf12</SourceRef>

<Data>200</Data> <!--Statuscode for OK-->

</Status>

<Results>

<CmdID>4</CmdID>

<MsgRef>1</MsgRef><CmdRef>3</CmdRef>

<Meta>

<Type xmlns=’syncml:metinf’>application/vnd.syncml-devinf+xml</Type>

</Meta>

<Item>

<Source>

<LocURI>./devinf12</LocURI>

</Source>

<Data>

<DevInf xmlns=’syncml:devinf’>

<Man>Small Factory, Ltd.</Man>

<Mod>Tiny Server</Mod>

<OEM>Tiny Shop</OEM>

<DevId>485749KR</DevId>

<DevTyp>Server</DevTyp>

<UTC/>

<SupportLargeObjects/>

<SupportNumberOfChanges/>

<DataStore>

<SourceRef>./contacts</SourceRef>

<DisplayName>Addressbook</DisplayName>

<Rx-Pref>

<CTType>text/x-vcard</CTType>

<VerCT>2.1</VerCT>

</Rx-Pref>

<Rx>

<CTType>text/vcard </CTType>

<VerCT>3.0</VerCT>

</Rx>

<Tx-Pref>

<CTType>text/x-vcard</CTType>

<VerCT>2.1</VerCT>

</Tx-Pref>

<Tx>

<CTType>text/vcard</CTType>

<VerCT>3.0</VerCT>

</Tx>

<CTCap>

<CTType>text/x-vcard</CTType>

<VerCT>2.1</VerCT>

<Property>

<PropName>BEGIN</PropName>

<ValEnum>VCARD</ValEnum>

</Property>

<Property>

<PropName>END</PropName>

<ValEnum>VCARD</ValEnum>

</Property>

<Property>

<PropName>VERSION</PropName>

<ValEnum>2.1</ValEnum>

</Property>

<Property>

<PropName>N</PropName>

</Property>

<Property>

<PropName>TEL</PropName>

<MaxOccur>8</MaxOccur>

<PropParam>

<ParamName>TYPE</ParamName>

<ValEnum>VOICE, CELL</ValEnum>

<ValEnum>VOICE, HOME</ValEnum>

<ValEnum>FAX, HOME</ValEnum>

</PropParam>

</Property>

<Property>

<PropName>NOTE</PropName>

<MaxOccur>1</MaxOccur>

<MaxSize>1024</MaxSize>

<NoTruncate/>

</Property>

<Property>

<PropName>PHOTO</PropName>

<MaxOccur>1</MaxOccur>

<PropParam>

<ParamName>TYPE</ParamName>

<ValEnum>JPEG</ValEnum>

<ValEnum>GIF</ValEnum>

</PropParam>

</Property>

</CTCap>

<CTCap>

<CTType>text/vcard</CTType>

<VerCT>3.0</VerCT>

<Property>

<PropName>BEGIN</PropName>

<ValEnum>VCARD</ValEnum>

</Property>

<Property>

<PropName>END</PropName>

<ValEnum>VCARD</ValEnum>

</Property>

<Property>

<PropName>VERSION</PropName>

<ValEnum>3.0</ValEnum>

</Property>

<Property>

<PropName>N</PropName>

</Property>

<Property>

<PropName>TEL</PropName>

<MaxOccur>8</MaxOccur>

<PropParam>

<ParamName>TYPE</ParamName>

<ValEnum>VOICE, CELL</ValEnum>

<ValEnum>VOICE, HOME</ValEnum>

<ValEnum>FAX, HOME</ValEnum>

</PropParam>

</Property>

<Property>

<PropName>NOTE</PropName>

<MaxOccur>1</MaxOccur>

<MaxSize>1024</MaxSize>

<NoTruncate/>

</Property>

<Property>

<PropName>PHOTO</PropName>

<MaxOccur>1</MaxOccur>

<PropParam>

<ParamName>TYPE</ParamName>

<ValEnum>JPEG</ValEnum>

<ValEnum>GIF</ValEnum>

</PropParam>

</Property>

</CTCap>

<SyncCap>

<SyncType>01</SyncType>

<SyncType>02</SyncType>

<SyncType>03</SyncType>

<SyncType>04</SyncType>

<SyncType>05</SyncType>

<SyncType>06</SyncType>

<SyncType>07</SyncType>

</SyncCap>

</DataStore>

</DevInf>

</Data>

</Item>

</Results>

<Alert>

<CmdID>5</CmdID>

<Data>200</Data> <!-- 200 = TWO_WAY_ALERT -->

<Item>

<Target>

<LocURI>./dev-contacts</LocURI>

</Target>

<Source>

<LocURI>./contacts/james_bond</LocURI>

</Source>

<Meta>

<Anchor xmlns=’syncml:metinf’>

<Last>20040119T081812Z </Last>

<Next>20040120T093223Z </Next>

</Anchor>

</Meta>

</Item>

</Alert>

<Final/>

</SyncBody>

</SyncML>

10.3 Error Case Behaviors

In this chapter, the recommended behaviors are defined in the cases of different error types, which can occur during the sync initialization.

10.3.1 No Packages from Server

If the client has sent its sync initialization package to the server and it does not get any complete response to it, the client MUST assume that the server has not received the sync initialization package of the client. The client MUST send its sync initialization package again later.

10.3.2 No Initialization Completion from Client

If the server has sent its sync initialization package to the client and it does not get any complete response to it (Refer Pkg #3), the server MUST assume that the client has not received the sync initialization package of the server. The server can drop the session and the sync initialization MUST be started from the beginning when synchronization is started at the next time.

10.3.3 Initialization Failure

If the initialization fails, a defined error code [DSREPU] is sent, the devices MUST act according that error type.

11. Two-Way Sync

Two-way sync is a normal synchronization type in which the client and the server exchange information about the modified data in these devices. The client is always the device which first sends the modifications. According to the information from the client, the server processes the synchronization request and the data from the client is compared and unified with the data in the server. After that, the server sends its modified data to the client device, which is then able to update its database with the data from the server.

In Figure 8, there is depicted the MSC of the client initiated two-way sync scenario.

[image: image9.wmf]

OMA DS Client

OMA DS Server

Client and server have processed the sync initialization for two

-

way sync.

User

Client device prepares the data needed to be sent to the server.

Pkg #3: Sync package from

 client to server

Server processes sync analysis.

Pkg #4: Status and Sync package

Sync result

Client make

s data update for its databases.

Pkg #5: Data Update Status package to server

Pkg #6: Map Acknowledgement to client

Figure 8 MSC of Two-Way Sync

The arrows in all figures in this document represent SyncML packages, which can include one or more messages. The package flow presented above is one OMA DS session that means that all messages have the same OMA DS session ID. The Session ID is same as used at the initialization.

The purpose and the requirements for each of the packages in the figure above are considered in the next sections.

Note. If the sync is done without a separate initialization (See Chapter 6.11) the number of a package in the figure does not describe the actual atomic number of a package in a synchronization session.

11.1 Client Modifications to Server

To enable sync, the client needs to inform the server about all client data modifications, which have happened since the previous sync package with modifications has been sent from the client to the server
 (Refer to the sync package, Pkg #3 in Figure 8). Any client modification, which is done after sending this package, MUST be reported to the server during the next sync session. It is not allowed to put them inside subsequent packages from the client to the server. The requirements for the sync package from the client to the server are following.

1. Requirements for the elements within the SyncHdr element.

· The value of the VerDTD element MUST be ‘1.2’.

· The VerProto element MUST be included to specify the sync protocol and the version of the protocol. The value MUST be ‘SyncML/1.2’ when complying with this specification.

· Session ID MUST be included to indicate the ID of a sync session.

· MsgID MUST be used to unambiguously identify the message belonging to a sync session and traveling from the client to the server.

· The Target element MUST be used to identify the target device and service.

· The Source element MUST be used to identify the source device.

2. The Status MUST be returned for the Alert command sent by the server if status was requested by the server. This can be sent before Package #2 is completely received.

· If the server is not authenticated to use the service, the sync type is wrong (e.g., slow sync needed), or some other error occurs, the client MUST return an error for that.

· The next sync anchor of the server MUST be included in the Data element of Item (See 6.2.1).

3. If the server sent the device information to the client, the client SHOULD process the transmitted device information and the Status MUST be returned for that command if requested by the server. This can be sent before Package #2 is completely received.

4. If the server requested the device information of the client, the Results element MUST be returned. This can be sent before Package #2 is completely received.

· The Type element of the MetaInf DTD MUST be included in the Meta element in the Results element to indicate that the type of the data is the type of the Device Information DTD.

· The Source element in the Results element MUST have a value ‘./devinf12’.

· The Data element MUST be used to carry the device and service information of the client.

5. The Sync element MUST be included in SyncBody and the following requirements exist.

· CmdID MUST be used.

· NoResp SHOULD NOT be specified with the Sync command.

· The Target element MUST be used to identify the target database.

· The Source element MUST be used to identify the source database.

· The free memory SHOULD be specified inside the Meta element. The free memory can be either the free memory amount in the source database or the free memory amount on the client device (See Chapter 6.7). If supplied this information MUST be sent in the first message belonging this package.

· NumberOfChanges MAY be used to indicate the number of changes in the source database.

6. If there are modifications in the client, there are following requirements for the operational elements (e.g., Replace, Delete, and Add
) within the Sync element.

· CmdID MUST be used.

· NoResp SHOULD NOT be specified with all these operations.

· The Source element MUST be included to indicate the LUID (See Definitions) of the data item within the Item element.

· The Type element of the MetaInf DTD MUST be included in the Meta element to indicate the type of the data item (E.g., MIME type). The Meta element inside an operation or inside an item can be used.

· Data element MUST be used to carry data itself if the operation is not a deletion.

7. The Final element MUST be used for the message, which is the last in this package. After the server has received the final message of the package, it can complete the sync analysis and send its modifications back to client.

11.1.1 Example of Sending Modifications to Server

<SyncML>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>4</SessionID>

<MsgID>2</MsgID>

<Target>

<LocURI>http://www.syncml.org/sync-server</LocURI>

</Target>

<Source>

<LocURI>IMEI:493005100592800</LocURI>

</Source>

</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>1</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>

<TargetRef>IMEI:493005100592800</TargetRef>

<SourceRef> http://www.syncml.org/sync-server</SourceRef>

<Data>212</Data> <!--Statuscode for OK, authenticated for session-->

</Status>

<Status>

<CmdID>2</CmdID>

<MsgRef>1</MsgRef>

<CmdRef>5</CmdRef>

<Cmd>Alert</Cmd>

<TargetRef>./dev-contacts</TargetRef>

<SourceRef>./contacts/james_bond</SourceRef>

<Data>200</Data> <!--Statuscode for Success-->

<Item>

<Data>

<Anchor xmlns=’syncml:metinf’>

<Next>20040120T093223Z </Next>

</Anchor>

</Data>

</Item>

</Status>

<Sync>

<CmdID>3</CmdID>

<Target>

<LocURI>./contacts/james_bond</LocURI>

</Target>

<Source>

<LocURI>./dev-contacts</LocURI>

</Source>

<Meta>

<Mem xmlns=’syncml:metinf’>

<FreeMem>8100</FreeMem>

<!--Free memory (bytes) in Calendar database on a device -->

<FreeId>81</FreeId>

<!--Number of free records in Calendar database-->

</Mem>

</Meta>

<NumberOfChanges>1</NumberOfChanges>

<Replace>

<CmdID>4</CmdID>

<Meta>

<Type xmlns=’syncml:metinf’>text/x-vcard</Type>

</Meta>

<Item>

<Source>

<LocURI>1012</LocURI>

</Source>

<Data>

<!--The vCard data would be placed here.-->

</Data>

</Item>

</Replace>

</Sync>

<Final/>

</SyncBody>

</SyncML>

11.2 Server Modifications to Client

The sync package (Refer Pkg #4 in Figure 8) to the client has the following purposes:

· To inform the client about the results of sync analysis.

· To inform about all data modifications, which have happened in the server since the previous time when the server has sent the modifications to the client.

Any server modifications, which are done after sending this package, MUST be reported to the client during the next sync session. It is not allowed to put them inside subsequent packages from the server to the client.

The requirements for messages within this sync package are following.

1. Requirements for the elements within the SyncHdr element.

· The value of the VerDTD element MUST be ‘1.2’.

· The value of the VerProto element MUST be ‘SyncML/1.2’.

· Session ID MUST be included to indicate the ID of a sync session.

· MsgID MUST be used to unambiguously identify the message belonging to a sync session and traveling from the server to the client.

· The Target element MUST be used to identify the target device.

· The Source element MUST be used to identify the source device and service.

2. The Status element MUST be included in SyncBody if requested by the client. It is now used to indicate the general status of the sync analysis and the status information related to data items sent by the client (e.g., a conflict has happened.). Status information for data items can be sent before Package #3 is completely received.

3. The Sync element MUST be included in SyncBody, if earlier there were no occurred errors, which could prevent the server to process the sync analysis and to send its modifications back to the client. For the Sync element, there are the following requirements.

· CmdID MUST be used.

· The response MAY be REQUIRED for the Sync command. (See the Caching of Map Item, Chapter 6.3.1)

· The Target element MUST be used to identify the target database.

· The Source element MUST be used to identify the source database.

· NumberOfChanges MUST be used to indicate the number of changes in the source database if the client has indicated that it supports NumberOfChanges.

4. If there is any modification in the server after the previous sync, there are following requirements for the operational elements (e.g., Replace, Delete, and Add
) within the Sync element.

· CmdID MUST be used.

· The response MAY be REQUIRED for these operations.

· Source MUST be used to define the temporary GUID (See Definitions) of the data item in the server if the operation is an addition. If the operation is not an addition, Source MUST NOT be included.

· Target MUST be used to define the LUID (See Definitions) of the data item if the operation is not an addition. If the operation is an addition, Target MUST NOT be included.

· The Data element inside Item is used to include the data itself if the operation is not a deletion.

· The Type element of the MetaInf DTD MUST be included in the Meta element to indicate the type of the data item (E.g., MIME type). The Meta element inside an operation or inside an item can be used.

5. The Final element MUST be used for the message, which is the last in this package.

11.2.1 Example of Sending Modifications to Client

<SyncML>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>4</SessionID>

<MsgID>2</MsgID>

<Target>

<LocURI>IMEI:493005100592800</LocURI>

</Target>

<Source>

<LocURI>http://www.syncml.org/sync-server</LocURI>

</Source>

</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>2</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>

<TargetRef>http://www.syncml.org/sync-server</TargetRef>

<SourceRef>IMEI:493005100592800</SourceRef>

<Data>200</Data>

</Status>

<Status><!--This is a status for the client modifications to the server.-->

<CmdID>2</CmdID>

<MsgRef>2</MsgRef>

<CmdRef>3</CmdRef>

<Cmd>Sync</Cmd>

<TargetRef>./contacts/james_bond</TargetRef>

<SourceRef>./dev-contacts</SourceRef>

<Data>200</Data> <!--Statuscode for Success-->

</Status>

<Status>

<CmdID>3</CmdID>

<MsgRef>2</MsgRef>

<CmdRef>4</CmdRef>

<Cmd>Replace</Cmd>

<SourceRef>1012</SourceRef>

<Data>200</Data> <!--Statuscode for Success-->

</Status>

<Sync>

<CmdID>4</CmdID>

<Target>

<LocURI>./dev-contacts</LocURI>

</Target>

<Source>

<LocURI>./contacts/james_bond</LocURI>

</Source>

<NumberOfChanges>2</NumberOfChanges>

<Replace>

<CmdID>5</CmdID>

<Meta>

<Type xmlns=’syncml:metinf’>text/x-vcard</type>

</Meta>

<Item>

<Target>

<LocURI>1023</LocURI>

</Target>

<Data>

<!--The vCard data would be placed here.-->

</Data>

</Item>

</Replace>

<Add>

<CmdID>6</CmdID>

<Meta>

<Type xmlns=’syncml:metinf’>text/x-vcard</type>

</Meta>

<Item>

<Source>

<LocURI>10536681</LocURI>

</Source>

<Data>

<!--The vCard data would be placed here.-->

</Data>

</Item>

</Add>

</Sync>

<Final/>

</SyncBody>

</SyncML>

11.3 Data Update Status from Client

The data update status package from the client to the server is needed to transport the information about the result of the data update on the client side. In addition, it is used to indicate the LUID’s of the new data items, which have been added in the client, i.e., the Map operation for mapping LUID’s and temporary GUID’s is sent to the server.

Note. This package MAY NOT be sent if the server has indicated that it does not require a response to its last package to the client. If the client decides that it does not send this message, it MUST be able to cache the Map operations until the next synchronization will happen, when these Map operations can be sent to the server (See also Chapter 6.3.1). However, the client is always allowed to send this Data Update Status package to the server, even if the server has not requested a response.

The messages in this package have the following requirements.

1. Requirements for the elements within the SyncHdr element.

· The value of the VerDTD element MUST be ‘1.2’.

· The value of the VerProto element MUST be ‘SyncML/1.2’.

· Session ID MUST be included to indicate the ID of a sync session.

· MsgID MUST be used to unambiguously identify the message belonging to a sync session and traveling from the client to the server.

· The Target element MUST be used to identify the target device and service.

· The Source element MUST be used to identify the source device.
2. The Status element MUST be in SyncBody if requested by the server. It is used to indicate the results of data update in the client. Also, the status information related to the individual data items is transferred to the server. The status information for data items can be sent before Package #4 is completely received.
3. The Map element MUST be included in the SyncBody element if the client has processed any server additions to its database. For each database being synchronized, a separate Map operation or operations MUST be sent if any additions to a database is carried out. This command can be sent before Package #4 is completely received.

· CmdID MUST be used.

· The Source and Target elements MUST be used in the Map element.

· The response MUST be used with the Map operation.

· The client MUST return the client side IDs, i.e., LUID’s and the server side IDs (temporary GUID’s) for the data items within MapItem elements.

4. The Final element MUST be used for the message, which is the last in this package.

11.3.1 Example of Data Update Status to Server

<SyncML>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>4</SessionID>

<MsgID>3</MsgID>

<Target>

<LocURI>http://www.syncml.org/sync-server</LocURI>

</Target>

<Source>

<LocURI>IMEI:493005100592800</LocURI>

</Source>

</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>2</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>

<TargetRef>IMEI:493005100592800</TargetRef>

<SourceRef> http://www.syncml.org/sync-server</SourceRef>

<Data>200</Data>

</Status>

<Status>

<CmdID>2</CmdID>

<MsgRef>2</MsgRef>

<CmdRef>4</CmdRef>

<Cmd>Sync</Cmd>

<TargetRef>./dev-contacts</TargetRef>

<SourceRef>./contacts/james_bond</SourceRef>

<Data>200</Data>

</Status>

<Status>

<CmdID>3</CmdID>

<MsgRef>2</MsgRef>

<CmdRef>5</CmdRef>

<Cmd>Replace</Cmd>

<TargetRef>1023</TargetRef>

<Data>200</Data>

</Status>

<Status>

<CmdID>4</CmdID>

<MsgRef>2</MsgRef>

<CmdRef>6</CmdRef>

<Cmd>Add</Cmd>

<SourceRef>10536681</SourceRef>

<Data>200</Data>

</Status>

<Map>

<CmdID>5</CmdID>

<Target>

<LocURI>./contacts/james_bond</LocURI>

</Target>

<Source>

<LocURI>./dev-contacts</LocURI>

</Source>

<MapItem>

<Target>

<LocURI>10536681</LocURI>

</Target>

<Source>

<LocURI>1024</LocURI>

</Source>

</MapItem>

</Map>

<Final/>

</SyncBody>

</SyncML>

11.4 Map Acknowledgement from Server

The Map Acknowledgement from the server to the client is needed to inform the client that the server has received the mapping information of the data items. This acknowledgement is sent back to the client even if there were no Map operations in last package from the client to the server.

The messages in this package have the following requirements.

1. Requirements for the elements within the SyncHdr element.

· The value of the VerDTD element MUST be ‘1.2’.

· The value of the VerProto element MUST be ‘SyncML/1.2’.

· Session ID MUST be included to indicate the ID of a sync session.

· MsgID MUST be used to unambiguously identify the message belonging to a sync session and traveling from the server to the client.

· The Target element MUST be used to identify the target device.

· The Source element MUST be used to identify the source device and service.

2. The Status element(s) MUST be included in SyncBody. It is now used to indicate the status of the Map operation(s). This or these can be sent before Package #5 is completely received.

3. The Final element MUST be used for the message, which is the last in this package.

11.4.1 Example of Map Acknowledge

<SyncML>

<SyncHdr>

<VerDTD>1.2</VerDTD>

<VerProto>SyncML/1.2</VerProto>

<SessionID>4</SessionID>

<MsgID>3</MsgID>

<Target>

<LocURI>IMEI:493005100592800</LocURI>

</Target>

<Source>

<LocURI>http://www.syncml.org/sync-server</LocURI>

</Source>

</SyncHdr>

<SyncBody>

<Status>

<CmdID>1</CmdID>

<MsgRef>3</MsgRef>

<CmdRef>0</CmdRef>

<Cmd>SyncHdr</Cmd>

<TargetRef>http://www.syncml.org/sync-server</TargetRef>

<SourceRef>IMEI:493005100592800</SourceRef>

<Data>200</Data>

</Status>

<Status>

<CmdID>1</CmdID>

<MsgRef>3</MsgRef>

<CmdRef>5</CmdRef>

<Cmd>Map</Cmd>

<TargetRef>./contacts/james_bond </TargetRef>

<SourceRef>./dev-contacts</SourceRef>

<Data>200</Data>

</Status>

<Final/>

</SyncBody>

</SyncML>

11.5 Slow Sync

The slow sync can be desired for many reasons, e.g., the client or the server has lost its change log information, the LUID’s have wrapped around in the client, or the sync anchors mismatch. The slow sync is a form of the two-way synchronization in which all items in one or more databases are compared with each other on a field-by-field basis. In practice, the slow sync means that the client sends all its data in a database to the server and the server does the sync analysis (field-by-field) for this data and the data in the server. After the sync analysis, the server returns all needed modifications back to the client. Also, the client returns the Map items for all data items, which were added by the server.

Because of many reasons to process the slow sync, it can be either the client or the server, which indicates a need for this. If the client does this, it specifies in the Alert command that the sync type is the slow sync. The Alert command MAY be the same as at the sync initialization or the similar Alert command MAY be included when Package #3 is sent. The value of the Alert code is 201.

If there is a need for the server to initiate the slow sync, it happens by including the Alert operation with the 201 alert code. This alert operation MUST be the Alert operation at the Sync Initialization (Refer Package #2). After the client has received the status and the Alert operation for the slow sync, sync can be thought to start as if the client were initiating the slow sync in Package #3. However, the client MUST NOT include the Alert command anymore if it was the server, which alerted the slow sync.

If the client or the server needs to initiate the slow sync after receiving the alert for the normal synchronization, they need to send back an error status for that Alert in addition the slow sync alert. The error code, which is used in this case, MUST be 508 (‘Refresh required’). If the client has not used a separate synchronization initialization, as specified in Chapter 6.11, it MUST send all updates in the next message to the server after receiving the error status and the Alert for a slow sync.

After the server has sent the Sync Alert, and if the client does not agree with the sync anchor in that Alert, then the Client MUST start a slow sync. This is done by sending back a Status on that Alert with ‘Refresh Required’ (508). In this same message, the client SHOULD start the slow sync. In this case, the client MUST NOT send another Alert to start the slow sync. Note that it is not necessary for the client to compare the sync anchor from the server.

If the devices are synchronizing with each other at the first time, the slow sync MUST be initiated.

11.6 Error Case Behaviors

In this chapter, the recommended behaviors are defined in the cases of different error types.

11.6.1 No Packages from Server after Initialization

If the client has sent its modifications to the server and it does not get the status associated with those modifications, the client MUST assume that the server has not received those client modifications. At the next time when synchronization is started, the modifications, to which the status was not received, MUST be sent to the server again.

11.6.2 No Data Update Status from Client

If the server has sent its modifications to the client and it does not get the status associated with those server modifications, the server MUST assume that the client has not received those server modifications. Thus, at the next time when synchronization is started, the server modifications in addition to new ones MUST be sent to the client.

11.6.3 No Data Map Acknowledge from Server

If the client has sent the Map operation(s) and it does not get any complete response to it, the client SHOULD assume that the server has not received the Map operation(s). Thus, the client SHOULD try to send the Map operation(s) again or at the next time when synchronization is started.

11.6.4 Errors with Defined Error Codes

If the device receives a defined error code [DSREPU], it MUST act according that error type.

12. One-Way Sync from Client Only

The one-way sync from the client only is the sync type in which the client sends all modifications to the server but the server does not send its modifications back to the client. Thus, after this type of sync, the server includes all modified data from the client but the client does not know about modifications in the server. In Figure 9, there is depicted the MSC for this scenario.

[image: image10.wmf]

OMA DS Client

OMA DS Server

Client and server have processed the sync initialization for one

-

way sync from client.

User

Client device prepares the data needed to be sent to the server.

Pkg #3: Sync package from client to server

Server processes sync analysis.

Pkg

 #4: Status package

Sync result

Figure 9 MSC of One-Way Sync from Client only

The package flow presented above is one OMA DS session that means that all messages have the same OMA DS session ID. The Session ID is same as used at the initialization.
The purpose and the requirements for each of package in the figure above are considered in the next sections.

Note. If the sync is done without a separate initialization (See Chapter 6.11), the number of a package in the figure does not describe the actual atomic number of a package in a synchronization session.

12.1 Client Modifications to Server

To initiate the sync, the client needs to inform the server about all client data modifications, which have happened since the previous sync
 (Refer to the sync package, Pkg #3 in Figure 9). Any client modification, which is done after sending this package, MUST be reported to the server during the next sync session. It is not allowed to put them inside subsequent packages from the client to the server. The requirements for the sync package from the client to the server are the same as in Chapter 9.1.

12.2 Status from Server

The Status package (Refer Pkg #4) has a purpose of informing the client about the results of sync analysis. The requirements for the status package are following.

1. Requirements for the elements within the SyncHdr element.

· The value of the VerDTD element MUST be ‘1.2’.

· The value of the VerProto element MUST be ‘SyncML/1.2’.

· Session ID MUST be included to indicate the ID of a sync session.

· MsgID MUST be used to unambiguously identify the message belonging to a sync session and traveling from the server to the client.

· Final MUST be used for the message, which is the last in this package.

· The Target element MUST be used to identify the target device.

· The Source element MUST be used to identify the source device and service.

2. The Status element MUST be included in SyncBody if requested by the client. It is now used to indicate the general status of the sync analysis and the status information related to data items sent by the client if this is necessary (e.g., a conflict has happened.). The status information for data items can be sent before Package #1 is completely received.

12.3 Refresh Sync from Client Only

The ‘refresh sync from client only’ is a synchronization type in which the client sends all its data from a database to the server (i.e., exports). The server is expected to replace all data in the target database with the data sent by the client. I.e., this means that the client overwrites all data in the server database.

This refresh sync is treated as a special case of the ‘one-way sync from client only’. The only differences between this case and the normal ‘one-way sync from client only’ are:

1. At the initialization, the sync type (Alert code) MUST be used to indicate that the ‘one-way refresh sync from client only’ is requested. The Alert code is 203.

2. In Package #3, the Sync element (Pkg #3) from the client to the server MUST include all data from the source database (client database).

12.4 Error Cases Behavior

In this chapter, the recommended behaviors of devices are defined in the cases of different error types.

12.4.1 No Packages from Server after Initialization

See Chapter 9.6.1.

12.4.2 Errors with Defined Error Codes

See Chapter 9.6.4.

13. One-Way Sync from Server only

This sync type is the case in which the client gets all modifications from the server but the client does not send its modifications to the server. Thus, after this type of sync, the client includes all modified data from the server but the server does not know about modifications in the client. In Figure 10, there is depicted the MSC for this scenario.

[image: image11.wmf]

OMA DS Client

OMA DS Server

Client and server have processed the sync initialization for one

-

way sync from server.

User

Pkg #3: Sync Alert from client to server

Server processes sync analysis.

Pkg #4: Sync package

Sync result

Client makes data update for its databases.

Pkg #5: Data Update Status package to server

Pkg #6: Map Acknowledge to client

Figure 10 MSC of Sync from Server Only

The package flow presented above is one OMA DS session that means that all messages have the same OMA DS session ID. The Session ID is same as used at the initialization.
The purpose and the requirements for each of package in the figure above are considered in the next sections.

Note. If the sync is done without a separate initialization (See Chapter 6.11), the number of a package in the figure does not describe the actual atomic number of a package in a synchronization session.

13.1 Sync Alert to Server

The sync package (Pkg #3 in Figure 10) is very much similar to the package #3 in the two-way sync but any client modifications are not ever sent to server and the server is only asked to send its modifications to the client. The only difference from the requirements defined in Chapter 9.1 is:

Any client modifications are not included into the Sync element. It MUST be empty.

13.2 Server Modifications to Client

See Chapter 9.2.

13.3 Data Update Status from Client

See Chapter 9.3.

13.4 Map Acknowledge from Server

See Chapter 9.4.

13.5 Refresh Sync from Server Only

The ‘refresh sync from server only’ is a synchronization type in which the server sends all its data from a database to the client. The client is expected to replace all data in the target database with the data sent by the server. This means that the server overwrites all data in the client database.

This refresh sync is treated as a special case of the ‘one-way sync from server only’. The differences between this case and the normal ‘one-way sync from server only’ are:

1. At the Sync Initialization (See Chapter 11.1), the value for the Alert code is 205.

2. In the Server Modifications package to the client (See Chapter 11.2), the Sync element MUST include all data from the source database.

3. The client MUST store all data items to its database (i.e., overwrites old data) and the client MUST return the map items for all stored data items back to the server.

13.6 Error Cases

In this chapter, the recommended behaviors of devices are defined in the cases of different error types.

13.6.1 No Packages from Server

If the client has sent the empty sync command to the server, it does not get any complete response to it (new modifications), the client SHOULD drop the OMA DS session and try to get the modifications later by starting the sync from the beginning.

13.6.2 No Data Update Status from Client

See Chapter 9.6.2.

13.6.3 No Map Ack from Server

See Chapter 9.6.3.

13.6.4 Errors with Defined Error Codes

See Chapter 9.6.4.

14. Protocol Values and Alert Codes

14.1 Protocol Values

Here are listed all protocol values (string values), which can be used in the VerProto element. The protocol version 1.2 is used by the implementations complying with this specification

	VerProto Codes
	Description

	SyncML/1.0
	Indicates that this SyncML message uses the sync protocol 1.0 defined by the SyncML Initiative.

	SyncML/1.1
	Indicates that this SyncML message uses the sync protocol 1.1 defined by the SyncML Initiative.

	SyncML/1.2
	Indicates that this SyncML message uses the sync protocol 1.2 defined by the OMA DS WG.

14.2 Alert Codes

Here are listed all Alert codes and values, which are used in the Type element of Meta when the Alert command is sent.

	Alert Code Value
	Name
	Description

	Alert Codes used for user alerts

	100
	DISPLAY
	Show. The Data element type contains content information that should be processed and displayed through the user agent.

	101-150
	-
	Reserved for future SyncML usage.

	Alert Codes used at the synchronization initialization

	200
	TWO-WAY
	Specifies a client-initiated, two-way sync.

	201
	SLOW SYNC
	Specifies a client-initiated, two-way slow-sync.

	202
	ONE-WAY FROM CLIENT
	Specifies the client-initiated, one-way only sync from the client to the server.

	203
	REFRESH FROM CLIENT
	Specifies the client-initiated, refresh operation for the one-way only sync from the client to the server.

	204
	ONE-WAY FROM SERVER
	Specifies the client-initiated, one-way only sync from the server to the client.

	205
	REFRESH FROM SERVER
	Specifies the client-initiated, refresh operation of the one-way only sync from the server to the client.

	Alert Codes used by the server when alerting the sync.

	206
	TWO-WAY BY SERVER
	Specifies a server-initiated, two-way sync.

	207
	ONE-WAY FROM CLIENT BY SERVER
	Specifies the server-initiated, one-way only sync from the client to the server.

	208
	REFRESH FROM CLIENT BY SERVER
	Specifies the server-initiated, refresh operation for the one-way only sync from the client to the server.

	209
	ONE-WAY FROM SERVER BY SERVER
	Specifies the server-initiated, one-way only sync from the server to the client.

	210
	REFRESH FROM SERVER BY SERVER
	Specifies the server-initiated, refresh operation of the one-way only sync from the server to the client.

	211-220
	-
	Reserved for future SyncML usage.

	Special Alert Codes

	221
	RESULT ALERT
	Specifies a request for sync results.

	222
	NEXT MESSAGE
	Specifies a request for the next message in the package.

	223
	NO END OF DATA
	End of Data for chunked object not received.

	224
	SUSPEND
	Suspend Synchronization session

	225
	RESUME
	Resume Synchronization session

	226-250
	-
	Reserved for future SyncML usage.

15. Examples

15.1 WBXML Example

Here is an example of Package #3 in tokenized form (numbers in hexadecimal). This example uses opaque data and inline strings. The example also assumes that the character encoding is UTF-8.

02 00 00 6A 1E ”-” ”/” ”/” ”S” ”Y” ”N” ”C” ”M” ”L” ”/” ”/” ”D” ”T” ”D” ” ” ”S” ”y” ”n” ”c” ”M” ”L” ” “ ”1” ”.” ”2” ”/” ”/” ”E” ”N” 00 6D 6C 71 C3 03 “1” “.” “2” 01 72 C3 0A “S” “y” “n” “c” “M” “L” “/” “1” “.” “2” 01 65 C3 01 “1” 01 5B C3 01 “2” 01 6E 57 C3 20 “h” “t” “t” “p” “:” “/” “/” “w” “w” “w” “1” “.” “d” “a” “t” “a” “s” “y” “n” “c” “.” “o” “r” “g” “/” “s” “e” “r” “v” “l” “e” “t” 01 01 67 57 C3 12 “I” “M” “E” “I” “:” “1” “5” “6” “4” “4” “6” “9” “2” “1” “0” “9” “4” “8” 01 01 01 6B 69 4B C3 01 “1” 01 5C C3 01 “1” 01 4C C3 01 “0” 01 4A C3 07 “S” “y” “n” “c” “H” “d” “r” 01 6F C3 12 “I” “M” “E” “I” “:” “1” “5” “6” “4” “4” “6” “9” “2” “1” “0” “9” “4” “8” 01 68 C3 20 “h” “t” “t” “p” “:” “/” “/” “w” “w” “w” “1” “.” “d” “a” “t” “a” “s” “y” “n” “c” “.” “o” “r” “g” “/” “s” “e” “r” “v” “l” “e” “t” 01 4F C3 3 “2” “0” “0” 01 01 69 4B C3 01 “2” 01 5C C3 01 “1” 01 4C C3 01 “1” 01 4A C3 05 “A” “l” “e” “r” “t” 01 6F C3 0E “.” “\” “d” “e” “v” “-“ “c” “a” “l” “e” “n” “d” “a” “r” 01 68 C3 0A “.” “/” “c” “a” “l” “e” “n” “d” “a” “r” 01 4F C3 03 “2” “0” “0” 01 54 4F 00 02 4A C3 11 “2” “0” “0” “0” “0” “5” “0” “2” “2” “T” “0” “9” “3” “2” “2” “3” “Z” 01 00 00 01 01 01 6A 4B C3 01 “3” 01 6E 57 C3 0A “.” “/” “c” “a” “l” “e” “n” “d” “a” “r” 01 01 67 57 C3 0E “.” “\” “d” “e” “v” “-“ “c” “a” “l” “e” “n” “d” “a” “r” 01 01 33 C3 01 “1” 01 60 4B C3 01 “4” 01 5A 00 02 4D 03 “t” “e” “x” “t” “/” “x” “-“ “v” “c” “a” “l” “e” “n” “d” “a” “r” 00 01 00 00 01 54 67 57 C3 02 “2” “6” 01 01 4F C3 02 04 “C” “A” “L” “1” 01 01 01 01 12 01 01 01

In an expanded and annotated form:

	Token Stream
	Description

	02
	Version number – WBXML v1.2

	00
	FPI for DTD in string table

	00
	index into string table for the identifier

	6A
	Charset is UTF-8

	1E
	String table length

	”-” ”/” ”/” ”S” ”Y” ”N” ”C” ”M” ”L” ”/” ”/” ”D” ”T” ”D” ” ” ”S” ”y” ”n” ”c” ”M” ”L” ” “ ”1” ”.” ”2” ”/” ”/” ”E” ”N” 0x00
	-//SYNCML//DTD SyncML 1.2//EN

	6D
	<SyncML>

	6C
	<SyncHdr>

	71
	<VerDTD>

	C3
	Opaque data follows

	03
	Length of opaque data

	“1” “.” “2”
	String ‘1.2’

	01
	</VerDTD>

	72
	<VerProto>

	C3
	Opaque data follows

	0A
	Length of opaque data

	“S” “y” “n” “c” “M” “L” “/” “1” “.” “2”
	String ‘SyncML/1.2’

	01
	</VerProto>

	65
	<SessionID>

	C3
	Opaque data follows

	01
	Length of opaque data

	“1”
	String ‘1’

	01
	</SessionID>

	5B
	<MsgID>

	C3
	Opaque data follows

	01
	Length of opaque data

	“2”
	String ‘2’

	01
	</MsgID>

	6E
	<Target>

	57
	<LocURI>

	C3
	Opaque data follows

	20
	Length of opaque data

	“h” “t” “t” “p” “:” “/” “/” “w” “w” “w” “1” “.” “d” “a” “t” “a” “s” “y” “n” “c” “.” “o” “r” “g” “/” “s” “e” “r” “v” “l” “e” “t”
	String ‘http://www1.datasync.org/servlet”

	01
	</LocURI>

	01
	</Target>

	67
	<Source>

	57
	<LocURI>

	C3
	Opaque data follows

	12
	Length of opaque data

	“I” “M” “E” “I” “:” “1” “5” “6” “4” “4” “6” “9” “2” “1” “0” “9” “4” “8”
	String ‘IMEI:1564469210948’

	01
	</LocURI>

	01
	</Source>

	01
	</SyncHdr>

	6B
	<SyncBody>

	69
	<Status>

	4B
	<CmdID>

	C3
	Opaque data follows

	01
	Length of opaque data

	“1”
	String ‘1’

	01
	</CmdID>

	5C
	<MsgRef>

	C3
	Opaque data follows

	01
	Length of opaque data

	“1”
	String ‘1’

	01
	</MsgRef>

	4C
	<CmdRef>

	C3
	Opaque data follows

	01
	Length of opaque data

	“0”
	String ‘0’

	01
	</CmdRef>

	4A
	<Cmd>

	C3
	Opaque data follows

	07
	Length of opaque data

	“S” “y” “n” “c” “H” “d” “r”
	String ‘SyncHdr’

	01
	</Cmd>

	6F
	<TargetRef>

	C3
	Opaque data follows

	12
	Length of opaque data

	“I” “M” “E” “I” “:” “1” “5” “6” “4” “4” “6” “9” “2” “1” “0” “9” “4” “8”
	String ‘IMEI:1564469210948’

	01
	</TargetRef>

	68
	<SourceRef>

	C3
	Opaque data follows

	20
	Length of opaque data

	“h” “t” “t” “p” “:” “/” “/” “w” “w” “w” “1” “.” “d” “a” “t” “a” “s” “y” “n” “c” “.” “o” “r” “g” “/” “s” “e” “r” “v” “l” “e” “t”
	String ‘http://www1.datasync.org/servlet”

	01
	</LocURI>

	4F
	<Data>

	C3
	Opaque data follows

	3
	Length of opaque data

	“2” “0” “0”
	String ‘200’

	01
	</Data>

	01
	</Status>

	69
	<Status>

	4B
	<CmdID>

	C3
	Opaque data follows

	01
	Length of opaque data

	“2”
	String ‘2’

	01
	</CmdID>

	5C
	<MsgRef>

	C3
	Opaque data follows

	01
	Length of opaque data

	“1”
	String ‘1’

	01
	</MsgRef>

	4C
	<CmdRef>

	C3
	Opaque data follows

	01
	Length of opaque data

	“1”
	String ‘0’

	01
	</CmdRef>

	4A
	<Cmd>

	C3
	Opaque data follows

	05
	Length of opaque data

	“A” “l” “e” “r” “t”
	String ‘Alert’

	01
	</Cmd>

	6F
	<TargetRef>

	C3
	Opaque data follows

	0E
	Length of opaque data

	“.” “\” “d” “e” “v” “-“ “c” “a” “l” “e” “n” “d” “a” “r”
	String ‘.\dev-calendar’

	01
	</TargetRef>

	68
	<SourceRef>

	C3
	Opaque data follows

	0A
	Length of opaque data

	“.” “/” “c” “a” “l” “e” “n” “d” “a” “r”
	String ‘./calendar’

	01
	</LocURI>

	4F
	<Data>

	C3
	Opaque data follows

	03
	Length of opaque data

	“2” “0” “0”
	String ‘200’

	01
	</Data>

	54
	<Item>

	4F
	<Data>

	00
	Switch codepage

	01
	Codepage 01 (MetInf)

	4F
	<Next>

	C3
	Opaque data follows

	11
	Length of opaque data

	“2” “0” “0” “0” “0” “5” “0” “2” “2” “T” “0” “9” “3” “2” “2” “3” “Z”
	String ‘200005022T093223Z ‘

	01
	</Next>

	00
	Switch codepage

	00
	Codepage 00

	01
	</Data>

	01
	</Item>

	01
	</Status>

	6A
	<Sync>

	4B
	<CmdID>

	C3
	Opaque data follows

	01
	Length of opaque data

	“3”
	String ‘3’

	01
	</CmdID>

	6E
	<Target>

	57
	<LocURI>

	C3
	Opaque data follows

	0A
	Length of opaque data

	“.” “/” “c” “a” “l” “e” “n” “d” “a” “r”
	String ‘./calendar’

	01
	</LocURI>

	01
	</Target>

	67
	<Source>

	57
	<LocURI>

	C3
	Opaque data follows

	0E
	Length of opaque data

	“.” “\” “d” “e” “v” “-“ “c” “a” “l” “e” “n” “d” “a” “r”
	String ‘.\dev-calendar’

	01
	</LocURI>

	01
	</Source>

	33
	<NumberOfChanges>

	C3
	Opaque data follows

	01
	length of opaque data

	“1”
	String ‘1’

	01
	</NumberOfChanges>

	60
	<Replace>

	4B
	<CmdID>

	C3
	Opaque data follows

	01
	Length of opaque data

	“4”
	String ‘4’

	01
	</CmdID>

	5A
	<Meta>

	00
	Codepage switch

	01
	Codepage 01 (MetInf)

	4D
	<Type>

	03
	Inline string follows

	“t” “e” “x” “t” “/” “x” “-“ “v” “c” “a” “l” “e” “n” “d” “a” “r” 00
	String ‘text/x-vcalendar’

	01
	</Type>

	00
	Codepage switch

	00
	Codepage 00

	01
	</Meta>

	54
	<Item>

	67
	<Source>

	57
	<LocURI>

	C3
	Opaque data follows

	02
	Length of opaque data

	“2” “6”
	String ‘26’

	01
	</LocURI>

	01
	</Source>

	4F
	<Data>

	C3
	Opaque data follows

	02
	Length of opaque data

	04
	Legnth of string table

	“C” “A” “L” “1”
	Actual data

	01
	</Data>

	01
	</Item>

	01
	</Replace>

	01
	</Sync>

	12
	<Final>

	01
	</Final>

	01
	</SyncBody>

	01
	</SyncML>

Appendix A. Static Conformance Requirements
(Normative)

A.1 Conformance Requirements for OMA DS Client

Table 1 – Client Features

	Item
	Functionality
	Reference
	Status
	Requirement

	SCR-DS-CLIENT-001
	Support of ‘two-way sync’ sync type
	8
	M
	

	SCR-DS-CLIENT-002
	Support of ‘slow two-way sync’ sync type
	9.5
	M
	

	SCR-DS-CLIENT-003
	Support of ‘one-way sync from client only’ sync type
	10
	O
	

	SCR-DS-CLIENT-004
	Support of ‘refresh sync from client only’ sync type
	10.3
	O
	

	SCR-DS-CLIENT-005
	Support of ‘one-way sync from server only’ sync type
	11
	O
	

	SCR-DS-CLIENT-006
	Support of ‘refresh sync from server only’ sync type
	11.5
	O
	

	SCR-DS-CLIENT-007
	Support of ‘sync alert’

For non-WAP clients, or WAP clients that only use OBEX transport for DS.
	12
	O
	

	SCR-DS-CLIENT-008
	Support of ‘Sync Without Separate Initialization’
	6.11
	O
	

	SCR-DS-CLIENT-009
	Support of sending ‘Large Objects’
	6.10
	O
	SCR-DS-CLIENT-LO-S-004
SCR-DS-CLIENT-LO-S-005
SCR-DS-CLIENT-LO-S-006

SCR-DS-CLIENT-LO-S-007

	SCR-DS-CLIENT-010
	Support of receiving 'Large Objects'
	6.10
	O
	SCR-DS-CLIENT-LO-R-001
SCR-DS-CLIENT-LO-R-002
SCR-DS-CLIENT-LO-R-003

	SCR-DS-CLIENT-011
	Support of ‘busy signaling’
	6.13
	O
	

	SCR-DS-CLIENT-012
	Support of suspend/resume
	6.12
	O
	

	SCR-DS-CLIENT-013
	Support for filtering
	
	O
	SCR-DS-COMMON-C-008

	SCR-DS-CLIENT-014
	Support for hierarchical synchronization
	
	O
	SCR-DS-CONTENT-C-007

	SCR-DS-CLIENT-015
	Support WAP PUSH operation

For WAP capable devices that use HTTP or WSP transport for DS
	12
	M
	DSDM-WSP-C-002

	SCR-DS-CLIENT-016
	Support of ‘sync alert’ by WAP Push method

For WAP capable devices that use HTTP or WSP transport for DS
	12
	M
	DSDM-WSP-C-002

A.1.1 SCR for Large Object

	Item
	Function
	Reference
	Status
	Requirement

	SCR-DS-CLIENT-LO-R-001
	Indicate support for receiving Large Object in the DevInf
	6.10
	M
	SCR-DS-DEVINF-C-029

	SCR-DS-CLIENT-LO-R-002
	Sending MaxObjSize and MaxMsgSize
	6.10
	M
	

	SCR-DS-CLIENT-LO-R-003
	Sync Commands inside Large Object is handled as Atomic
	6.10
	M
	

	SCR-DS-CLIENT-LO-S-004
	Data chunks must be sent in continuous order without any new command
	6.10
	M
	

	SCR-DS-CLIENT-LO-S-005
	Include Size in the first data chunk
	6.10
	M
	

	SCR-DS-CLIENT-LO-S-006
	All chunks except the last one must include “MoreData” tag
	6.10
	M
	

	SCR-DS-CLIENT-LO-S-007
	Repeat Meta and Item information in each chunk
	6.10
	O
	

A.2 Conformance Requirements for OMA DS Server

Table 2 – Server Features

	Item
	Functionality
	Reference
	Status
	Requirement

	SCR-DS-SERVER-001
	Support of ‘two-way sync’ sync type
	8
	M
	

	SCR-DS-SERVER-002
	Support of ‘slow two-way sync’ sync type
	9.5
	M
	

	SCR-DS-SERVER-003
	Support of ‘one-way sync from client only’ sync type
	10
	M
	

	SCR-DS-SERVER-004
	Support of ‘refresh sync from client only’ sync type
	10.3
	M
	

	SCR-DS-SERVER-005
	Support of ‘one-way sync from server only’ sync type
	11
	M
	

	SCR-DS-SERVER-006
	Support of ‘refresh sync from server only’ sync type
	11.5
	M
	

	SCR-DS-SERVER-007
	Support of ‘sync alert’
	12
	O
	

	SCR-DS-SERVER-008
	Support of ‘Sync Without Separate Initialization’
	6.11
	M
	

	SCR-DS-SERVER-009
	Support of sending ‘Large Objects’
	6.10
	O
	SCR-DS-SERVER -LO-S-004
SCR-DS-SERVER -LO-S-005
SCR-DS-SERVER -LO-S-006

 SCR-DS-SERVER -LO-S-007

	SCR-DS-SERVER-010
	Support receiving Large Object Handling
	6.10
	M
	· SCR-DS-SERVER -LO-R-001
SCR-DS-SERVER -LO-R-002
SCR-DS-SERVER -LO-R-003

	SCR-DS-SERVER-011
	Support of ‘busy signaling’
	6.13
	O
	

	SCR-DS-SERVER-012
	Support of suspend/resume
	6.12
	M
	

	SCR-DS-SERVER-013
	Support for filtering
	
	O
	SCR-DS-COMMON-S-008

	SCR-DS-SERVER-014
	Support for hierarchical synchronization
	
	O
	SCR-DS-CONTENT-S-007

A.2.1 SCR for Large Object

	Item
	Function
	Reference
	Status
	Requirement

	SCR-DS-SERVER-LO-R-001
	Indicate support for Large Object in DevInf
	6.10
	M
	SCR-DS-DEVINF-S-029

	SCR-DS-SERVER-LO-R-002
	Sending MaxObjSize and MaxMsgSize
	6.10
	M
	

	SCR-DS-SERVER-LO-R-003
	Sync Command inside Large Object is handled as Atomic
	6.10
	M
	

	SCR-DS-SERVER-LO-S-004
	Data chunks must be sent in continuous order without any new command
	6.10
	M
	

	SCR-DS-SERVER-LO-S-005
	Include Size in the first data chunk
	6.10
	M
	

	SCR-DS-SERVER-LO-S-006
	All chunks except the last one must include “MoreData”
	6.10
	M
	

	SCR-DS-SERVER-LO-S-007
	Repeat Meta and Item information in each chunk
	6.10
	O
	

Appendix B. Change History
(Informative)

B.1 Approved Version History

	Reference
	Date
	Description

	
	
	

B.2 Draft/Candidate Version 2.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version

OMA-TS-DS_Protocol-V2_0
	05 Sep 2006
	8,
	Updated according to agreed CRs: OMA-DS-DS_2_0-2006-0024R02; 025R01

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

� This time is dependent e.g. on the transport protocol transferring SyncML messages.

� These modifications include also modifications which have happened during the previous sync session after the client has sent its modifications to the server.

� It is not required that the client uses the Add command when sending modifications. It MAY use the Replace command for additions, in which case the receiving device MUST interpret the command as and Add command.

� It is not required that the server uses the Add command when sending modifications. It MAY use the Replace command for additions, in which case the receiving device MUST interpret the command as and Add command.

� These modifications include also modifications which have happened during the previous sync session after the client has sent its modifications to the server.

�To be renamed and refined.

�What is credential?

Is nonce a part of credential? Should it be clarified in concept document?

�SHOULD be revised when group decides on descriptor for ‘Physical Session’.

�

�Can we reuse this header specified in DM specification?

�The original parameter name is username which is not accurate. And this value is carried by using <LocName> in DM. To my understanding it should be the part of credential which is configured offline.

(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060101]
(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060101]

_1201435311.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

OMA DS Server

Server processes sync analysis.

Client makes data update for its databases.

Sync result

Pkg #4: Status and Sync package

Pkg #6: Map Acknowledgement to client

Pkg #5: Data Update Status package to server

Client device prepares the data needed to be sent to the server.

Pkg #3: Sync package from client to server

Client and server have processed the sync initialization for two-way sync.

OMA DS Client

User

_935227290.doc

_1201439528.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

[image: image1.wmf][image: image2.wmf][image: image3.wmf][image: image4.wmf]

SyncML message, server modifications

SyncML message, client modifications

� EMBED MS_ClipArt_Gallery ���

OMA DS server

OMA DS client

� EMBED MS_ClipArt_Gallery ���

_1000281637

_1000282314

_935227290.doc

_1201439619.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

OMA DS Client

OMA DS Server

The sent and the stored anchors do not match.

Pkg #1: Last (00000000T000000Z), Next(20011111T111111Z)

…

Pkg #2: Refresh required ('508')

Sync Session #2

The Sync Server has stored the client sync event (09:09:09 AM, 9/9/2001).

The Sync Server has stored the client sync event (10:10:10 AM, 10/10/2001).

The persistent storage of the client is reset.

Sync Session #1 completed, the sync server updates the sync anchor.

…

Pkg #2: OK

Pkg #1: Last (20010909T090909Z), Next(20011010T101010Z)

Sync Session #1

_935227290.doc

_1201439684.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

OMA DS Server

Pkg #4, Msg #2: Status for client mod's, Server mod's, Final

Pkg #3, Msg #2: Rest of client mod's, Alert for next msg, Final

Pkg #4, Msg #1: Status for client mod's, Alert for next msg

Pkg #3, Msg #1: Status for Init, Some of client modifications

Pkg #5, Msg #1: Status for server mod's, (Map operation)

…

…

OMA DS Client

_935227290.doc

_1201436102.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

OMA DS Server

Sync result

Server processes sync analysis.

Pkg #4: Status package

Client device prepares the data needed to be sent to the server.

Pkg #3: Sync package from client to server

Client and server have processed the sync initialization for one-way sync from client.

OMA DS Client

User

_935227290.doc

_1201436256.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

OMA DS Server

Client makes data update for its databases.

Sync result

Pkg #4: Sync package

Pkg #6: Map Acknowledge to client

Pkg #5: Data Update Status package to server

Server processes sync analysis.

Pkg #3: Sync Alert from client to server

Client and server have processed the sync initialization for one-way sync from server.

OMA DS Client

User

_935227290.doc

_1199110113.vsd
Sending LO Device

Receiving LO Device

Initialization

Resp #1: Receiving LO Device ACK

Msg #1: Sending LO Device sends its first chunk of data

(contains <Size> and <MoreData/>)

(Receiving LO Device Pkg contains <SupportLargeObjs/>, <MaxMsgSize> and <MaxObjSize>)

(Status 213 – « Chunked item accepted and buffered » and Alert 222 – « Next Message »)

Msg #2: Sending LO Device sends its 2nd chunk of data

(contains <MoreData/>)

Resp #2: Receiving LO Device ACK

Sending of other chunks: same exchanges as Msg #2 / Resp #2

Msg #n: Sending LO Device sends its last chunk of data

(DOES NOT contain <MoreData/>)

Resp #n: Receiving LO Device ACK

(Appropriate Status)

<Size> analysis

<Size> comparison

(Status 213 – « Chunked item accepted and buffered » and Alert 222 – « Next Message »)

_1201435112.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

OMA DS Server

Pkg #3: Sync package including the completition of the Sync initialization.

Sync will continue according for the sync type(s) defined in the Alert commands.

Pkg #2: Server Initialization package to client

Pkg #1: Client Initialization package to server

Client and server configured properly to enable communication with each other

Sync order

OMA DS Client

User

_935227290.doc

_1028958851.doc
		

		DOCUMENTTYPE

		

		1 (2)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

 Client Device

 Client Database:

		LUID

		Data

		11

		Car

		22

		Bike

		33

		Truck

		44

		Shoes

Server Device

Server Database:

		GUID

		Data

		1010101

		Car

		2121212

		Bike

		3232323

		Truck

		4343434

		Shoes

Server Mapping Table:

		GUID

		LUID

		1010101

		11

		2121212

		22

		3232323

		33

		4343434

		44

_935227290.doc

