OMA-TS-DS_Syntax-V2_0-20080416-D_cb-D.doc
Page 86 V(111)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	OMA DS Syntax

	Draft Version 2.0 – 16 Apr 2008

	Open Mobile Alliance

	OMA-TS-DS-Syntax-V2_0-20080416-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents
3Contents

71.
Scope

82.
References

82.1
Normative References

82.2
Informative References

93.
Terminology and Conventions

93.1
Conventions

93.2
Definitions

93.3
Abbreviations

104.
Introduction

115.
SyncML

115.1
SyncML Package and Messages

115.2
SyncML Commands

125.3
XML Usage

125.4
MIME Usage

125.5
Identifiers

146.
Mark-up Language Description

146.1
Static Conformance Requirements by Type

146.1.1
The Common Use Elements and Attributes

156.1.2
Message Container Elements

166.1.3
Data Description Elements

166.1.4
Protocol Management Elements

166.1.5
Protocol Command Elements

176.2
Element, Attribute, and Type Definitions

176.2.1
Anchor

186.2.2
Add

216.2.3
Alert

226.2.4
Atomic

236.2.5
AuthName

236.2.6
Behavior

246.2.7
Chal

256.2.8
ChangeLogValidity

256.2.9
Cmd

266.2.10
CmdID

266.2.11
CmdRef

276.2.12
Code

276.2.13
CommonOperationType

276.2.14
Copy

296.2.15
Correlator

296.2.16
Cred

316.2.17
Data

326.2.18
Delete

336.2.19
Direction

346.2.20
EmptyType

346.2.21
Encrypted

346.2.22
EncryptedKey

356.2.23
Field

366.2.24
FieldLevel

366.2.25
Filter

376.2.26
FilterType

386.2.27
Final

386.2.28
Format

396.2.29
FP

396.2.30
Get

416.2.31
ID

416.2.32
IDContainer

426.2.33
IDValidity

426.2.34
Item

436.2.35
Last

446.2.36
Map

456.2.37
MapItem

466.2.38
MaxMsgSize

466.2.39
MaxObjSize

466.2.40
Meta

476.2.41
MoreData

486.2.42
Move

496.2.43
MsgID

496.2.44
MsgRef

506.2.45
Next

506.2.46
NextNonce

516.2.47
NoStatus

516.2.48
NumberOfChanges

526.2.49
Put

536.2.50
Record

546.2.51
Replace

566.2.52
RespURI

576.2.53
Results

586.2.54
Sequence

586.2.55
SessionID

596.2.56
SftDel

606.2.57
Size

606.2.58
SourceClientURI

616.2.59
SourceClientParentURI

616.2.60
SourceServerURI

626.2.61
SourceServerParentURI

636.2.62
SourceRef

636.2.63
Status

656.2.64
Sync

666.2.65
SyncAlert

686.2.66
SyncBody

696.2.67
SyncHdr

696.2.68
SyncML

706.2.69
SyncType

716.2.70
TargetClientURI

716.2.71
TargetClientParentURI

726.2.72
TargetServerURI

736.2.73
TargetServerParentURI

736.2.74
TargetRef

746.2.75
Type

746.2.76
Version

767.
XML Schema

778.
WBXML Definition

778.1
Code Space Definitions

778.2
Code Page Definitions

778.3
Token Definitions

809.
Common URI Scheme Types

8110.
Alert Types

8211.
Response Status Codes

8612.
Base Media and Content formats

8713.
MIME Media Type Registration

8713.1
application/vnd.syncml+xml

8913.2
application/vnd.syncml+wbxml

92Appendix A.
[SYNTAX] Static Conformance Requirements (Normative)

92A.1
Client Features

92A.1.1
Security

92A.1.2
XML Usage

92A.1.3
MIME Usage

92A.1.4
Identifiers

92A.1.5
Common Use Elements

93A.1.6
Message Container Elements

93A.1.7
Data Description Elements

94A.1.8
Protocol Management Elements

94A.1.9
Protocol Command Elements

95A.2
Server Features

95A.2.1
Security

96A.2.2
XML Usage

96A.2.3
MIME Usage

96A.2.4
Identifiers

96A.2.5
Common Use Elements

97A.2.6
Message Container Elements

97A.2.7
Data Description Elements

97A.2.8
Protocol Management Elements

98A.2.9
Protocol Command Elements

100Appendix B.
[Syntax] Static Conformance Requirements (Normative)

100B.1
Client Data Sync Usage of SyncML Representation

104B.2
Server Data Sync Usage of SyncML Representation

109Appendix C.
Example Validation Aids (Informative)

109C.1
Inside Sync Examples

110Appendix D.
Change History (Informative)

110D.1
Approved Version History

110D.2
Draft/Candidate Version version 2.0 History

Figures

Tables

13Table 1: Identifiers

15Table 2: Common Use Elements and Attributes

16Table 3: Message Container Elements

16Table 4: Data Description Elements

16Table 5: Protocol Management Elements

17Table 6: Protocol Command Elements

19Table 7: Add Source/Target Combinations

77Table 8: Code Space Definitions

77Table 9: Code Page Definitions

79Table 10: Token Definitions

80Table 11: Common URI Scheme Types

81Table 12: Alert Types

85Table 13: Response Status Codes

86Table 14: Base Media and Content formats

92Table 15: Client Features - Security

92Table 16: Client Features - XML Usage

92Table 17: Client Features - MIME Usage

92Table 18: Client Features - Identifiers

93Table 19: Client Features - Common Use Elements

93Table 20: Client Features - Message Container Elements

94Table 21: Client Features - Data Description Elements

94Table 22: Client Features - Protocol Management Elements

95Table 23: Client Features - Protocol Command Elements

96Table 24: Server Features - Security

96Table 25: Server Features - XML Usage

96Table 26: Server Features - MIME Usage

96Table 27: Server Features - Identifiers

97Table 28: Server Features - Common Use Elements

97Table 29: Server Features - Message Container Elements

97Table 30: Server Features - Data Description Elements

98Table 31: Server Features - Protocol Management Elements

99Table 32: Server Features - Protocol Command Elements

101Table 33: Client Common Use Elements

101Table 34: Client Message Container Elements

102Table 35: Client Data Description Elements

102Table 36: Client Protocol Management Elements

103Table 37: Client Protocol Command Elements

104Table 38: Client Content Formats

105Table 39: Server Common Use Elements

105Table 40: Server Message Container Elements

106Table 41: Server Data Description Elements

106Table 42: Server Protocol Management Elements

106Table 43: Server Protocol Elements

107Table 44: Server Protocol Elements

108Table 45: Server Content Formats

1. Scope

This document specifies the XML syntax and semantics used by OMA DS protocols. The DS Syntax protocol is defined by a set of messages that are conveyed between entities participating in a data synchronization operation. The DS Syntax protocol embodies the concept of a SyncML Package. The SyncML Package performs some set of operations. This conceptual "package" permits either a "batch" of multiple operations put together in a single SyncML Message or conveyed as separate SyncML Messages, each containing a single operation.

Please refer to [DSCONCEPTS] for further information on the OMA DS organization and history.

2. References

2.1 Normative References

	[DSCONCEPTS]
	“Data Synchronization Concepts and Definitions”, Open Mobile Alliance(, OMA-TS-DS_Concepts-V2_0”, URL:http:www.openmobilealliance.org

	[DSHTTPBINDING]
	“OMA DS HTTP Binding Specification”, Open Mobile AllianceTM ,
OMA-TS-DS_HTTPBinding-V2_0, URL:http://www.openmobilealliance.org/

	[DSNOTI]
	“Notification Initiated Session, Version 1.1.2”, Open Mobile Alliance(.
OMA-TS-DS-Notification-V2_0, URL:http:www.openmobilealliance.org/

	[DSPRO]
	“Data Synchronization Protocol”, Open Mobile Alliance(, OMA-TS-DS_Protocol-V2_0”, URL:http:www.openmobilealliance.org

	[IMEI]
	“Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); Numbering, addressing and identification” (3G TS 23.003 Version 3.4.0 Release 1999), http://webapp.etsi.org/action/PU/20000523/ts_123003v030400p.pdf

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Open Mobile Alliance(, OMA-IOP-Process-V1_3, URL:http//www.openmobilealliance.org

	[ISO8601]
	“Data elements and interchange formats – Information interchange – Representation of dates and times ISO 8601-2000”, URL://www.iso.ch/iso/en/ISOOnline.openerpage

	[RFC1321]
	“ The MD5 Message-Digest Algorithm ”, R. Rivest, et al., April 1992, http://www.ietf.org/rfc/rfc1321.txt

	[RFC1766]
	“Tags for the Identification of Languages”, H. Alvestrand, March 1995,
URL:http://www.ietf.org/rfc/rfc1766.txt

	[RFC2045]
	“Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies”, N. Freed & N. Borenstein, November 1996, http://www.ietf.org/rfc/rfc2045.txt

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,
URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2279]
	“UTF-8, a transformation format of ISO 10646”, F. Yergeau, January 1998,
URL:http://www.ietf.org/rfc/rfc2279.txt

	[RFC2396]
	“Uniform Resource Identifiers (URI): Generic Syntax”, T. Berners-Lee, et al., August 1998, URL:http://www.ietf.org/rfc/rfc2396.txt

	[WBXML]
	“WAP Binary XML Content Format Specification”, WAP Forum(, WAP-154-WBXML, URL:http://www.openmobilealliance.org/

	[WDP]
	“Wireless Datagram Protocol Specification”, WAP Forum

URL:http://www.openmobilealliance.org/

	[WSP]
	“Wireless Session Protocol specification”, WAP Forum

URL:http://www.openmobilealliance.org/

	[WTP]
	“Wireless Transaction Protocol Specification”, WAP Forum,

URL:http://www.openmobilealliance.org/

	[XML]
	“Extensible Markup Language (XML) 1.0”, World Wide Web Consortium Recommendation, http://www.w3.org/TR/REC-xml

2.2 Informative References

	None.
	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC2119.

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

Any reference to elements of the Data Synchronization XML Schema is specified in this typeface. Any reference to attributes of the Data Synchronization XML Schema is specified in this typeface.
Schema fragments are shown as:

Content Model:

	<xs:attribute name="Atomic" type="xs:boolean" default="false"/>

Examples are shown as:
Example n: descriptive text
	<Delete CmdID="401">
 ...
</Delete>

Most examples may be validated against the schema by incorporating them into the XML fragments of Appendix C.
3.2 Definitions

Please refer to the [DSCONCEPTS] document.
3.3 Abbreviations

Please refer to the [DSCONCEPTS] document.

4. Introduction

OMA Data Synchronization (OMA DS) is a specification for a common data synchronization framework and XML-based format, or representation protocol, for synchronizing data on networked devices. OMA Data Synchronization is designed for use between mobile devices that are intermittently connected to the network and network services that are continuously available on the network. OMA Data Synchronization can also be used for peer-to-peer data synchronization. OMA Data Synchronization is specifically designed to handle the case where the network services and the device store the data they are synchronizing in different formats or use different software systems.

This document specifies the XML syntax and semantics used by the OMA Data Synchronization Protocol.

The Data Synchronization Syntax is defined by a set of messages that are conveyed between entities participating in a data synchronization operation. The messages are represented as an XML document. XML is the industry standard for text document mark-up, as defined in [XML].

The Data Synchronization Syntax also can be identified as a MIME content type. MIME is the Internet standard for identifying multipurpose message contents. It provides a useful mechanism for differentiating between different content and document types.

The Data Synchronization Syntax supports protocol models that are based on a request/response command structure, as well as those that are based on a "blind push" command structure.

The Data Synchronization Syntax embodies the concept of a SyncML Package. The SyncML Package performs some set of operations. This conceptual "package" permits either a "batch" of multiple operations put together in a single SyncML Message or conveyed as separate SyncML Messages, each containing a single operation. SyncML Messages are the body of the MIME entities.

5. SyncML

5.1 SyncML Package and Messages

In SyncML, the operations are conceptually bound into a SyncML Package. The SyncML Package is just a conceptual frame for one or more SyncML Messages that are REQUIRED to convey a set of protocol semantics.

A SyncML Message is a well-formed XML document and adheres to the Schema, but does not need to be validated. For example, a SyncML message does not need to be validated but the XML MUST adhere to whatever explicitly defined order appears in the Schema. The document is identified by the SyncML root or document element type. This element type acts as a parent container (i.e., root element type) for the SyncML Message.

The SyncML Message, as specified before, is an individual XML document. The document consists of a header, specified by the SyncHdr element type, and a body, specified by the SyncBody element type. The SyncML header specifies routing and versioning information about the SyncML Message. The SyncML body is a container for one or more SyncML Commands. The SyncML Commands are specified by individual element types. The SyncML Commands act as containers for other element types that describe the specifics of the SyncML command, including any data or meta-information.

5.2 SyncML Commands

SyncML defines the following "request" commands:

· Add. Allows the originator to ask that a data element or data elements supplied by the originator be added to data accessible to the recipient.

· Alert. Allows the originator to notify the recipient. The notification can be used as an application-to-application message or a message intended for display through the recipient's user interface.

· Copy. Allows the originator to ask that a data element or data elements accessible to the recipient be copied.

· Delete. Allows the originator to ask that a data element or data elements accessible to the recipient be deleted. A Delete command can include a request for the archiving of the data.

· Get. Allows the originator to ask for a data element or data elements from the recipient. A get can include the resetting of any meta-information that the recipient maintains about the data element or collection.

· Map. Allows the originator to ask the recipient to update the identifier mapping between two data collections.

· Move. Allows the originator to ask that a data element or data elements accessible to the recipient to be moved.

· Put. Allows the original to put a data element or data elements on to the recipient.
· Replace. Allows the originator to ask that a data element or data elements accessible to the recipient be replaced. This command makes a complete replacement of the data element.

· Sync. Allows the originator to specify that the included commands be treated as part of the synchronization of two data collections.

· SyncAlert. Allows the originator to negotiate the sync type with the recipient and also allows the originator to send fingerprints and data item identifiers to the recipient.
SyncML defines the following "response" commands:

· Status. Indicates the completion status of an operation or that an error occurred while processing a previous request.

· Results. Used to return the data results of a Get SyncML Command.

The SyncML Commands themselves do not fully define the semantics of the SyncML Operation. For example, "Adding" a document to an application to a database may have very different semantics from "Adding" a transaction request to a queue. The semantics of a SyncML Operation are determined by the type of data that is being operated upon. This means that it is possible for an originator to request an operation of a particular recipient that makes no sense to the recipient. In that case, the recipient MUST return an error response status code.

5.3 XML Usage

The SyncML Messages are represented in a mark-up language defined by [XML]. The DS Syntax protocol is an XML application. The DS Syntax Schema defines the XML Schema used to represent a DS Message. The DS Syntax Schema can be found in Section 7, but it is not necessary to read the Schema in order to understand the protocol.

SyncML Messages are specified using well-formed XML. However, the SyncML Messages need not be valid XML. That is, the SyncML Messages do not need to specify the XML declaration or prolog. They only need to specify the body of the XML document. This restriction allows for the SyncML Messages to be specified with greater terseness than well-formed, valid XML documents.

SyncML makes heavy use of XML name spaces. Name spaces MUST be declared on the first element type that uses an element type from the name space.

Names in XML are case sensitive. By convention in the DS Syntax, the element type and attribute list names are specified using the convention that the first character in each word of the name is in upper case text and remainder of the characters in each word of the names specified in lower case text. For example, SyncML for the Sync Mark-up Language tag or MsgRef for the Message Reference tag.

The element types in the DS Syntax Schema are defined within a namespace associated with the URI http://www.openmobilealliance.org/tech/profiles/OMA-DS-DS_2_0-Syntax-Schema-V2_0.xsd or the URN urn:oma:xml:ds:syntax:. The DS Syntax Schema are also identified by the ISO 9070 formal public identifier -//SYNCML//Schema SyncML 2.0//EN.

SyncML also makes use of XML standard attributes, such as xml:lang. Any XML standard attribute can be used in a SyncML document.

XML can be viewed as more verbose than alternative binary representations. This is often cited as a reason why it might not be appropriate for low bandwidth network protocols. In most cases, SyncML uses shortened element type and attribute names. This provides a minor reduction in verbosity. Additionally, the SyncML Messages can be encoded in a tokenized, binary format defined by [WBXML], or a standard content compression can be applied, such as HTTP’s “Content-Encoding: gzip”. The use of [WBXML] format or transport layer compression is external to specification of the SyncML protocol and transparent to any SyncML application. The combination of the use of shortened element type names and an alternative binary format makes SyncML competitive, from a compressed format perspective, with alternative, but private, binary representations.

One of the main advantages of XML is that it is a widely accepted International recommendation for text document mark-up. It provides for both human readability and machine process ability. In addition, XML allows the originator to capture the structure of a document, not just its content. This is extremely useful for applications such as data synchronization, where not just content, but structure semantics is often exchanged.

5.4 MIME Usage

The [RFC2045] Internet standard provides an industry-accepted mechanism for identifying different content types. The SyncML Message is identified by a MIME content type. The MIME content type for the SyncML Message is registered within the vendor tree. This MIME content type MUST be used for identifying SyncML Messages within transport and session level protocols that support MIME content types.

5.5 Identifiers

Identifiers in SyncML, such as in the SourceClientURI / SourceServerURI or TargetClientURI / TargetServerURI element types, can be a combination of Uniform Resource Identifiers (URI), as defined by [RFC2396], Uniform Resource Names (URN) and textual names.
In SyncML, all URI and URN values are specified as parsable character data in element types or as character data in attribute lists. Applications MUST specify a valid URI or URN value. Even with an integrated "validating XML parser", as defined in [XML], an application will need to confirm the validity of any URI or URN.

SyncML uses the SYNCML URN type to identify SyncML specific name spaces and unique names. Other URN types MAY be used. For instance, the SourceClientURI element type could contain one of the following URN:

	IMEI URN
	Identify an International Mobile Equipment Identifiers [IMEI]. The IMEI URN specifies a valid, 15 digit IMEI. The format of the URN is
IMEI: ###############

	ESN URN
	Identify an Electronic Serial Number. The ESN specifies a valid, 8 digit ESN. The format of the URN is ESN: ########

	MEID URN
	Identify a Mobile Equipment Identity. The MEID URN specifies a valid, 15 digit MEID. The format of the URN is
MEID: ###############

 Table 1: Identifiers

 Other URN types MAY be used in the SourceClientURI, and other similar element types.

6. Mark-up Language Description

The DS Syntax protocol is a document mark-up consisting of XML element and attribute types. This section provides a prose description of this mark-up. The types are defined in terms of their purpose or usage, parent elements, any restrictions on content or use and content model.

Restrictions listed in this document apply to Data Synchronization Protocol. Examples that illustrate the use of each element type can also be found in this document. Examples in this section make use of XML snippets. They are not intended to be complete XML documents, although most can be validated by incorporating them into the XML fragments of Appendix C.. They are only provided to illustrate an example usage of the element type in question.

6.1 Static Conformance Requirements by Type

6.1.1 The Common Use Elements and Attributes
The following are common element types and attributes used by numerous other SyncML element types.
The following table further elucidates the static conformance requirements for the SyncML data description elements and attributes for devices conforming to this specification.

	Command
	Support of Synchronization Server
	Support of Synchronization Client

	
	Sending
	Receiving
	Sending
	Receiving

	Anchor
	MUST
	MUST
	MUST
	MUST

	Atomic
	MAY
	MAY
	MAY
	MAY

	AuthName
	MAY
	MAY
	MAY
	MAY

	Chal
	MUST
	MUST
	MAY
	MUST

	Cmd
	MUST
	MUST
	MUST
	MUST

	CmdID
	MUST
	MUST
	MUST
	MUST

	CmdRef
	MUST
	MUST
	MUST
	MUST

	Cred
	MUST
	MUST
	MUST
	MUST

	Field
	MAY
	MAY
	MAY
	MAY

	FieldLevel
	MAY
	MAY

	MAY
	MAY

	Filter
	MAY
	MAY
	MAY
	MAY

	FilterType
	MAY
	MAY
	MAY
	MAY

	Final
	MUST
	MUST
	MUST
	MUST

	Last
	MUST
	MUST
	MUST
	MUST

	MapItem
	MUST NOT
	MUST
	MAY
	MUST NOT

	MaxMsgSize
	MAY
	MAY

	MAY
	MAY

	MaxObjSize
	MAY
	MAY

	MAY
	MAY

	MoreData
	MUST
	MUST
	MAY
	MAY

	MsgID
	MUST
	MUST
	MUST
	MUST

	MsgRef
	MUST
	MUST
	MUST
	MUST

	Next
	MUST
	MUST
	MUST
	MUST

	NextNonce
	MUST
	MUST
	MUST
	MUST

	NoStatus
	MAY
	MUST
	MAY
	MUST

	NumberOfChanges
	MAY
	MUST
	MAY
	MAY

	Record
	MAY
	MAY
	MAY
	MAY

	RespURI
	MAY
	MUST
	MAY
	MUST

	Sequence
	MAY
	MUST
	MAY
	MAY

	SessionID
	MUST
	MUST
	MUST
	MUST

	SftDel
	MAY
	MAY
	MAY
	MAY

	SourceClientURI
	MUST
	MUST
	MUST
	MUST

	SourceClientParentURI
	MAY
	MAY
	MAY
	MAY

	SourceServerURI
	MUST
	MUST
	MUST
	MUST

	SourceServerParentURI
	MAY
	MAY
	MAY
	MAY

	TargetClientURI
	MUST
	MUST
	MUST
	MUST

	TargetClientParentURI
	MAY
	MUST NOT
	MUST NOT
	MAY

	TargetServerURI
	MUST
	MUST
	MUST
	MUST

	TargetServerParentURI
	TBD
	TBD
	TBD
	TBD

	Version
	MUST
	MUST
	MUST
	MUST

Table 2: Common Use Elements and Attributes
6.1.2 Message Container Elements

The following element types provide the basic container support for the SyncML message.

The following table further elucidates the static conformance requirements for the SyncML data description elements for devices conforming to this specification.

	Command
	Support of Synchronization Server
	Support of Synchronization Client

	
	Sending
	Receiving
	Sending
	Receiving

	SyncML
	MUST
	MUST
	MUST
	MUST

	SyncHdr
	MUST
	MUST
	MUST
	MUST

	SyncBody
	MUST
	MUST
	MUST
	MUST

Table 3: Message Container Elements

6.1.3 Data Description Elements

The following element types are used as container elements for data exchanged in a SyncML Message.

The following table further elucidates the static conformance requirements for the SyncML data description elements for devices conforming to this specification.

	Command
	Support of Synchronization Server
	Support of Synchronization Client

	
	Sending
	Receiving
	Sending
	Receiving

	Data
	MUST
	MUST
	MUST
	MUST

	Item
	MUST
	MUST
	MUST
	MUST

	Meta
	MUST
	MUST
	MUST
	MUST

Table 4: Data Description Elements

6.1.4 Protocol Management Elements

The following table further elucidates the static conformance requirements for the SyncML protocol management elements for devices conforming to this specification.

	Command
	Support of Synchronization Server
	Support of Synchronization Client

	
	Sending
	Receiving
	Sending
	Receiving

	Status
	MUST
	MUST
	MUST
	MUST

Table 5: Protocol Management Elements

6.1.5 Protocol Command Elements

The following table further elucidates the static conformance requirements for the SyncML protocol command elements for devices conforming to this specification.

	Command
	Support of Synchronization Server
	Support of Synchronization Client

	
	Sending
	Receiving
	Sending
	Receiving

	Add
	MUST
	MUST
	SHOULD
	MUST

	Alert
	MUST
	MUST
	MUST
	MUST

	Copy
	MAY
	MUST
	MAY
	MAY

	Delete
	MUST
	MUST
	MUST
	MUST

	Get*
	MUST
	MUST
	SHOULD
	MUST

	Map
	MUST NOT
	MUST
	MAY
	MUST NOT

	Move
	MAY
	MAY
	MAY
	MAY

	Put*
	MUST
	MUST
	MUST
	MUST

	Replace
	MUST
	MUST
	MUST
	MUST

	Results*
	MUST
	MUST
	MUST
	SHOULD

	Status
	MUST
	MUST
	MUST
	MUST

	Sync
	MUST
	MUST
	MUST
	MUST

	SyncAlert
	MUST
	MUST
	MUST
	MUST

*Minimum requirement for an OMA DS device is to support Put, Get, and Result when exchanging device information.

Table 6: Protocol Command Elements

6.1.6 Common Types for Elements

The following table further elucidates the common used types for the elements definition.
There are no static conformance requirements for these common types.
	Type
	Used in Elements

	EmptyType
	Final, MoreData

	CommonOperationType
	Add, Copy, Get, Move, Put

Table 7: Common Element Types
6.2 Element, Attribute, and Type Definitions

6.2.1 Anchor

Usage: Specifies the synchronization state information (i.e., sync anchor) for the current and previous synchronization session.

Parent Element: SyncAlert
Content Model:

	<xs:element name="Anchor">

 <xs:complexType>

 <xs:attribute ref="Last" use="optional"/>

 <xs:attribute ref="Next" use="required"/>

 </xs:complexType>

</xs:element>

<xs:attribute name="Last" type="AnchorType"/>

<xs:attribute name="Next" type="AnchorType"/>

<xs:simpleType name="AnchorType">

 <xs:union memberTypes="xs:dateTime xs:positiveInteger"/>

</xs:simpleType>

Restrictions:
The OPTIONAL Last attribute specifies the synchronization anchor for the previous synchronization session. The REQUIRED Next attribute specifies the synchronization anchor for the current synchronization session.
The value of Last and Next attributes MUST specify either an UTC based date/time stamp or a monotonically increasing numeric integer. If a date/time stamp, then the text MUST be in the complete representation, basic format defined by ISO8601.

All Last or Next values sent in a synchronization session by a particular sender MUST be of the same type, and MUST be used such that a comparison operation on values can determine older from newer.
Determination of the ordinal sequence of the version of an existing object in the recipient and the version of the object can be made by comparing the content information of the object with the value on the existing object.
Example:

	<Anchor Last="20000824T133000Z" Next="20000824T221300Z"/>

Note that a comparison operator should find that the value of Next is greater than the value of Last (if present).
6.2.2 Add

Usage: Specifies the SyncML command to add data to a data collection.

Parent Elements: Sync, SyncBody
Content Model:

	<xs:element name="Add" type="CommonOperationType"/>

Restrictions:
The Add command is generally used to convey to the recipient any additions made to the originator’s database. For example, a mobile device will indicate to the network server any additions made to the local calendar database. This command MUST only be specified within a Sync command.

The originator of the command SHOULD only send features/properties of the data item that are supported by the recipient. The device information document of the recipient can contain this information.

One or more Item element types MUST be specified. The Item element type specifies the data item added to the database. The SourceServerURI or SourceClientURI specified within the Item element type is a client identifier (LUID), as relative to the corresponding TargetServerURI / TargetClientURI or SourceServerURI / SourceClientURI specified in the parent Sync command. Note that only certain combinations of these parameters are valid, as shown in Table 8: Add Source/Target Combinations, and the examples below.
When synchronizing hierarchical objects, the Item element for each object MUST include parent information. For this purpose SourceServerParentURI or SourceClientParentURI MUST be used by the sending device referring to an existing parent. Refer to Table 8: Add Source/Target Combinations, and the examples below for valid combinations.
The Item elements within an Add command MUST NOT specify a target identifier, that is, any of TargetServerURI, TargetClientURI, TargetServerParentURI or TargetClientParentURI.
When sending an Add command to a recipient that does not support Hierarchy, the Parent URI fields MUST NOT be sent, that is, any of SourceServerParentURI, SourceClientParentURI, TargetServerParentURI or TargetClientParentURI.

When the client is the recipient, it MAY assign new local identifiers (LUIDs) for the data items specified in this command. However, in such cases the client MUST also notify the server of the new LUID by returning a Map command.
	Source/Target Combinations
	Without Hierarchy Support
	With Hierarchy Support

	
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Sender
	Client
	Server
	Client
	Server
	Server

	SourceServerURI
	-
	X
	-
	X
	X

	SourceClientURI
	X
	-
	X
	-
	-

	TargetServerURI
	-
	-
	-
	-
	-

	TargetClientURI
	-
	-
	-
	-
	-

	SourceServerParentURI
	-
	-
	-
	-
	X

	SourceClientParentURI
	-
	-
	X
	X
	-

	TargetServerParentURI
	-
	-
	-
	-
	-

	TargetClientParentURI
	-
	-
	-
	-
	-

Table 8: Add Source/Target Combinations
Status Codes:
If the command completed successfully, then the (201) Item added exception condition is created by the command.

If the recipient determines that the data item already exists on the recipient’s database, then the (418) Already exists exception condition is created by the command.

If the originator’s authentication credentials specify a principal with insufficient rights to complete the command, then the (401) Unauthorized exception condition is created by the command. If no authentication credentials were specified, then (407) Authentication required exception condition is created by the command. A suitable challenge can also be returned.

Non-specific errors created by the recipient while attempting to complete the command create the (500) Command failed exception condition.

If there is insufficient space on the recipient database for the data item, then the (420) Device full exception condition is created by the command, and the originator SHOULD NOT attempt to add additional data until the recipient has more free space.

If the MIME content type or content format for the data item is not supported by the recipient, then the (415) Unsupported MIME content type or content format exception condition is created by the command.

Example 1: The client requests the server to add 2 new items of the same type, with credentials that provide write access to the current datastore. The type information for all Item’s are provided by the Meta element under the Add command. The items are identified by the client LUID, which includes the fingerprint of the item.
	<Add CmdID="101">

 <Cred>

 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 <Meta Format="chr" Type="text/vcard"/>

 <Item>

 <SourceClientURI FP="0123">1001</SourceClientURI>

 <Data>BEGIN:VCARD

VERSION:3.0
...

END:VCARD

 </Data>

 </Item>

 <Item>

 <SourceClientURI FP="1234">1002</SourceClientURI>

 <Data>

VERSION:3.0
...

END:VCARD

 </Data>

 </Item>

</Add>

Example 2: The server requests the client to add a new item. The item is identified by the server’s GUID. The client may choose to assign a LUID to the item, in which case it would indicate that to the server with a Map command, and the GUID would no longer be used.
	<Add CmdID="102" >

 <Item>

 <SourceServerURI>ABC012345_1003</SourceServerURI>

 <Meta Format="chr" Type="..."/>

 <Data>

 ...

 </Data>

 </Item>

</Add>

Example 3: The client requests the server to add a new folder item to the root of the hierarchy.
	<Add CmdID="103" >

 <Item>

 <SourceClientURI FP="2345">1004</SourceClientURI>

 <SourceClientParentURI>./</SourceClientParentURI>

 <Meta Format="chr" Type="application/vnd.omads-folder+xml"/>

 <Data><![CDATA[

 <Folder>

 <name>Folder4</name>

 <created>20080401T012345</created>
 ...
 <role>Inbox</role>

 </Folder>]]>
 </Data>

 </Item>

</Add>

Example 4: The server requests the client to add a new folder item to an existing, mapped folder.

	<Add CmdID="104" >

 <Item>

 <SourceServerURI>ABC012345_1005</SourceServerURI>

 <SourceClientParentURI>1004</SourceClientParentURI>

 <Meta Format="chr" Type="application/vnd.omads-folder+xml"/>

 <Data><![CDATA[

 <Folder>

 <name>Folder5</name>

 <created>20080401T123456</created>
 ...
 </Folder>]]>
 </Data>

 </Item>

</Add>

Example 5: The server requests the client to add a new item to a folder that is not yet mapped by the client (e.g. the folder was added during this session by the server)
	<Add CmdID="105" >

 <Meta Format="chr" Type="text/x-vcard"/>

 <Item>

 <SourceServerURI>ABC012345_1006</SourceServerURI>

 <SourceServerParentURI>ABC012345_1005</SourceServerParentURI>

 <Data>BEGIN:VCARD

VERSION:3.0
FN:Bruce Smith

N:Smith;Bruce

TEL;WORK;VOICE:+1-919-555-1234

TEL;WORK;FAX:+1-919-555-9876

EMAIL;INTERNET:bruce1@example.com

END:VCARD

 </Data>

 </Item>

</Add>

Note: The above examples include all situations that need to be supported if hierarchy is supported. Examples 1 and 2 are the only examples that need to be supported if hierarchy is not supported. No other combinations of TargetServerURI / TargetClientURI, SourceServerURI / SourceClientURI, TargetServerParentURI / TargetClientParentURI or SourceServerParentURI / SourceClientParentURI should occur. For example, the client should never be in the situation of needing to add a data item to a folder that was added by the server, but is not yet mapped (use SourceServerParentURI), since the client could have sent Map commands before sending its Add command. Similarly, the server MUST NOT create LUIDs, and thus should never include a TargetClientURI in an Add command.

6.2.3 Alert

Usage: Specifies the specific event. The command provides a mechanism for communicating event information to the recipient, such as requesting for next message, last chunk of a large object not received, terminating a session, etc.

Parent Element: SyncBodySyncBody

Content Model:

	<xs:element name="Alert" type="AlertType"/>

<xs:complexType name="AlertType">

 <xs:sequence>

 <xs:element ref="Cred" minOccurs="0"/>

 <xs:element ref="Item" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute ref="CmdID" use="required"/>

 <xs:attribute ref="Code" use="required"/>

 <xs:attribute ref="NoStatus" use="optional"/>

</xs:complexType>

Restrictions:

The Code attribute specifies the status code corresponding to a specific event for the recipient.
Editor’s Notes: Whether ‘Target’ and ‘Source’ is needed to be investigated.

Editor’s Notes: Extend this element to convey notification or define a new element to be investigated.

Optionally, one or more Item element types MAY be specified. The Item element type specifies parameters for the Alert command. The Target and Source specified within the Item element type MUST be an absolute URI.

Editor’s Notes: Update Target and Source
If the command and the associated action are completed successfully, then the status code '(200) OK' is created by the command.

Editor’s Notes: The status code 202 is useful for DM usage. For example, downloading software in DM. But is it useful in ‘Alert’ command? If not, the next paragraph should be deleted.

If the command was accepted successfully, but the Alert action has not yet been executed successfully, then the (202) Accepted for processing exception condition is created by the command. A subsequent exception condition can be created to relate the eventual completion status of the associated Alert action.

Editor’s Notes: The description for 405, 500, 412, and 415 is general. It does not need to be repeated in each element. The common description for these status codes’ usage should be added later.

Example: The following is an example for a data sync client to request for next message in the case of multiple messages in a package.
Editor’s Notes: The status code 202 is useful for DM usage. For example, downloading software in DM. But is it useful in ‘Alert’ command? If not, the next paragraph should be deleted.

	<Alert CmdID="1" Code="225">

 <Item>

 <TargetServerURI>./Contact/Contacts</TargetServerURI>

 <SourceClientURI>./C\System\Data\Contacts.cdb </SourceClientURI>

 </Item>

</Alert>

6.2.4 Atomic

Usage: Specifies that the subordinate commands be executed as a set or not at all.

Parent Element: Sync
Content Model:

	<xs:attribute name="Atomic" type="xs:boolean" default="false"/>

Restrictions:
If the command with the Atomic attribute set to ‘true’ completed successfully, then the normal Status for the command should be returned.

TBD: Should support for Atomic be indicated in Device Info?
TBD: If an error occurs while performing acommand within a Sync command specified with an Atomic attribute, then the (507) Atomic failed exception condition is created by the Sync command. The error status code indicates the failure of the complete command. Separate, individual error status code can also be created that identify specific errors that created the failure.

TBD: If a client can execute all the atomic commands together (and thus guarantee the result) then a client MAY split the responses up over multiple messages. If a client cannot execute all the atomic commands together (and thus cannot guarantee the results of commands not executed) and Status responses would go into multiple messages, then the Sync command MUST fail with status code (517) Atomic response too large to fit in message. Previously executed commands within the Sync command MUST be rolled back.

TBD – this was Adding device info? : Example:

	<Sync CmdID="1234" Atomic="True">

 <Add CmdID="1235">

 <Cred>

 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 <Item>

 <Target><LocURI>./devinf20/pen</LocURI></Target>

 <Data>Yes</Data>

 </Item>

 </Add>

 <Replace CmdID="12346">

 <Cred>

 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 <Item>

 <Target><LocURI>./devinf10/version</LocURI></Target>

 <Data>20000401T133000Z</Data>

 </Item>

 </Replace>

</Sync>

6.2.5 AuthName
Usage: Specifies the user name for authentication.

Parent Element: Cred
Content Model:

	<xs:attribute name="AuthName" type="xs:string"/>

Restrictions:
For Authentication schemes which do not contain an extractable user identifier, the AuthName attribute is used to hold a user specific identifier.

6.2.6 Behavior

Usage: Species the behaviour for the current sync session.
Parent Element: SyncAlert
Content Model:

	<xs:attribute name="Behaviour">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Preserve"/>

 <xs:enumeration value="Refresh"/>

 </xs:restriction>

 </xs:simpleType>

</xs:attribute>

Restrictions:
The Behaviour attribute specify the behaviour for the current sync session.

The semantics of Direction, Behaviour, IDValidity and ChangeLogValidity are described in section x.x of [DSPRO].

Update reference
6.2.7 Chal

Usage: Specifies an authentication challenge. The recipient of the challenge specifies authentication credentials, of the given authentication scheme and encoding, in the next request.

Parent Elements: StatusStatus
, SyncHdr

Content Model:
	<xs:element name="Chal" type="ChalType"/>
<xs:complexType name="ChalType">

 <xs:sequence>

 <xs:element ref="Meta"/>

 <xs:element ref="NextNonce" minOccurs="0"/>

 </xs:sequence>

</xs:complexType>

Restrictions:
The Meta element’s Type and Format attributes specify the authentication scheme type and credential encoding style, respectively. The optional NextNonce element is only used in SHA-256 authentication scheme to specify the new nonce. The next nonce will be used for authentication when the next sync session is started. The next nonce is provided to make sure the nonce is used only once to avoid an easy eavesdropping of the communication

A challenge can be specified against the DS server or datastore. To challenge a DS server, a Chal element is sent in the Status command corresponding to the SyncHdr of the associated SyncML request. To challenge a datastore, the Chal element is sent in the Status command corresponding to the SyncAlert or Sync command associated with the database.
When the Chal element is specified in the SyncHdr element, it can be used to update the next nonce to the other side. When the client or server determines to update the next nonce to the other side, the sender can generate the new next nonce and send it in SyncHdr/Chal/NextNonce to the receiver, and the receiver updates the old nonce using the received next nonce. The recipient MUST successfully authenticate the credential information in SyncHdr before accepting the nonce update. If more than one nonce is transmitted during the session, the latest one MUST be used for the next session.

If absent and if the status code is (200) Command completed successfully, then the same credentials SHALL be used in the next SyncML request.

If absent and if the status code is (212) Authentication accepted, then credentials need not be specified for any subsequent SyncML requests within the current session. The session is authenticated.

Example: The following is a SHA-256 authentication challenge.

	<Status CmdID="1" CmdRef="0" Code="407"> <!—Credential required-->

 <Chal>
 <Meta Format="b64" Type="syncml:auth-sha256"/>
 <NextNonce>Tm9uY2U=</NextNonce>
 </Chal>

</Status>

6.2.8 ChangeLogValidity
Usage: Specifies if the change log is valid.

Parent Element: SyncAlert
Content Model:

	<xs:attribute name="ChangeLogValidity" type="xs:boolean"/>

Restrictions:
The ChangeLogValidity attribute specifies if the change log is valid.

The semantics of Direction, Behaviour, IDValidity and ChangeLogValidity are described in section x.x of [DSPRO].

Update reference
6.2.9 Cmd

Usage: Specifies the name of the SyncML command referenced by a Status element type.

Parent Element: StatusStatus

Content Model:

	<xs:attribute name="Cmd">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Add"/>

 <xs:enumeration value="Alert"/>

 <xs:enumeration value="Copy"/>

 <xs:enumeration value="Delete"/>

 <xs:enumeration value="Get"/>

 <xs:enumeration value="Map"/>

 <xs:enumeration value="Move"/>

 <xs:enumeration value="Put"/>

 <xs:enumeration value="Replace"/>

 <xs:enumeration value="Results"/>

 <xs:enumeration value="Status"/>

 <xs:enumeration value="Sync"/>

 <xs:enumeration value="SyncAlert"/>

 <xs:enumeration value="SyncHdr"/>

 </xs:restriction>

 </xs:simpleType>

</xs:attribute>

Restrictions:
The value MUST be one of "Add", "Alert", "Copy", "Delete", "Get", "Map", "Move", "Put", "Replace", "Results", "Status", "Sync", "SyncAlert" when the CmdRef attribute has a value greater than "0"or be "SyncHdr" when the CmdRef attribute has a value of "0".
Example:

	<Status CmdID="4321" MsgRef="1" CmdRef="1234" Cmd="Add" >
 ...
</Status>

6.2.10 CmdID

Usage: Specifies a SyncML message-unique command identifier. This is a positive integer used to uniquely reference the Protocol Management Elements [6.1.4] or Protocol Command Elements [6.1.5] in a message. Generally this is referenced in the CmdRef attribute of a Results or Status element.
Parent Elements: Add, Alert, Copy, Delete, Get, Map, Move, Put, Replace, Results, StatusStatus
, Sync, SyncAlert
Content Model:

	<xs:attribute name="CmdID" type="xs:positiveInteger"/>

Restrictions:
The value MUST be unique within each SyncML Message.

The attribute MUST be present on each of the Protocol Management Elements [6.1.4] or Protocol Command Elements [6.1.5] in a message.

Example:

	<Add CmdID="1234" >
 <Cred>
 <Meta Type="syncml:auth-md5" Format="b64"/>
 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>
 </Cred>
 <Item>
 <SourceClientURI>./12</SourceClientURI>
 <Meta Type="text/directory;profile=vCard"/>
 <Data>BEGIN:VCARD
VERSION:3.0
FN:Smith;Bruce
N:Bruce Smith
TEL;TYPE=WORK;VOICE:+1-919-555-1234
END:VCARD
 </Data>
 </Item>
</Add>

6.2.11 CmdRef

Usage: Specifies the CmdID referenced by a Results or Status element type.

Parent Elements: Results, StatusStatus

Content Model:

	<xs:attribute name="CmdRef" type="xs:nonNegativeInteger"/>

Restrictions:
The CmdRef attribute MUST refer to the identifier of the SyncML command referenced by the Results or Status element type.

The value “0” refers to the SyncHdr of the corresponding message.
Example:

	<Status CmdID="4321" MsgRef="1" CmdRef="1234" Cmd="Add" Code="401">
 <TargetRef>./mail/bruce1</TargetRef>
 <Chal>
 <Meta Format="b64" Type="syncml:auth-md5"/>
 <NextNonce>ZG9iZWhhdmUNCg==</NextNonce>

 </Chal>
</Status>

6.2.12 Code
Usage: Specifies a status code or alert code.

Used in Elements: Alert, StatusStatus

Content Model:

	<xs:attribute name="Code" type="xs:positiveInteger"/>

Restrictions:
This attribute is used to specify a status code or alert code.
Example:

	<Alert CmdID="1234" Code="222"/>

6.2.13 CommonOperationType
Usage: Specifies the complex type for the SyncML commands which have the common operation type.
Used in Elements: Add, Copy, Get, Move, Put
Content Model:

	<xs:complexType name="ComplexOperationType"/>
 <xs:sequence>

 <xs:element ref="Cred" minOccurs="0"/>

 <xs:element ref="Meta" minOccurs="0"/>

 <xs:element ref="Item" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute ref="CmdID" use="required"/>
 <xs:attribute ref="NoStatus" use="optional"/>

</xs:complexType>

Example:

	<xs:element name="Add" type="CommonOperationType" />

6.2.14 Copy

Usage: Specifies the SyncML command to copy data items from one location to another in the recipient's database.

Parent Elements: Sync, SyncBodySyncBody

Content Model:

	<xs:element name="Copy" type="CommonOperationType"/>

<xs:complexType name="CommonOperationType">

 <xs:sequence>

 <xs:element ref="Cred" minOccurs="0"/>

 <xs:element ref="Meta" minOccurs="0"/>

 <xs:element ref="Item" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute ref="CmdID" use="required"/>

 <xs:attribute ref="NoStatus" use="optional"/>

</xs:complexType>

Restrictions:
It is implementation dependent whether a physical copy of the item is made in the recipient, or whether a shortcut or pointer is created to the source item in the target location.

The Copy command in this version of the specification is NOT intended to be used to attempt to change the MIME content type of a data item, compress the data item or otherwise transform a target data item.

One or more Item element types MUST be specified. The Item element type specifies the data item to be copied on the recipient's database. If specified within a Sync element type, the Target and Source specified within the Item element type in the Copy command SHOULD be a relative URI, as relative to the corresponding Target and Source specified in the parent Sync command. If specified within a SyncBody element type, the Target and Source specified within the Item element type in the Copy command SHOULD be an absolute URI.

The recipient MAY assign new local identifiers for the data items specified in this command. However, in such cases the recipient MUST also notify the originator of the item identifier correlation by returning a Map command.

If the command completed successfully, then the (201) Item added exception condition is created by the command.

If the originator's authentication credentials specify a principal with insufficient rights to complete the command, then the (401) Unauthorized exception condition is created by the command. If no authentication credentials were specified, then (407) Authentication required exception condition is created by the command. A suitable challenge can also be returned.

If the target data item already exists in the recipient database, then the (418) Already exists exception condition is created by the command.

If there is insufficient space in the recipient database for the data item, then the (420) Device full exception condition is created by the command, and the originator SHOULD NOT attempt to add additional data until the recipient has more free space.

Non-specific errors created by the recipient while attempting to complete the command create the (500) Command failed exception condition.

If an error occurs while the recipient copying the data item within the recipient's data base, then the (510) Data store failure exception condition is created by the command.

Example:

	<Copy CmdID="12345" >

 <Cred>

 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 <Item>

 <Target><LocURI>mid:msg1@host.com</LocURI></Target>

 <Source><LocURI>./mail/bruce1/folders/Project%20XYZ</LocURI></Source>

 </Item>

 <Item>

 <Target><LocURI>mid:msg2@host.com</LocURI></Target>

 <Source><LocURI>./mail/bruce1/folders/Admin</LocURI></Source>

 </Item>

</Copy>

6.2.15 Correlator

Usage: Specifies a link between two related SyncAlert commands.

Parent Element: SyncAlert
Content Model:

	<xs:attribute name="Correlator" type="xs:string"/>

Restrictions:
 None
6.2.16 Cred

Usage: Specifies an authentication credential for the originator.

Parent Elements: Add, Alert, Copy, Delete, Get, Put, Map, Move, Replace, Status, Sync, SyncAlert, SyncHdr
Content Model:
Content Model:

	<xs:element name="Cred" type="CredType"/>

<xs:complexType name="CredType">

 <xs:sequence>

 <xs:element ref="Meta"/>

 <xs:element ref="Data"/>

 </xs:sequence>

 <xs:attribute ref="AuthName" use="optional">

</xs:complexType>

Restrictions:
The Meta Type and Format attributes specify the authentication scheme and credential encoding style, respectively. The value of the Data element specifies the credential. For authentication schemes which do not contain an extractable user identifier, the AuthName attribute is used to hold a user specific identifier.
Credentials SHOULD be processed from the SyncML message level (supplied on the SyncHdr), down to the datastore level (supplied on on a SyncAlert or Sync command), down to the individual command. Credential failure at the message level should stop lower level credential checking until that has been resolved.
If credentials are not present on an individual command, the credentials for the datastore (from the parent Sync command) should be used. If credentials for the datastore are not present, the credentials for the message should be used.
TBD: Should this be refined?
The Data Sync Client and Server MUST support the following authentication scheme:

	Name
	Authentication Scheme
	Description

	SHA-256
	syncml:auth-sha256
	SHA-256 hash-function based authentication scheme.

SHA-256 authentication scheme provides a safe way for prevention of replay attacks to transmit the credential in SHA-256 digest to the recipient. When SHA-256 authentication scheme is used, the value of Meta Type and Format attributes SHALL be ‘syncml:auth-sha256’ and ‘b64’, respectively. The value of Data element is the digest which SHALL be computed as following:

Let H = the SHA-256 Hashing function.
Let Digest = the output of the SHA-256 Hashing function.

Let B64 = the base64 encoding function.
Let userid = User Identifier.

Let secret = Secrete known by the originator and recipient.

Let nonce = Challenge specified by the recipient

Digest = H(B64(H(userid:secret)):nonce)

If absent, and no other authentication credential was specified in either a parent command or in the SyncHdr element, then no authentication credential is specified.

If an authentication credential was specified by a parent command or in the SyncHdr element, then that authentication credential specified there is assumed to be sufficient for the operation specified by the current element. Specifying insufficient authentication credentials will result in a ‘(401) Unauthorized’ exception condition.

If the authentication challenge is received for the request, the authentication scheme and encoding of the next request SHALL be applied to it.

The Data Sync Client and Server MAY support the following authentication schemes (not the definitive list):

	Name
	Authentication Scheme
	Description

	SHA-1
	syncml:auth-sha1
	SHA-1 hash-function based authentication scheme.

	MD5
	syncml:auth-md5
	MD5 hash-function based authentication scheme.

	X509
	syncml:auth-x509
	The data would be an actual X.509 Certificate. The data SHOULD be sent raw in WBXML, and base64 encoded in XML.

	Securid
	syncml:auth-securid
	The data specific for SecurID authentication would be sent. The data SHOULD be sent raw in WBXML, and base64 encoded in XML.

	Safeword
	syncml:auth-safeword
	The data specific for SafeWord authentication would be sent. The data SHOULD be sent raw in WBXML, and base64 encoded in XML.

	Digipass
	syncml:auth-digipass
	The data specific for DigiPass authentication would be sent. The data SHOULD be sent raw in WBXML, and base64 encoded in XML.

Editor’s note: More information needs to be put in Chal element if we support the last four authentication schemes. It is not sure that they can be implemented using the current syntax. They could be updated or removed or investigated further.

Other authentication schemes MAY be specified by prior agreement between the originator and the recipient, which is out of the scope of this document.
Example: The following is an example of a SHA-256 authentication scheme:
	<Cred AuthName="Bruce">

 <Meta Format="b64" Type="syncml:auth-sha256"/>
 <Data> --actual data goes here-- </Data>

</Cred>

6.2.17 Data

Usage: Specifies discrete SyncML data.

Parent Elements: Cred, Item
Content Model:

	<xs:element name="Data" type="DataType"/>

<xs:complexType name="DataType">

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute ref="Encrypted" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

Restrictions:
The content information can be either parsable character data or mark-up data. If the element type contains any mark-up, then the name space for the element types MUST be declared on the element types in the content information.

The optional ‘Encrypted’ attribute specifies whether or not the content data is encrypted.

When specified in a Cred, the element type specifies the authentication credentials.

When specified in an Item, the element type specifies the item data.

Example: The following is an example of an Item with data that does not contain any mark-up.

	<Item>

 <Data>John Smith, +1-919-555-1234</Data>

</Item>

The following is an example of an Item with data that does contain meta-information mark-up data.

	<Item>

 <Meta Format="xml" Type="application/vnd.syncml-devinf+xml"/>

 <Data>

 <DevInf xmlns=’syncml:devinf’>

 <Man>IBM</Man>

 <Model>WorkPad</Model>

 <DevType>pda</DevType>

 <DevID>J. Smith</DevID>

 <FwV>PalmOSv3.0</FwV>

 <OEM>Palm, Inc.</OEM>

 </DevInf>

 </Data>

</Item>

6.2.18 Delete

Usage: Specifies the SyncML command to delete data from a data collection.

Parent Elements: Sync, SyncBody
Content Model:

	<xs:element name="Delete" type="DeleteType"/>

<xs:complexType name="DeleteType">

 <xs:sequence>

 <xs:element ref="Cred" minOccurs="0"/>

 <xs:element ref="Item" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute ref="CmdID" use="required"/>

 <xs:attribute ref="SftDel" use="optional"/>
 <xs:attribute ref="NoStatus" use="optional"/>
</xs:complexType>

Restrictions:
The Delete command is generally used to permanently erase data items from the recipient's database. However, the command can also be used to temporarily remove data items from the recipient's database in order to create room for a subsequent Add command. This is termed a "soft delete".

One or moreItem element types MUST be specified. The Item element type specifies the data item deleted from the database. The TargetClientURI or SourceClientURI specified within the Item element type is a client identifier (LUID), as relative to the corresponding TargetServerURI / TargetClientURI or SourceServerURI / SourceClientURI specified in the parent Sync command.
TargetServerURI, SourceServerURI, TargetServerParentURI, TargetClientParentURI, SourceServerParentURI or SourceClientParentURI MUST NOT be specified in a Delete command. If the client wishes to delete an item that has not yet been mapped, it must first send a Map command. The Server MUST NOT attempt to delete an item before the client has had an opportunity to send a Map command (E.g. Adding an item, and then immediately deleting the same item by the GUID is prohibited).
In applications (e.g., email) where the "delete" concept involves "moving" a data item from one folder to a special "Deleted" folder, this can be achieved either by the Move command, or by using either the Copy command or the Add command to propagate the specified data item to the "Deleted" folder, followed by the subsequent Delete of the corresponding item from the original folder.

Editors Note: Match behaviour to support requirements of Move and Copy.
The recipient of a Delete command can delete any subset of the specified data elements. However, if all of the requested data was not deleted, then the (206) Partial content exception condition is created by the command. If a Status command is returned for this exception condition, then the identifiers of the data items not deleted SHOULD be returned also.

If the recipient determines that the data item doesn't exists on the recipient's database, then the (211) Item not deleted exception condition is created by the command.

If the originator's authentication credentials specify a principal with insufficient rights to complete the command, then the (401) Unauthorized exception condition is created by the command. If no authentication credentials were specified, then (407) Authentication required exception condition is created by the command. A suitable challenge can also be returned.

In synchronization protocol cases where the client sends a Map command to the server, the server MUST always specify the client identifier for any data items to be deleted. Otherwise, the (412) Incomplete command exception condition is created and no data items will be deleted by the client.
When syncronizing hierarchical objects, a Move or Delete command MUST be issued for all children before issuing a Delete for the parent. If a Delete is received for a parent which still contains child items, an exception status code (427) Item not empty, MAY be returned.
Non-specific errors created by the recipient while attempting to complete the command create the (500) Command failed exception condition.

Editors Note: Match behaviour to DM. What about a way to force a large delete?
Example 1: The client requests the server to delete an item, with credentials that provide delete access to the item in the current datastore. The item is identified by the client LUID.
	<Delete CmdID="401">
 <Cred>

 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 <Item><SourceClientURI>1001</SourceClientURI></Item>

</Delete>

The following is an example to "soft delete" a number of data items to allow room on the device for a subsequent Add or Copy command, not specified in this example.
Example 2: The client informs the server that it has Soft Deleted a set of items to free storage on the device. The items are identified by client LUIDs.
	<Delete CmdID="402" SftDel="true">

 <Item><SourceClientURI>1015</SourceClientURI></Item>

 <Item><SourceClientURI>1016</SourceClientURI></Item>

 <Item><SourceClientURI>1017</SourceClientURI></Item>

</Delete>

Example 3: The server requests the client to Soft Delete a set of items to free storage on the device. The items are identified by client LUIDs.
	<Delete CmdID="403" SftDel="true">

 <Item><TargetClientURI>1018</TargetClientURI></Item>

 <Item><TargetClientURI>1019</TargetClientURI></Item>

 <Item><TargetClientURI>1020</TargetClientURI></Item>

</Delete>

6.2.19 Direction
Usage: Specifies the the sync direction.

Parent Element: SyncAlert
Content Model:

	<xs:attribute name="Direction">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="fromClient"/>

 <xs:enumeration value="fromServer"/>

 <xs:enumeration value="twoWay"/>

 <xs:enumeration value="NoWay"/>

 </xs:restriction>

 </xs:simpleType>

</xs:attribute>

Restrictions:
The Direction attribute specify the sync direction.

The semantics of Direction, Behaviour, IDValidity and ChangeLogValidity are described in section x.x of [DSPRO].

Update reference
6.2.20 EmptyType
Usage: This type definition is used in the Syntax Elements definition. And it is used to specify an empty type for the Element that has no element, attribute or content.
Used in Elements: Final, MoreData

Content Model:

	<xs:complexType name="EmptyType"/>

Example:

	<xs:element name="Final" type="EmptyType" />

6.2.21 Encrypted
Usage: Specifies whether or not the data is encrypted.
Used in Elements: Data
Content Model:

	<xs:attribute name="Encrypted" type="xs:boolean" default="false"/>

Restrictions:
This attribute specifies whether or not the content information in the Data element is encrypted using the encrypted symmetry key transmitted in SyncHdr.

Example: The following is an example of an Item with data that does not contain any mark-up.

	<Item>

 <Data Encrypted="true">blahblahblah</Data>

</Item>

6.2.22 EncryptedKey

Usage: Specifies encrypted symmetric key and key information for the originator.

Parent Element: SyncHdr
Content Model:

	<xs:element name="EncryptedKey" type="CredType"/>

Restrictions:
The Meta Type and Size attributes specify the algorithm and length of the symmetric key, respectively. The Meta Format attribute specifies the encoding style for the encrypted octet sequence. The default value for this element is b64. The value of the Data element specifies the encrypted symmetric key using the key exchange algorithm.

Example: The following example illustrates how the encrypted symmetric key is transmitted.

	<SyncHdr>

 ...

 <EncryptedKey>

 <Meta Format="b64" Type="AES-128-CBC" Size="128"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </EncryptedKey>

</SyncHdr>

6.2.23 Field

Usage: Specifies a field level filter to be performed on the parent element of the Filter element.

Parent Element: Filter
Content Model:

	<xs:element name="Field" type="FieldType"/>
<xs:complexType name="FieldType">

 <xs:sequence>

 <xs:element ref="Item"/>

 </xs:sequence>

</xs:complexType>

Restrictions:
If the Field element is present, the Alert Target Meta Type is used to indicate the content type used in the content filtering and MUST be present. The Item Meta element is used to indicate the device info mime type and MUST be present. The Item Data element MUST contain Property elements. The mark-up characters of the Data element content MUST be properly escaped according to [XML] specification rules or the CDATA sections MUST be used. The Property elements MUST be used to override any Property elements previously received in the CTCap element for the content-type being filtered and MUST apply to the current synchronization session only. If no Field element is present in the Filter element, then all properties SHOULD be filtered using the device info data store CTCap element for the specified Alert Target element.
Alert or SyncAlert’s Target?
Example: The following is an example of a Field element used within a Filter element to define the characteristics of the subset of data to be synchronized. The Field element contains a Property element set to “PHOTO” containing a MaxSize element set to 0 (zero). This indicates to the server that it SHOULD NOT send any PHOTO properties since the client has requested that it wishes to receive only 0 bytes of this property for this synchronization request and the value SHOULD NOT be truncated.
	<Filter>

 ...
 <Field>

 <Item>

 <Meta Type="application/vnd.syncml-devinf+xml"/>
 <Data><![CDATA[

 <Property>

 <PropName>PHOTO</PropName>

 <MaxSize>0</MaxSize>

 <NoTruncate/>

 </Property>

]]></Data>

 </Item>

 </Field>

 ...
<Filter/>

6.2.24 FieldLevel

Usage: Indicates that the content information in the Data element replaces only part of an item.

Used in Elements: Replace
Content Model:

	<xs:attribute name="FieldLevel" type="xs:boolean" default="false"/>

Restrictions:
The FieldLevel attribute MUST only be used in a Replace element.

Example:

	<Replace CmdID="3" FieldLevel="true">
 <Meta Type="x-type/x-subtype"/>

 <Item>
 <Target>
 <LocURI>244</LocURI>
 </Target>
 <Data>
 ...
 </Data>
 </Item>

</Replace>

6.2.25 Filter

Usage: Specifies a filter action to be performed on the parent element.

Parent Element: SyncAlert, Get
Content Model:

	<xs:element name="Filter" type="FilterElementType"/>
<xs:complexType name="FilterElementType">

 <xs:sequence>

 <xs:element ref="Meta"/>

 <xs:element ref="Field" minOccurs="0"/>

 <xs:element ref="Record" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute ref="FilterType" use="optional"/>

</xs:complexType>

Restrictions:
The Filter element MAY appear in the SyncAlert element. If the Filter element is present, the Meta element’s Type attribute is used to indicate the content type used in the filter query and MUST be present. If the Filter element does not have a Record or a Field element, then the filter request is ignored and synchronization MUST continue without any filtering.

Example: The following is an example of a Filter element which

1. Uses the Record element with a Meta element’s Type value of “syncml:filtertype-cgi” to indicate the grammar being used.

2. Uses the Item Data element to constrain the items synchronized to those that fall into the “business” or “personal” group (case insensitive) with the cgi expression “GROUP&iCON;business&OR; GROUP &iCON;personal”.

	<Filter>

 <Record>

 <Item>

 <Meta Type="syncml:filtertype-cgi"/>
 <Data>GROUP&iCON;business&OR;GROUP&iCON;personal</Data>

 </Item>

 </Record>

</Filter>

6.2.26 FilterType

Usage: Indicates the type of filtering behaviour that is being requested. If the requested filter type is not supported by the recipient then a Status code 406 (OPTIONAL feature not supported) MUST be returned. The Item element of the Status command SHOULD indicate that the FilterType attribute was the unsupported feature.

Parent Element: Filter
Content Model:

	<xs:attribute name="FilterType" default="EXCLUSIVE"/>
 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="EXCLUSIVE"/>

 <xs:enumeration value="INCLUSIVE"/>

 </xs:restriction>

 </xs:simpleType>

</xs:attribute>

Restrictions:
If present, these keywords MUST be one of the FilterType keywords listed below. If not present, then the FilterType value of “EXCLUSIVE” MUST be assumed.

	Keywords
	Description

	EXCLUSIVE
	Indicates that the sender is requesting that the set of data items to be synchronized MUST be exactly the set of items specified by the Filter. Additional items in the data store MUST not be synchronized and the recipient of the Filter MUST request that additional items be removed from the sender device.

	INCLUSIVE
	Indicates that the sender is requesting that the set of data items to be synchronized MUST include the set of items specified by the Filter. Additional items in the datastore that are not specified by the Filter MUST not be synchronized and the recipient of the Filter MUST leave these additional items on the sender device.

Table 1: FilterType keywords
Example: The following is an example of a Filter element which uses the EXCLUSIVE FilterType keyword
	<Filter FilterType="EXCLUSIVE">

 <Record>

 <Item>

 <Meta Type="syncml:filtertype-cgi"/>
 <Data>GROUP&iCON;business&OR;GROUP&iCON;personal</Data>

 </Item>

 </Record>

</Filter>

6.2.27 Final

Usage: Indicator that the SyncML message is the last message in the current SyncML package.

Parent Element: SyncBody
Content Model:

	<xs:element name="Final" type="EmptyType"/>

Restrictions:
The element type MUST only be specified on the last message of the SyncML package. If not present, then more messages follow this SyncML message in the current SyncML package.

The OMA DS Protocol specification [DSPRO] specifies the semantics of the different SyncML packages.

Example:

	<SyncML ... >
 <SyncHdr>...blah, blah...</SyncHdr>
 <SyncBody>
 ...blah, blah...
 <Final/>
 </SyncBody>
</SyncML>

6.2.28 Format
Usage: Specifies the encoding format of the content information in the Data element.

Parent Element: Meta
Content Model:

	<xs:attribute name="Format" type="xs:string"/>

Restrictions:
The value of this attribute SHOULD be one of bin, bool, b64, chr, int, node, null, xml, date, time, or float. If this attribute type is missing, the default value is chr. If the value is bin, then the format of the content is binary data. If the value is bool, then the format of the content is either true or false. If the value is b64, then the format of the content information is binary data that has been character encoded using the Base64 transfer encoding defined by [RFC2045]. If the value is chr, then the format of the content information is clear-text in the character set specified on either the transport protocol, the MIME content type header or the XML prolog. If the value is int, then the format of the content information is numeric text representing the integer. If the value is null, then there is no content information. This value is used by some synchronization data models to delete the content, but not the presence of the property. If the value is xml, then the format of the content information is XML structured mark-up data. If the value is date, then the format of the content is in ISO 8601 format with the century being included in the year ISO8601. If the value is time, then the format of the content is in ISO 8601 format. If the value is float, then the format of the content is standard concept of real numbers corresponding to a single precision 32 bit floating point type as defined in XML Schema 1.0 as the float primitive type.

In case a Meta element containing a Format attribute contains meta-information about a Data object, this Meta element MUST have the same parent as the Data object it refers to.

The target object is the one in which the meta-information appears.

Example: The following example illustrates how the attribute is used to specify Format meta-information for data in the Item element type.

	<Item>

 <Meta Format="int" Type="text/plain" />

 <Data>1024</Data>

</Item>

6.2.29 FP

Usage: Fingerprints are values associated with particular data item contents. And fingerprints are compared to detect if particular data items have changed.

Parent Elements: SourceClientURI, ID
Content Model:

	<xs:attribute name="FP" type="xs:int "/>

Restrictions:
None.

Example:

	<Replace CmdID="3">

 <Item>
 <Target>
 <LocURI FP="0568">244</LocURI>
 </Target>
 <Data>
 ...
 </Data>
 </Item>

</Replace>

6.2.30 Get

Usage: Specifies the SyncML command to retrieve data from the recipient.

Parent Element: SyncBody
Content Model:

	<xs:element name="Get" type="CommonOperationType"/>

<xs:complexType name="GetType">

 <xs:sequence>

 <xs:element ref="Cred" minOccurs="0"/>

 <xs:element ref="Meta" minOccurs="0"/>

<xs:element ref="Item" maxOccurs="unbounded"/>
<xs:element ref="Filter" minOccurs="0"/>
 </xs:sequence>

 <xs:attribute ref="CmdID" use="required"/>

 <xs:attribute ref="NoStatus" use="optional"/>

</xs:complexType>

Restrictions:
There is no synchronization state information for data retrieved using the Get command. This command MUST NOT be specified within a Sync command.

Data returned from a Get command is returned in a Results element type in a subsequent SyncML message.

One or more Item element types MUST be specified. The Item element type specifies the data items to be returned from the recipient. The Target and Source specified within the Item element type SHOULD be an absolute URI.
The optional Filter element specifies the filter criteria applied to the TargetSourceURI/TargetClientURI in each Item element.
If the command completed successfully, then the (200) OK exception condition is created by the command.

If the command completed successfully but there is no content to return, then the (204) No content exception condition is created by the command.

If the command completed successfully but only a portion of the content is being returned, with the remainder being returned in subsequent Results commands, then the (206) Partial content exception condition is created by the command.

If the command specifies an ambiguous target with multiple matches, then the (300) Multiple choices exception condition is created by the command.

If the originator's authentication credentials specify a principal with insufficient rights to complete the command, then the (401) Unauthorized exception condition is created by the command. If no authentication credentials were specified, then (407) Authentication required exception condition is created by the command. A suitable challenge can also be returned.

If the specified data item doesn't exist on the recipient, then the (404) Not found exception condition is created by the command.

If the requested data item is too large to be transferred at this time, then the (413) Request entity too large exception condition is created by the command.

Non-specific errors created by the recipient while attempting to complete the command create the (500) Command failed exception condition.

If the MIME content type or content format for the data item is not supported by the recipient, then the (415) Unsupported MIME content type or content format exception condition is created by the command.

Example:

	<Get CmdID="12345">

 <Cred>

 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 <Item>

 <Target><LocURI>./telecom/pb</LocURI></Target>

 <Source><LocURI>http://www.datasync.com/servlet/</LocURI></Source>

 <Meta Type="text/x-vCard"/>

 </Item>

</Get>

6.2.31 ID

Usage: Specifies the identifier of the data item, and optionally specifies the fingerprint of the data item.

Parent Element: IDContainer
Content Model:

	<xs:element name="ID" type="IDType"/>

<xs:complexType name="IDType">

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute ref="FP" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

Restrictions:
The <ID> element specifies the identifier of the data item, and the optional “FP” attribute specifies the fingerprint of the data item.

Example:

	<ID FP="01">LUID001</ID>

6.2.32 IDContainer

Usage: Acts as the placeholder element for one or more ID elements.

Parent Element: SyncAlert
Content Model:

	<xs:element name="IDContainer" type="IDContainerType"/>

<xs:complexType name="IDContainerType">

 <xs:sequence>

 <xs:element ref="ID" maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

Restrictions:
The IDContainer element is used to specify one or more data item identifiers. By using IDContainer element in SyncAlert element, the sender can indicate the data item identifiers that the sender wants to send to the receiver, and the receiver can return back the data item identifiers that the receiver wants the sender to send.
Example:

	<SyncAlert CmdID="3">

 <IDContainer>

 <ID FP="01">LUID001</ID>

 <ID FP="02">LUID002</ID>

 <ID FP="03">LUID003</ID>

 </IDContainer>

</SyncAlert>

6.2.33 IDValidity

Usage: Specifies if the ID is valid.

Parent Element: SyncAlert

Content Model:

	<xs:attribute name="IDValidity" type="xs:boolean"/>

Restrictions:
The IDValidity attribute specifies if the ID is valid.

The semantics of Direction, Behaviour, IDValidity and ChangeLogValidity are described in section x.x of [DSPRO].

Update reference
6.2.34 Item

Usage: Specifies a container for item data.

Parent Elements: Add, Alert, Copy, Delete, Field, Get, Put, Move, Record, Replace, Results, StatusStatus

Content Model:

	<xs:element name="Item" type="ItemType"/>

<xs:complexType name="ItemType">

 <xs:sequence>

 <xs:choice>

 <xs:element ref="TargetClientURI" minOccurs="0"/>

 <xs:element ref="TargetServerURI" minOccurs="0"/>

 </xs:choice>

 <xs:choice>

 <xs:element ref="SourceClientURI" minOccurs="0"/>

 <xs:element ref="SourceServerURI" minOccurs="0"/>

 </xs:choice>

 <xs:choice>

 <xs:element ref="TargetClientParentURI" minOccurs="0"/>

 <xs:element ref="TargetServerParentURI" minOccurs="0"/>

 </xs:choice>

 <xs:choice>

 <xs:element ref="SourceClientParentURI" minOccurs="0"/>

 <xs:element ref="SourceServerParentURI" minOccurs="0"/>

 </xs:choice>

 <xs:element ref="Meta" minOccurs="0"/>

 <xs:element ref="Data" minOccurs="0"/>

 <xs:element ref="MoreData" minOccurs="0"/>

 </xs:sequence>

</xs:complexType>

Restrictions:
If the source URI for the data is an external entity, then the Data element is absent. In this case, the recipient will need to retrieve the data from the specified network location.

The LocURI element type in the Target or Source element types for any of the SyncML commands can be a relative URL. This restriction is not captured by the SyncML Schema.

When specified in an Add, Copy, Delete, Get, Put, Replace, or Results command, the element type specifies the data item that is the operand for the command. One or more Item element types MUST be specified in these commands. The Item element type specifies the data item to be operated on the recipient's database. When these commands are specified within a Sync element type, the TargetServerURI/SourceServerURI within the Item element type SHOULD be a global unique identifier (GUID), and the TargetClientURI/SourceClientURI within the Item element type SHOULD be a local unique identifier (LUID), as relative to the corresponding TargetServerURI/SourceServerURI and TargetClientURI/SourceClientURI specified in the parent Sync command. If specified within a SyncBody element type, the TargetServerURI/TargetClientURI and SourceServerURI/SourceClientURI within the Item element type in these commands SHOULD be an absolute URI.
When specified in an Alert, the element type specifies the parameters for the alert type.

When specified in a Status, the element type specifies additional information about the request status code type. For example, it might specify the component of the request that caused the status condition.

Example:

	<Add CmdID="1" >
 <Cred>

 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 <Item>

 <SourceClientURI>15</SourceClientURI>

 <Meta Type="text/directory profile=vCard"/>

 <Data>BEGIN:VCARD

VERSION:3.0

FN:Smith;Bruce

N:Bruce Smith

TEL;TYPE=WORK;VOICE:+1-919-555-1234

END:VCARD

 </Data>

 </Item>

</Add>

6.2.35 Last

Usage: Specifies the synchronization state information (i.e., sync anchor) for the previous synchronization session.

Parent Element: Anchor
Content Model:

	<xs:attribute name="Last" type="AnchorType"/>

<xs:simpleType name="AnchorType">

 <xs:union memberTypes="xs:dateTime xs:positiveInteger"/>

</xs:simpleType>

Restrictions:
The OPTIONAL Last attribute specifies the synchronization anchor for the previous synchronization session.
The value of the Last attribute MUST specify either an UTC based date/time stamp or a monotonically increasing numeric integer. If a date/time stamp, then the text MUST be in the complete representation, basic format defined by ISO8601.

All Last and Next values sent in a synchronization session by a particular sender MUST be of the same type, and MUST be used such that a comparison operation on values can determine older from newer.
Determination of the ordinal sequence of the version of an existing object in the recipient and the version of the object can be made by comparing the content information of the object with the value on the existing object.
Example:

	<Anchor Last="20000824T133000Z" Next="20000824T221300Z"/>

6.2.36 Map

Usage: Specifies the SyncML command used by the client to update identifier maps (“Mapping Table”) on the server.

Parent Element: SyncBody
Content Model:

	<xs:element name="Map" type="MapType"/>
<xs:complexType name="MapType">

 <xs:sequence>

 <xs:element ref="TargetServerURI"/>

 <xs:element ref="SourceClientURI"/>

 <xs:element ref="Cred" minOccurs="0"/>

 <xs:element ref="MapItem" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute ref="CmdID" use="required"/>

</xs:complexType>

Restrictions:
The Map command specifies changes to the server's item identifier map table. Map tables are used to correlate small resolution item identifiers with larger resolution item identifiers, or between two differing name spaces of identifiers. The client identifier for a given item is known as a LUID. The server identifier for a given item is known as a GUID. For example, if a mobile device has 2-byte item identifiers (LUIDs) and a network server has 16-byte item identifiers (GUIDs), a map table is necessary to correlate an equivalent 2-byte and 16-byte identifier. Generally, map tables are maintained by the data synchronization engine on the network server. Item identifier map tables are not necessary when the originator and the recipient databases are exact replicas of each other (i.e., the databases have the same physical schema).

If an item identifier map table is needed, it is the responsibility of the recipient/server maintaining the map table to perform item identifier translations when communicating synchronization commands with the client that required the map table.

The Map command MUST be atomic, in nature. This means that the recipient/server MUST process either the entire list of mappings supplied, or none of them. If the operation fails, the recipient/server MUST specify an error status code in the requested response.

The Map command is idempotent, which means that if the recipient/server applies the same Map command more than once, the result MUST be the same as applying the Map command only once.

The TargetServerURI and SourceClientURI element types MUST be specified. The TargetServerURI element type specifies the target address for the map table on the recipient/server (e.g. data store name). The SourceClientURI element type specifies the source address for the map table on the originator/client (e.g. data store name).

One or more MapItem element types MUST be specified. The MapItem element type specifies an individual item identifier mapping.

There MUST only be a single exception condition associated with each Map command.

If the command completed successfully, then the (200) OK exception condition is created by the command.

If the originator's authentication credentials specify a principal with insufficient rights to complete the command, then the (401) Unauthorized exception condition is created by the command. If no authentication credentials were specified, then (407) Authentication required exception condition is created by the command. A suitable challenge can also be returned.

If the recipient encounters a data store failure while processing the command, then the (510) Data store failure exception condition is created by the command.

Non-specific errors created by the recipient while attempting to complete the command create the (500) Command failed exception condition.

Example: The following is an example of a Map command for creating three item identifier mappings.

	<Map CmdID="1234">

 <TargetServerURI>./user/bruce1/Calendar</TargetServerURI>

 <SourceClientURI>./Calendar</SourceClientURI>

 <Cred>

 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 <MapItem>

 <TargetServerURI>./0123456789ABCDEF</TargetServerURI>

 <SourceClientURI>./01</SourceClientURI>

 </MapItem>

 <MapItem>

 <TargetServerURI>./0123456789ABCDF0</TargetServerURI>

 <SourceClientURI>./02</SourceClientURI>

 </MapItem>

 <MapItem>

 <TargetServerURI>./0123456789ABCDF1</TargetServerURI>

 <SourceClientURI>./03</SourceClientURI>

 </MapItem>

</Map>

6.2.37 MapItem

Usage: Specifies the ID mapping.
Parent Element: Map

Content Model:

	<xs:element name="MapItem" type="MapItemType"/>

<xs:complexType name="MapItemType">

 <xs:sequence>

 <xs:element ref="TargetServerURI"/>

 <xs:element ref="SourceClientURI"/>

 </xs:sequence>

</xs:complexType>

Restrictions:
The SourceClientURI element type specifies the relative URI for the client’s source item identifier (LUID).

The TargetServerURI element type specifies the relative URI for the server’s target item identifier (GUID).

Example:

	<MapItem>

 <TargetServerURI>./0123456789ABCDEF</TargetServerURI>

 <SourceClientURI>./01</SourceClientURI>

</MapItem>

6.2.38 MaxMsgSize

Usage: Specifies the maximum byte size of any response message to a given SyncML request.

Parent Element: SyncHdr
Content Model:

	<xs:attribute name="MaxMsgSize" type="xs:long"/>

Restrictions:
The attribute appears in the SyncHdr of a SyncML request to specify the maximum size of any subsequent response messages. The attribute is usually specified by a SyncML client, but can also be specified by a SyncML server.

This attribute value is applicable for the remainder of the synchronization session, unless it is specified again.

The attribute value represents the maximum, decimal byte size of any response message.

Example:

	MaxMsgSize="1023"

6.2.39 MaxObjSize

Usage: Specifies the maximum size in bytes of a data object that the device is able to receive.

Parent Elements: SyncAlert, Sync
Content Model:

	<xs:attribute name="MaxObjSize" type="xs:unsignedLong"/>

Restrictions:
The attribute appears in a SyncML request to specify the maximum size of the largest object it is capable of receiving in any subsequent response messages. This attribute value is applicable for the remainder of the synchronization session.

The attribute value represents the maximum, decimal byte size without leading zeroes of any object.

Example: Device that can receive a maximum object of 10K bytes.

	MaxObjSize="10240"

6.2.40 Meta

Usage: Specifies meta-information about the parent element type.

Parent Elements: Add, Chal, Copy, Cred, Delete, Get, Filter, Item, Map, Move, Put, Replace, Results, Sync
Content Model:

	<xs:element name="Meta" type="MetaType"/>

<xs:complexType name="MetaType">

 <xs:sequence>

 <xs:attribute ref="Format" use="optional"/>

 <xs:attribute ref="Type" use="required"/>

 <xs:attribute ref="Size" use="optional"/>

 </xs:sequence>

</xs:complexType>

Restrictions:
When specified in the Chal, the element type specifies meta-information about the authentication scheme requested.

When specified in the Cred element, the Meta specifies meta-information about the authentication credential.

When specified in the Sync command, then the scope for the meta-information includes all the contained commands, unless the meta-information is overridden by a Meta in a contained command.

When specified in the Results, the element type specifies meta-information about the results set.

When specified in the Add, Copy, Delete, Get, and Replace commands, the element type specifies meta-information about the SyncML command. For example, the common MIME content type or content format for all the specified items. The scope of the Meta information is limited to the command.
Example:

	<Meta Format="xml" Type="application/vnd.syncml-devinf+xml"/>
<Data>

 <DevInf xmlns=’syncml:devinf20’>

 <Man>IBM</Man>

 <Model>WorkPad</Model>

 <DevType>pda</DevType>

 <DevID>J. Smith</DevID>

 <FwV>PalmOSv3.0</FwV>

 <OEM>Palm, Inc.</OEM>

 </DevInf>

</Data>

6.2.41 MoreData

Usage: Indicator that a SyncML Data element is incomplete and there will be one or more subsequent chunks.

Parent Element: Item
Content Model:

	<xs:element name="MoreData" type="EmptyType"/>

Restrictions:
The element type MUST be specified on all but the last chunk of Data of an item. If not present, then the item is either contained within a single message or is the closing chunk of the Data item.

Example:

	<Add CmdID="15" >
 <Meta Type="text/x-vcard" Size="3000"/>
 <Item>
 <Source><LocURI>2</LocURI></Source>
 <Data>BEGIN:VCARD
VERSION:2.1
FN:Bruce Smith
N:Smith;Bruce
TEL;WORK;VOICE:+1-919-555-1234
TEL;WORK;FAX:+1-919-555-9876
NOTE: here starts a huge note field, or icon etc...

 </Data>
 <MoreData/>
 </Item>
</Add>

6.2.42 Move

Usage: Specifies a SyncML command to support Move operation

Parent Elements: Sync, SyncBody
Content Model:

	<xs:element name="Move" type="CommonOperationType"/>

<xs:complexType name="CommonOperationType">

 <xs:sequence>

 <xs:element ref="Cred" minOccurs="0"/>

 <xs:element ref="Meta" minOccurs="0"/>

 <xs:element ref="Item" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute ref="CmdID" use="required"/>

 <xs:attribute ref="NoStatus" use="optional"/>

</xs:complexType>

Restrictions:
Move command allows moving items (ex: files, folder, emails, vcards) from current location to a new location. This command MUST only be specified within a Sync command.

Move command MUST include parent information, either SourceParent or TargetParent element within Item. The usage of SourceParent and TargetParent within Move command depends on who is requesting the Move operation, client or server. Refer to each of the respective sections (Section 6.1.25 and 6.1.28) in this specification to learn more about when to use SourceParent and TargetParent element.

One or more Item element types MUST be specified. The Item element types SHOULD NOT contain a Data element. Any Data specified in Item SHOULD be ignored by the recipient.

 Move is strictly used for moving items.

Move MUST NOT be used in situations where items could get modified and moved.

The Target and Source specified within the Item element type SHOULD be a relative URI, as relative to the corresponding Target and Source specified in the parent Sync command.

If the command completed successfully, then the (200) OK exception condition is created by the command.

If the recipient determines that the data item couldn’t be moved on recipient’s database, then the (428) Move Failed exception condition is created by the command.

If the originator’s authentication credentials specify a principal with insufficient rights to complete the command, then the (401) Unauthorized exception condition is created by the command.

If no authentication credentials were specified, then (407) Authentication required exception condition is created by the command. A suitable challenge can also be returned.

Non-specific errors created by the recipient while attempting to complete the command create the (500) Command failed exception condition.

Example: The following is an example of a Move command sent by the server. The server requests the client to move the item which has the LUID ‘110’.

	<Move CmdID="1234">

 <Cred>

 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 <Meta Type="text/plain"/>

 <Item>

 <Target><LocURI>110</LocURI></Target>

 <TargetParent><LocURI>1234</LocURI></TargetParent>

 </Item>

</Move>

Example: The item ‘111’ has been moved from the folder ‘1212’ to the folder ‘1313’ in the client’s datastore and both parents (i.e. folders) have earlier been synchronized with the server. The client creates the following Move command:

	<Move CmdID="2">

 <Meta Type="application/vnd.omads-file"/>

 <Item>

 <Source><LocURI>111</LocURI></Target>

 <SourceParent><LocURI>1313</LocURI></SourceParent>

 </Item>

</Move>

6.2.43 MsgID

Usage: Specifies a SyncML session-unique identifier for the SyncML Message.

Parent Element: SyncHdr
Content Model:

	<xs:attribute name="MsgID" type="xs:positiveInteger"/>

Restrictions:
The message identifier MUST be unique to the device within the SyncML session. The attribute MUST be specified in the SyncHdr. The value is a monotonically increasing numeric value starting at one (1) for the first message from each device (Client or Server) in the SyncML session. The message identifier specified in a SyncML request MUST be the content of the MsgRef element type in the corresponding SyncML results or response Status.

Example:

	<SyncHdr Version="2.0" SessionID="1" MsgID="1">
 <Target><LocURI>http://www.syncml.host.com/</LocURI></Target>
 <Source><LocURI>IMEI:001004FF1234567</LocURI></Source>
</SyncHdr>

6.2.44 MsgRef

Usage: Specifies a reference to a SyncML session-unique identifier referenced by a SyncML results or response Status.

Parent Elements: Results, Status
Content Model:

	<xs:attribute name="MsgRef" type="xs:positiveInteger"/>

Restrictions:
The value MUST reference the message identifier of the SyncML message referred to by the results or response Status.

Example:

	<Status CmdID="4321" MsgRef="1" CmdRef="1234" Cmd="Add" >
 <Code>200</Code>
</Status>

6.2.45 Next

Usage: Specifies the synchronization state information (i.e., sync anchor) for the current synchronization session.

Parent Element: Anchor
Content Model:

	<xs:attribute name="Next" type="AnchorType"/>

<xs:simpleType name="AnchorType">

 <xs:union memberTypes="xs:dateTime xs:positiveInteger"/>

</xs:simpleType>

Restrictions:
The REQUIRED Next attribute specifies the synchronization anchor for the current synchronization session.
The value of the Next attribute MUST specify either an UTC based date/time stamp or a monotonically increasing numeric integer. If a date/time stamp, then the text MUST be in the complete representation, basic format defined by ISO8601.

All Last and Next values sent in a synchronization session by a particular sender MUST be of the same type, and MUST be used such that a comparison operation on values can determine older from newer.
Determination of the ordinal sequence of the version of an existing object in the recipient and the version of the object can be made by comparing the content information of the object with the value on the existing object.
Example:

	<Anchor Last="20000824T133000Z" Next="20000824T221300Z"/>

6.2.46 NextNonce

Usage: Specifies the nonce string to be used in any subsequent communication.

Parent Element: Chal
Restrictions:
The nonce string MUST be further re-formatted using the Base64 algorithm. Terminators or length of Nonce String MUST NOT be included in this re-formatting. The Nonce string MUST be treated as opaque data.

This element type is used to specify the next nonce string that is to be used in any subsequent SyncML message. For example, a SyncML server specifies this element type to tell the SyncML client to change its nonce to a new value.

Nonce strings are used in various authentication schemes, such as “syncml:auth-sha256” and “syncml:auth-md5”.

Content Model:

	<xs:element name="NextNonce" type="xs:string"/>

Example:

	<Chal>

 <Meta Format="b64" Type="syncml:auth-sha256"/>
 <NextNonce>Tm9uY2U=</NextNonce>

<Chal>

6.2.47 NoStatus

Usage: Indicates that the originator does not want a response Status sent back in the response message.

Used in Elements: Add, Alert, Copy, Delete, Get, Move, Put, Replace, Sync, SyncAlert, SyncHdr
Content Model:

	<xs:attribute name="NoStatus" type="xs:Boolean default="false"/>

Restrictions:
When specified as “true”, the recipient MUST NOT return a Status command for the associated SyncML command. If specified on the SyncHdr element type, the recipient MUST NOT return Status commands for any of the commands in the current SyncML message.
Example:

	<Replace CmdID="1" NoStatus="true">
 <Item>
 <Source><LocURI>./127</LocURI></Source>
 <Meta Type="text/directory profile=vCard"/>
 <Data>BEGIN:VCARD
VERSION:2.1
FN:Bruce Smith
N:Smith;Bruce
TEL;TYPE=WORK;VOICE;MSG:+1-919-555-9999
ADR:;;123 Main St.;Anywhere;CA;;US
END:VCARD
 </Data>
 </Item>
</Replace>

6.2.48 NumberOfChanges

Usage: Indicates the total number of changes (the number of Add, Replace and Delete commands) that are going to be sent from sender to recipient during a synchronization session so that the recipient MAY use this information to calculate progress information.

Used in Elements: Sync
Content Model:

	<xs:attribute name="NumberOfChanges" type="xs:unsignedInt"/>

Restrictions:
The attribute MUST be specified by the server, but only if the client has indicated that it supports NumberOfChanges. It MAY be specified by the client. If synchronizations are carried out on more than one datastore (e.g. Contacts & Calendar), then NumberOfChanges MUST be specified for each datastore.

The NumberOfChanges attribute MUST only be specified in the <Sync> command.

Example:

	<Sync CmdID="5" NumberOfChanges="20">
 <Target><LocURI>contacts</LocURI></Target>
 <Source><LocURI>C:\System\data\Contacts.cdb</LocURI></Source>
 ...

</Sync>

6.2.49 Put

Usage: Specifies the SyncML command to transfer data items to a recipient network device or database.

Parent Element: SyncBody
Content Model:

	<xs:element name="Put" type="CommonOperationType"/>

<xs:complexType name="CommonOperationType">

 <xs:sequence>

 <xs:element ref="Cred" minOccurs="0"/>

 <xs:element ref="Meta" minOccurs="0"/>

 <xs:element ref="Item" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute ref="CmdID" use="required"/>

 <xs:attribute ref="NoStatus" use="optional"/>

</xs:complexType>

Restrictions:
There is no synchronization state information for data transferred using the Put command. This command MUST NOT be specified within a Sync command.

One or more Item element types MUST be specified. The Item element type specifies the data items to be transferred to the recipient. The Target and Source specified within the Item element type SHOULD be an absolute URI.

If the command completed successfully, then the (200) OK exception condition is created by the command.

If the originator's authentication credentials specify a principal with insufficient rights to complete the command, then the (401) Unauthorized exception condition is created by the command. If no authentication credentials were specified, then (407) Authentication required exception condition is created by the command. A suitable challenge can also be returned.

If the Put command did not include the size of the data item to be transferred (i.e., in the Meta element’s size attribute), then the (411) Size required exception condition is created by the command.

If the data item to be transferred is too large (e.g., there are restrictions on the size of data items transferred to the recipient), then the (413) Request entity too large exception condition is created by the command.

If the Size specified in the Meta element type was too large for the recipient (e.g., the recipient does not have sufficient input buffer for the data), then the (416) Requested size too big exception condition is created by the command.

If the MIME content type or content format for the data item is not supported by the recipient, then the (415) Unsupported MIME content type or content format exception condition is created by the command.

If the recipient device storage is full, then the (420) Device full exception condition is created by the command, and the originator SHOULD NOT attempt to add additional data until the recipient has more free space.

Non-specific errors created by the recipient while attempting to complete the command create the (500) Command failed exception condition.

Example: The following is an example of a Put command used to exchange device information.

	<Put CmdID="12345">

 <Cred>

 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 <Meta Type="application/vnd.syncmldevinf+xml"/>

 <Item>

 <Source><LocURI>./devinf20 </LocURI></Source>

 <Data>

 <DevInf xmlns='syncml:devinf'>

 <Man>UltraLite Mobile, Ltd.</Man>

 <FwV>3.0</FwV>

 <FwD>19981015</FwD>

 <DevID>001004FF1234567</DevID>

 <Mem>

 <TotalMaxMem>1046529</TotalMaxMem>

 <TotalMaxID>1024</TotalMaxID>

 </Mem>

 </DevInf>

 </Data>

 </Item>

</Put>

6.2.50 Record

Usage: Specifies a record level filter to be performed on the parent element of the Filter element.

Parent Element: Filter
Content Model:

	<xs:element name="Record" type="RecordType"/>
<xs:complexType name="RecordType">

 <xs:sequence>

 <xs:element ref="Item"/>

 </xs:sequence>

</xs:complexType>

Restrictions:
The Record element MAY appear in the Filter element for Alert Target elements. If the Record element is present, the Alert Target Meta Type is used to indicate the content type used in the filter record query and MUST be present. The Record Item element specifies the filter query itself. The Record Item Meta Type element is used to indicate the filter query grammar. The Record Item Data is used to indicate the filter query itself and MUST be present.
Example: The following is an example of a Record element used within a Filter element to define the characteristics of the subset of data to be synchronized.

1. The Meta Type value of “syncml:filtertype-cgi” indicates the grammar being used.

2. The Item DataData
 element constrains the items synchronized to those that fall into the “business” or “personal” group (case insensitive) with the cgi expression “GROUP&iCON;business&OR; GROUP &iCON;personal”.

	<Filter>

 <Record>

 <Item>

 <Meta Type="syncml:filtertype-cgi"/>
 <Data>GROUP&iCON;business&OR;GROUP&iCON;personal</Data>

 </Item>

 </Record>

</Filter>

6.2.51 Replace

Usage: Specifies the SyncML command to replace data.

Parent Elements: Sync, SyncBody
Content Model:

	<xs:element name="Replace" type="ReplaceType"/>

<xs:complexType name="ReplaceType">

 <xs:sequence>

 <xs:element ref="Cred" minOccurs="0"/>

 <xs:element ref="Meta" minOccurs="0"/>

 <xs:element ref="Item" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute ref="CmdID" use="required" />

 <xs:attribute ref="FieldLevel" use="optional"/>

 <xs:attribute ref="NoStatus" use="optional"/>

</xs:complexType>

Restrictions:
The Replace command is used to replace data on the recipient. This command MUST only be specified within a Sync command. The Replace may be partial (field-level Replace)or full.

If the specified data item does not exist, then the command MUST be interpreted as an Add command.

The originator of the command SHOULD only send features/properties of the data item that are supported by the recipient. The device information document of the recipient can contain this information.

If the Replace is used for partial, then the FieldLevel attribute MUST be used.

If the FieldLevel attribute is included in the Replace element, and the value is "true", then:

· The sender MAY include unchanged fields of the item inside Data element.

· The recipient MUST NOT remove any fields of the item in the database that are not present in Data element.

· The partial item inside the Data MUST still satisfy the validity rules defined for the content type specified in Type element.

The scope of the meta-information is limited to the command.
Example:

	<Replace CmdID="3" FieldLevel="true">

 <Meta Type="x-type/x-subtype"/>

 <Item>

 <Target>

 <LocURI>244</LocURI>

 </Target>

 <Data>

 ...

 </Data>

 </Item>

</Replace>

One or more Item element types MUST be specified. The Item element type specifies the data item replaced in the database.

The Target and Source specified within the Item element type SHOULD be a relative URI, as relative to the corresponding Target and Source specified in the parent Sync command.

When synchronizing hierarchical objects, the Replace command MUST include parent information. For this purpose SourceParent URI or TargetParent URI MUST be used by sending device referring to an existing parent.. Refer to each of the respective sections in this specification (Section 6.1.25 and 6.1.28) to learn more about when to use SourceParent And TargetParent element.

In the case where an item has been modified and moved, Replace MUST be used instead of Move.

If Replace command is used by client for add operation, then client MUST add parent first before adding all children of that parent. For example, if an item B has a parent A, then before adding item B, parent A MUST be added by the client.
Example:

	<Replace CmdID="12345">

 <Cred>

 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 <Item>

 <Source><LocURI>1002345/</LocURI></Source>

 <SourceParentURI>...</SourceParentURI>

 <Data>

 ...

 <Data>

 </Item>

</Replace>

If the specified data item did not exist, a client recipient MAY assign new local identifiers for the data items specified in this command. However, in such cases the client recipient MUST also notify the originator of the item identifier correlation by returning a Map command.

If the command completed successfully, then the (200) OK exception condition is created by the command. However, if the command was interpreted as an Add command and the command completed successfully, then the (201) Item added exception condition is created by this command.

If the originator's authentication credentials specify a principal with insufficient rights to complete the command, then the (401) Unauthorized exception condition is created by the command.

If no authentication credentials were specified, then (407) Authentication required exception condition is created by the command. A suitable challenge can also be returned.

Non-specific errors created by the recipient while attempting to complete the command create the (500) Command failed exception condition.

If there is insufficient space on the recipient database for updating the data item, then the (420) Device full exception condition is created by the command, and the originator SHOULD NOT attempt to add additional data until the recipient has more free space.

If the MIME content type or content format for the data item is not supported by the recipient, then the (415) Unsupported media type or format exception condition is created by the command.

In case the recipient is unable to process a partial item update (e.g. when the item does not exist on recipient), it MUST return (426) Partial item not accepted.

Example: The following example specifies a source item that was replaced in the source database. The Source contains the relative URI of the item that was replaced. The absolute URI of the Source is specified in the parent Sync element type (not shown in the example).

	<Replace CmdID="1234">

 <Cred>

 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 <Meta Type="text/calendar"/>

 <Item>

 <Source><LocURI>./20</LocURI></Source>

 <Data>BEGIN:VCALENDAR

VERSION:2.0

METHOD:REQUEST

BEGIN:VEVENT

UID:12345-19991015T133000Z

SEQUENCE:1

DTSTART:19991026T110000Z

DTEND:19991026T190000Z

SUMMARY:Technical Committee Meeting

CATEGORIES:Appointment

ORGANIZER:henry@host.com

ATTENDEES:techcomm@host.com

END:VEVENT

END:VCALENDAR

 </Data>

 </Item>

</Replace>

6.2.52 RespURI

Usage: Specifies the URI that the recipient MUST use for any response to this message.

Parent Element: SyncHdr
Content Model:

	<xs:element name="RespURI" type="xs:anyURI"/>

Restrictions:
The value of this element is the address, in the form of an absolute URI that the recipient MUST use for any response to this message. If the Source is not the same as this value, then the Source element MUST also be specified in the SyncHdr element type. Note that the server and databases are the same entities at this new address. The Recipient of this command SHOULD NOT resend the previous message.
6.2.53 Results

Usage: Specifies the SyncML command that is used to return the results of a Get command.

Parent Element: SyncBody
Content Model:

	<xs:element name="Results" type="ResultsType"/>

<xs:complexType name="ResultsType">

 <xs:sequence>

 <xs:element ref="Meta" minOccurs="0"/>

 <xs:element ref="TargetRef" minOccurs="0"/>

 <xs:element ref="SourceRef" minOccurs="0"/>

 <xs:element ref="Item" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute ref="CmdID" use="required"/>

 <xs:attribute ref="MsgRef" use="required"/>

 <xs:attribute ref="CmdRef" use="required"/>

</xs:complexType>

Restrictions:
The OPTIONAL MsgRef attribute specifies the MsgID of the associated SyncML request. If the MsgRef is not present in a Results element type, then the MsgRef value of "1" MUST be assumed.

The CmdRef attribute specifies the CmdID of the associated SyncML request.

The OPTIONAL TargetRef element type specifies the target address from the associated command.

The OPTIONAL SourceRef element type specifies the source address from the associated command.

One or more Item element types MUST be specified. The Item element type specifies the results. The Source specified within the Item element type SHOULD be a relative URI, as relative to the corresponding SourceRef.

Example: The following is an example of results returned from a Get command.

	<Results CmdID="4321" MsgRef="1" CmdRef="1">

 <Meta Type="text/x-vCard"/>

 <TargetRef>./telecom/pb</TargetRef>

 <SourceRef>http://www.datasync.com/servlet/</SourceRef>

 <Item>

 <Source><LocURI>./1</LocURI></Source>

 <Data>BEGIN:VCARD

VERSION:2.1

FN:Bruce Smith

N:Smith, Bruce

TEL;WORK;VOICE:+1-919-555-1234

END:VCARD

 </Data>

 </Item>

 <Item>

 <Source><LocURI>./2</LocURI></Source>

 <Data>BEGIN:VCARD

VERSION:2.1

FN:Ida Blue

N:Blue, Ida

TEL;WORK;VOICE:+1-919-555-2345

END:VCARD

 </Data>

 </Item>

 <Item>

 <Source><LocURI>./3</LocURI></Source>

 <Data>BEGIN:VCARD

VERSION:2.1

FNke McGrath

N:McGrath, Mike

TEL;WORK;VOICE:+1-919-555-3456

END:VCARD

 </Data>

 </Item>

</Results>

6.2.54 Sequence

Usage: Specifies the SyncML attribute to order the processing of a set of SyncML commands.

Parent Element: Sync
Content Model:

	<xs:attribute name="Sequence" type="xs:boolean" default="false"/>

Restrictions:
TBD: If the command completed successfully, then the (200) OK exception condition is created by the command.

TBD: If the recipient does not support the command, then the (406) Optional feature not supported exception condition is created by the command.

TBD: Non-specific errors created by the recipient while attempting to complete the command create the (500) Command failed exception condition.

TBDExample: The following is an incomplete (i.e., Add and Delete commands only include skeleton content) example for a Sequence command containing two Add commands, followed by a Delete command.

	<Sync Sequence="true" CmdID="1234" >
 <Add CmdID="1235" >

 ...

 </Add>

 <Add CmdID="1236" >

 ...

 </Add>

 <Delete CmdID="1237" >

 ...

 </Delete>

</Sync>

6.2.55 SessionID

Usage: Specifies the identifier of the SyncML session associated with the SyncML Message.

Parent Element: SyncHdr
Content Model:

	<xs:attribute name="SessionID" type="xs:unsignedInt"/>

Restrictions:
The value is an opaque string. The element type MUST be specified in the SyncHdr element type in all SyncML Messages. The initiator SHOULD use unique SessionIDs for each session.

The maximum length of a SessionID is 4 bytes. Note for a client having an 8 bit incrementing SessionID counter is enough for practical implementations.

Example:

	<SyncML ...>
 <SyncHdr Version="2.0" SessionID="1" MsgID="3" >
 <Target>
 <LocURI>IMEI:001004FF1234567</LocURI>
 </Target>
 <Source>
 <LocURI>http://www.datasync.org/servlet/syncit/</LocURI>
 </Source>
 </SyncHdr>
 <SyncBody>
 ...blah, blah...
 </SyncBody>
</SyncML>

6.2.56 SftDel

Usage: Indicates that the delete command is a "Soft Delete".

Used in Elements: Delete
Content Model:

	<xs:attribute name="SftDel" type="xs:boolean" default="false"/>

Restrictions:
The data item is deleted from the client data store but not from the set of synchronization data. The "Soft Delete" can be specified by an OMA DS server to free up storage resources in the OMA DS client prior to a synchronization operation. If not present, then the semantics of the Delete command are a "Hard Delete" of the data item. In addition, the OMA DS client can specify the "Soft Delete" to free up storage resources in the OMA DS client prior to a synchronization operation with the OMA DS server.

The OMA DS client MUST maintain the LUID (Local Unique Identifier) associated with the soft-deleted item so that server(s) can re-use the LUID if the item is modified by a server.

The OMA DS server MUST NOT delete the map items associated with the "Soft Deleted" items.

If the OMA DS client does not support the "Soft Delete", then, a (406) Optional feature not supported MUST be returned in the Status command.

In a two-way synchronization, if the OMA DS client specifies a "Soft Delete" for an item that has already been "Hard Deleted" on the OMA DS server, then a (423) Soft-delete conflict MUST be returned in the Status command.

Example: The server requests the client to Soft Delete a set of items to free storage on the device. The items are identified by client LUIDs.
	<Delete CmdID="403" SftDel="true">

 <Item><TargetClientURI>1018</TargetClientURI></Item>

 <Item><TargetClientURI>1019</TargetClientURI></Item>

 <Item><TargetClientURI>1020</TargetClientURI></Item>

</Delete>

6.2.57 Size
Usage: Specifies the byte size of a data object.

Parent Element: Meta
Content Model:

	<xs:attribute name="Size" type="xs:unsignedLong"/>

Restrictions:
The byte size is specified as the numeric text equivalent of the byte count of the data object. In case a Meta element containing a Size attribute contains meta-information about a Data object, this Meta element MUST have the same parent as the Data object it refers to.

Example: The following example illustrates how this attribute is used to specify meta-information about the byte size of the Item element type.

	<Item>

 <Target><LocURI>4</LocURI></Target>

 <Meta Format="chr" Type="text/plain" Size="10" />

 <Data>John Smith</Data>

</Item>

6.2.58 SourceClientURI
Usage: Specifies source routing or mapping information by client identifier.

Parent Elements: Item, Map, MapItem, Sync, SyncHdr

Content Model:

	<xs:element name="SourceClientURI" type="URIWithFPType"/>
<xs:complexType name="URIWithFPType">

 <xs:simpleContent>

 <xs:extension base="xs:anyURI">

 <xs:attribute ref="FP" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

Restrictions:
When specified in the Item element type, the SourceClientURI element type specifies the client identifier for the item that is the source of the SyncML command.

When specified in the SyncHdr element type, the SourceClientURI element type specifies the source routing information for the client device that originated the SyncML Message. This MUST be specified by the client of the session, and MUST NOT be specified by the server of the session.
TBD*** If the RespURI element type is also specified within the SyncHdr, then the SourceClientURI element type specifies the source routing information for a proxy originator of the SyncML message.
When specified in the Map element type, the SourceClientURI element type specifies the routing information of the client datastore that originated the map definition. When specified in the MapItem element type, the SourceClientURI element type specifies the identifier of the client item.

When specified in the Sync element type, the SourceClientURI element type specifies the source routing information of the client datastore originating the data synchronization request.

Example: The following is an example of the usage in an Item element type sent from the client.

	<Replace CmdID="4567" >
 <Item>
 <TargetServerURI>./bruce1/pnab</TargetServerURI>
 <SourceClientURI FP="3456">./contacts</SourceClientURI>

 </Item>
</Replace>

6.2.59 SourceClientParentURI
Usage: Specifies the client’s parent information of the current item. This may be in the form of a path [More details after Inp 34] or the actual Client unique identifier. TBD: NOTE: Match Hiearchy examples.
Parent Element: Item
Content Model:

	<xs:element name="SourceClientParentURI" type="xs:anyURI"/>

Restrictions:

SourceClientParentURI provides parent information of the child that is the current item of sync commands such as Move, Add and Replace. SourceClientParentURI MUST be specified in Add, Replace or Move, if and only if the objects have hierarchical nature, i.e. have a parent and child relation, and the client side ID of the parent is known. SourceClientParentURI has meaning only when synchronizing objects in a datastore with hierarchical structure.

In case the parent container is root then the value of the SourceClientParentURI MUST be indicated by ‘/’, without the quotes.

The SourceClientParentURI element represents the client side’s ID of an item.

6.2.60 SourceServerURI
Usage: Specifies source routing or mapping information by server identifier.

Parent Element: Item, Sync, SyncHdr

Content Model:

	<xs:element name="SourceServerURI" type="xs:anyURI"/>

Restrictions:
When specified in the Item element type, the SourceServerURI element type specifies the server database item that is the source of the SyncML command.

When specified in the SyncHdr element type, the SourceServerURI element type specifies the source routing information for the network device that originated the SyncML Message. This MUST be specified by the server of the session, and MUST NOT be specified by the client of the session.

If the RespURI element type is also specified within the SyncHdr, then the Source element type specifies the source routing information for a proxy originator of the SyncML message.
When specified in the Sync element type, the SourceServerURI element type specifies the source routing information of the server datastore originating the data synchronization request.

Example: The following is an example of the usage in an Item element type sent from the client.

	<Replace CmdID="4567" >
 <Item>

 <TargetServerURI>./bruce1/pnab</TargetServerURI>

 <SourceClientURI>./contacts</SourceClientURI>

 </Item>

</Replace>

6.2.61 SourceServerParentURI
Usage: Specifies the server’s parent information of the current item. This may be in the form of a path [More details] or the actual Server unique identifier. TBD: NOTE: Match Hiearchy examples.

Parent Element: Item
Content Model:

	<xs:element name="SourceServerParentURI" type="xs:anyURI"/>

Restrictions:

SourceServerParentURI provides the server’s parent information of the current item of the sync commands such as Move, Add and Replace. SourceServerParentURI MUST be specified in Add, Replace or Move, if and only if the objects have hierarchical nature, i.e. have a parent and child relation, and only the server side ID of the parent is known. SourceServerParentURI has meaning only when synchronizing objects in a datastore with hierarchical structure.

In case the parent container is root then the value of the SourceServerParentURI MUST be indicated by ‘/’, without the quotes.

The SourceServerParentURI element represents a temporary ID (GUID) of the item that was previously sent by the server to the client and for which the Map was not yet received by the server.
In the case of moving a child on the server that was already synced with the client to a new parent, which hasn’t been synced, the server MUST use SourceServerParentURI. In such situations the new parent has to be added before the Move can be performed. This scenario is further illustrated by the example. TBD: Make it clearer that a directory was added – otherwise example doesn’t make sense.
Example:

	<Add CmdID="12345" >
 <Item>

 <SourceServerURI>1002345/</SourceServerURI>

 <Data>

 ...

 </Data>

 </Item>

</Add>

<!-- Since this is an add from the server to the client, client will assign an id on its own to the folder added by the server. The mapping of the client’s id with server TempGUID ‘1002345’ MUST be maintained by the client till the end of Package 4 -->

<Move CmdID="1234" >

 <Meta Type="text/plain"/>

 <Item>

 <TargetServerURI>110</TargetServerURI>

 <SourceServerParentURI>1002345</SourceServerParentURI>

 </Item>

</Move>

<!-- Since server hasn’t received the mapping yet, server will use the same TempGUID ‘1002345’ when addressing the NEW Parent folder in the SourceParent of the Move Command -->

6.2.62 SourceRef

Usage: Specifies the Source referenced by a Status or Results element type

Parent Elements: Status, Results
Content Model:

	<xs:element name="SourceRef" type="xs:anyURI"/>

Restrictions:
When specified in the Status element type, specifies the source address specified in the command associated with the response status. When specified in the Results element type, specifies the source address specified in the associated Get command.

The element type MUST be specified in a Status command corresponding to any SyncML command that includes the Source element type.

Example:

	<Status CmdID="4321" MsgRef="1" CmdRef="1234" Cmd="Add">
 <TargetRef>./01234567890ABCDEF</TargetRef>
 <SourceRef>./12</SourceRef>
 <Code>200</Code>
</Status>

6.2.63 Status

Usage: Specifies the request status code for a corresponding SyncML command.

Parent Element: SyncBody
Content Model:

	<xs:element name="Status" type="StatusType"/>

<xs:complexType name="StatusType">

 <xs:sequence>

 <xs:element ref="TargetRef" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="SourceRef" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="Cred" minOccurs="0"/>

 <xs:element ref="Chal" minOccurs="0"/>

 <xs:element ref="Item" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute ref="CmdID" use="required"/>

 <xs:attribute ref="MsgRef" use="required"/>

 <xs:attribute ref="CmdRef" use="required"/>

 <xs:attribute ref="Cmd" use="required"/>

 <xs:attribute ref="Code" use="required"/>

</xs:complexType>

Restrictions:
A Status command only applies to the command corresponding to the specified CmdRef (i.e., 1:1 correspondence of a command and a Status). If there were multiple Item elements specified in the command, and if the Items’ status code were not the same, then a Status MUST be returned for each of the Items. If all of the Items had the same status code, a Status for all of the Items MAY be returned. In these cases the SourceRef and TargetRef elements are used to identify the Item, which the status code applies to. If all of the Items in the command had the same status code, then it is also allowed to return a single Status for the entire command. When returning a single Status for a command with multiple Items, the SourceRef and TargetRef elements MUST NOT be specified in the Status command.

Additionally, if the Status command is associated with a command that had other commands inside it (e.g., Sync), then the status value only applies to the corresponding command, and is not related to the status of the commands inside it.

Ordering of Status commands in a SyncML response MUST match the order of the commands in the corresponding SyncML request. That is, when there are multiple commands in a SyncML request, then the corresponding Status commands MUST appear in the SyncML response in the same order as the associated commands appeared in the SyncML request.

In addition, the status on the SyncHdr MUST be the first status element in the SyncBody of the response. Even in the case where the statuses for the previous request span multiple messages/responses, the status on SyncHdr MUST be the first status element followed by other statuses and/or remaining statuses.

The MsgRef attribute specifies the MsgID of the associated SyncML request.

The CmdRef attribute specifies the CmdID of the associated SyncML request. The attribute MUST be present. If "0", the Status command corresponds to a status code for the SyncHdr of the SyncML message referenced by the Status command.

The Cmd attribute specifies the name of the SyncML command associated with the SyncML request. The value of this attribute can also be "SyncHdr" when the CmdRef attribute has a value of "0".

The optional TargetRef element type specifies the target addresses from the associated command. If the Item elements of the command associated with the Status command have a Target element, the value MUST be copied into the TargetRef of the Status command. If more than one TargetRef element type is specified, then the request status code applies to all of these TargetRef values. If the request status code is applicable to the entire list of Items specified in the associated request command, then the TargetRef element type MUST NOT be specified.

The OPTIONAL SourceRef element type specifies the source address from the associated command. If the Item elements of the command associated with the Status command have a Source element, the value MUST be copied into the SourceRef of the Status command. If more than one SourceRef element type is specified, then the request status code applies to all of these SourceRef values. If the request status code is applicable to the entire list of Items specified in the associated request command, then the SourceRef element type MUST NOT be specified.

The Chal element type specifies the authentication challenge for the command or the message. If the status code in the Code attribute is (401) Unauthorized or (407) Authentication required, the challenge SHOULD be included. If the status code in the <Code> element is (441) Encrypted symmetry key error or (447) Encryption required, the challenge SHOULD be included.

The Code attribute specifies the request status code type.

The OPTIONAL and repeatable Item element type contains additional information about the status condition, such as the SyncML command.

This specification permits a Status command to be issued against another Status command. This case will probably not normally be encountered. However, there are extreme cases where this feature is necessary. For example, if a server returns a (401) Unauthorized status code with a request for an authentication scheme that is not supported by the client, the client might use a (406) Optional feature unsupported to notify the server that that requested authentication scheme is not supported and negotiate a authentication scheme it does support. SyncML servers and SyncML clients not supporting such a usage case need provide no further response to the SyncML entity issuing the "Status on a Status".

A Status MUST also be returned for the SyncHdr. However, if a client creates a message containing only a successful Status on a SyncHdr, the entire message MUST NOT be sent. A server MUST send this message.

Status codes are listed in Section 10, Response Status Codes.

Example:

	<SyncBody>

 <Status CmdID="8765" MsgRef="1" CmdRef="1234" Cmd="Add" Code="401">

 <TargetRef>./bruce1</TargetRef>

 <SourceRef>IMEI:001004FF1234567</SourceRef>

 </Status>

</SyncBody>

6.2.64 Sync

Usage: Specifies the SyncML command that indicates a data synchronization operation.

Parent Element: SyncBody
Content Model:

	<xs:element name="Sync" type="SyncCmdType"/>

<xs:complexType name="SyncCmdType">

 <xs:sequence>

 <xs:element ref="Cred" minOccurs="0"/>

 <xs:choice>

 <xs:element ref="TargetClientURI" minOccurs="0"/>

 <xs:element ref="TargetServerURI" minOccurs="0"/>

 </xs:choice>

 <xs:choice>

 <xs:element ref="SourceClientURI" minOccurs="0"/>

 <xs:element ref="SourceServerURI" minOccurs="0"/>

 </xs:choice>

 <xs:element ref="Meta" minOccurs="0"/>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element ref="Add"/>

 <xs:element ref="Copy"/>

 <xs:element ref="Delete"/>

 <xs:element ref="Move"/>

 <xs:element ref="Replace"/>

 </xs:choice>

 </xs:sequence>

 <xs:attribute ref="CmdID" use="required"/>

 <xs:attribute ref="MaxObjSize" use="optional"/>

 <xs:attribute ref="Atomic" use="optional"/>

 <xs:attribute ref="Sequence" use="optional"/>

 <xs:attribute ref="NumberOfChanges" use="optional"/>

 <xs:attribute ref="NoStatus" use="optional"/>

</xs:complexType>

Restrictions:

The Target element type MUST be used to specify the recipient database to be synchronized.

The Source element type MUST be used to specify the originator database to be synchronized.

Zero or more Add, Replace, Delete or Copy element types MUST be specified. There is no implied order to the processing of these commands unless the Sequence attribute is set.

If the command completed successfully, then the (200) OK exception condition is created by the command.

If the originator's authentication credentials specify a principal with insufficient rights to complete the command, then the (401) Unauthorized exception condition is created by the command. If no authentication credentials were specified, then (407) Authentication required exception condition is created by the command. A suitable challenge can also be returned.

If the originator's authentication credentials specify a principal that has had its rights to issue Sync commands denied, then the (403) Forbidden exception condition is created by this command. However, if the recipient does not want to make this fact public, then the (404) Not found exception condition can be used.

If the recipient does not allow Sync commands either on the specified database or on the network device, then the (405) Command not allowed exception condition is created by this command.

If the specified database cannot be found on the recipient network device, then the (404) Not found exception condition is created by this command.

If the recipient determines that there is a high probability that the client device data is out of sync, then the (508) Refresh required exception condition is created by this command. When this exception condition occurs, the originator of the Sync command SHOULD initiate a slow synchronization with the recipient.

Non-specific errors created by the recipient while attempting to complete the command create the (500) Command failed exception condition.

Example: The following is an example of a Sync command with authentication credentials and a single Add of a calendar entry.

	<Sync CmdID="1234">

 <Cred>

 <Meta Type="syncml:auth-md5" Format="b64"/>
 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 <Target><LocURI>./mail/bruce1</LocURI></Target>

 <Source><LocURI>./calendar</LocURI></Source>

 <Add CmdID="1246">

 <Item>

 <Source><LocURI>./12</LocURI></Source>

 <Meta Type="text/x-vCalendar"/>

 <Data>BEGIN:VCALENDAR

VERSION:1.0

BEGIN:VEVENT

DTSTART:20000531T160000Z

DTEND:20000531T160100Z

SUMMARY:Release v0.9 of specs

END:VEVENT

END:VCALENDAR

 </Data>

 </Item>

 </Add>

</Sync>

6.2.65 SyncAlert

Usage: Specifies the parameters for the sync type negotiation. Both the data sync client and server can use this element to alert the other side to initiate a specific data synchronization session.

Parent Element: SyncBody
Content Model:

	<xs:element name="SyncAlert" type="SyncAlertType"/>

<xs:complexType name="SyncAlertType">

 <xs:sequence>

 <xs:element ref="Anchor" minOccurs="0"/>

 <xs:element ref="Cred" minOccurs="0"/>

 <xs:choice>

 <xs:element ref="TargetClientURI"/>

 <xs:element ref="TargetServerURI"/>

 </xs:choice>

 <xs:choice>

 <xs:element ref="SourceClientURI"/>

 <xs:element ref="SourceServerURI"/>

 </xs:choice>

 <xs:element ref="SyncType"/>

 <xs:element ref="IDContainer" minOccurs="0"/>
 <xs:element ref="Filter" minOccurs="0"/>
 </xs:sequence>

 <xs:attribute ref="CmdID" use="required"/>

 <xs:attribute ref="MaxObjSize" use="optional"/>
<xs:attribute ref="Correlator" use="optional"/>
 <xs:attribute ref="NoStatus" use="optional"/>
</xs:complexType>

Restrictions:
The SyncType element specifies the parameters for the sync type negotiation.

The IDValidity attribute specifies if the ID is valid.

The semantics of Direction, Behaviour, IDValidity and ChangeLogValidity are described in section x.x of [DSPRO].

Editor’s Notes: Other attributes to be added later. Potential elements/attributes related to filter will be added later.

The TargetClientURI / TargetServerURI and SourceClientURI / SourceServerURI elements specify the target and source address to be synchronized. The semantics of TargetClientURI / TargetServerURI and SourceClientURI / SourceServerURI are described in section x.y of [DSPRO].

Editor’s Notes: The section number to be updated when protocol doc is ready.

The optional Filter element specifies the filter criteria.

The optional IDContainer element specifies one or more data item identifiers.
The Last and Next attributes of the optional Anchor element specify the synchronization state information for the last and current session, respectively.

If multiple target and source addresses need to be synchronized within one session, the Data Sync Client or Server MUST use SyncAlert command for each target and source pair to negotiate the sync types.

If the command and the associated action are completed successfully, then the status code ‘(200) OK’ is created by the command.
Example: The following is an example for a data sync client to initiate a normal sync from client to server only.
	<SyncAlert CmdID="1">

 <Anchor Last="234" Next="276"/>

 <Cred>

 <Meta Type="syncml:auth-sha256" Format="b64"/>

 <Data>...</Data>

 </Cred>

 <SyncType Direction="fromClient" Behavior="normal" IDValidity="true"
 ChangeLogValidity="true"/>

 <TargetServerURI>/Macy/02</TargetServerURI>

 <SourceClientURI>/Macy/02</SourceClientURI>

</SyncAlert>

6.2.66 SyncBody

Usage: Specifies the container for the body or contents of the SyncML message.

Parent Element: SyncML
Content Model:

	<xs:element name="SyncBody" type="SyncBodyType"/>

<xs:complexType name="SyncBodyType">

 <xs:sequence>

 <xs:choice maxOccurs="unbounded">

 <xs:element ref="Add"/>

 <xs:element ref="Alert"/>

 <xs:element ref="Copy"/>

 <xs:element ref="Delete"/>

 <xs:element ref="Get"/>

 <xs:element ref="Map"/>

 <xs:element ref="Move"/>

 <xs:element ref="Put"/>

 <xs:element ref="Replace"/>

 <xs:element ref="Results"/>

 <xs:element ref="Status"/>

 <xs:element ref="Sync"/>

 <xs:element ref="SyncAlert"/>

 </xs:choice>

 <xs:element ref="Final" minOccurs="0"/>

 </xs:sequence>

</xs:complexType>

Restrictions:
None.
Example:

	<SyncML xmlns=’SYNCML:SYNCML2.0’>

 <SyncHdr Version="2.0" SessionID="1" MsgID="1">

 <Target><LocURI>IMEI:001004FF1234567</LocURI></Target>

 <Source>

 <LocURI>http://www.datasync.org/servlet/syncit</LocURI>

 </Source>

 <Cred AuthName="Bruce">

 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 </SyncHdr>

 <SyncBody>

 <Get CmdID="1234">

 <Item>

 <Target><LocURI>./devinf20</LocURI></Target>

 </Item>

 </Get>

 </SyncBody>

</SyncML>

6.2.67 SyncHdr

Usage: Specifies the container for the provisioning, routing information in the SyncML message.

Parent Element: SyncML
Content Model:

	<xs:element name="SyncHdr" type="SyncHdrType"/>

<xs:complexType name="SyncHdrType">

 <xs:sequence>

 <xs:choice>

 <xs:element ref="TargetClientURI"/>

 <xs:element ref="TargetServerURI"/>

 </xs:choice>

 <xs:choice>

 <xs:element ref="SourceClientURI"/>

 <xs:element ref="SourceServerURI"/>

 </xs:choice>

 <xs:element ref="RespURI" minOccurs="0"/>

 <xs:element ref="Cred" minOccurs="0"/>

 <xs:element ref="Chal" minOccurs="0"/>

 <xs:element ref="EncryptedKey" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute ref="Version" use="required"/>

 <xs:attribute ref="SessionID" use="required"/>

 <xs:attribute ref="MsgID" use="required"/>

 <xs:attribute ref="MaxMsgSize" use="optional"/>

 <xs:attribute ref="NoStatus" use="optional"/>

</xs:complexType>

Restrictions:
The OPTIONAL MaxMsgSize attribute is used to convey the maximum byte size of a SyncML response.

Example:

	<SyncML xmlns=’SYNCML:SYNCML2.0’>

 <SyncHdr Version="2.0" SessionID="1" MsgID="1">

 <TargetServerURI>
 http://www.datasync.org/servlet/syncit
 </TargetServerURI>

 <SourceClientURI>IMEI:001004FF1234567</SourceClientURI>

 </SyncHdr>

 <SyncBody>

 ...blah, blah...

 </SyncBody>

</SyncML>

6.2.68 SyncML

Usage: Specifies the container for a SyncML Message.

Parent Elements: None. This is the root or document element.
Content Model:

	<xs:element name="SyncML">
 <xs:annotation>

 <xs:documentation>Root</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="SyncHdr"/>

 <xs:element ref="SyncBody"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Attributes:

	Name
	Type
	Occurrence
	Description

	xmlns
	CDATA
	REQUIRED
	Value MUST be the text: ‘SYNCML:SYNCML2.0’

Restrictions:
Within transports that support MIME content-type identification, this object MUST be identified as application/vnd.syncml+xml (for clear-text, XML representation) or application/vnd.syncml+wbxml (for binary, WBXML representation).

Example:
	<SyncML xmlns=’SYNCML:SYNCML2.0’>

 <SyncHdr Version="2.0" SessionID="1" MsgID="1">

 <Target>

 <LocURI>http://www.datasync.org/servlet/syncit</LocURI>

 </Target>

 <Source>

 <LocURI>IMEI:001004FF1234567</LocURI>

 </Source>

 </SyncHdr>

 <SyncBody>

 ...blah, blah...

 </SyncBody>

</SyncML>

6.2.69 SyncType

Usage: Specifies the parameters for the sync type negotiation.
Parent Element: SyncAlert

Content Model:

	<xs:element name="SyncType" type="SyncTypeType"/>

<xs:complexType name="SyncTypeType" >

 <xs:attribute ref="Direction" use="required" />

 <xs:attribute ref="Behaviour" use="required"/>

 <xs:attribute ref="IDValidity" use="required"/>

 <xs:attribute ref="ChangeLogValidity" use="required"/>

</xs:complexType>

Restrictions:
The ‘SyncType’ element specifies the parameters for the sync type negotiation.

6.2.70 TargetClientURI
Usage: Specifies target routing or mapping information by server identifier.

Parent Elements: Item, Sync, SyncHdr
Content Model:

	<xs:element name="TargetClientURI" type=" xs:anyURI"/>

NOTE: Still need to add filter to SyncAlert

<xs:complexType name="TargetType">

 <xs:sequence>

 <xs:element ref="LocURI"/>

 <xs:element ref="Filter" minOccurs="0"/>

 </xs:sequence>

</xs:complexType>

Restrictions:
When specified in the Item element type, the TargetClientURI element type specifies the server identifier for the item that is the target of the SyncML command.

When specified in the SyncHdr element type, the TargetClientURI element type specifies the target routing information for the client device that is receiving the SyncML Message. This MUST be specified by the server of the session, and MUST NOT be specified by the client of the session.
TBD: The Filter element type can only be specified when the Target/Item element type is specified within a SyncAlert element.
When specified in the Sync element type, the TargetClientURI element type specifies the source routing information of the database receiving the data synchronization request.

6.2.71 TargetClientParentURI
Usage Specifies the server’s parent information of the current Item. This may be in the form of a path [More details after input 34 resolved] or the actual Client unique identifier. TBD: NOTE: Match Hiearchy examples.
Parent Element: Item
Content Model:

	<xs:element name="TargetClientParentURI" type="xs:anyURI"/>

Restrictions:

TargetClientParentURI provides parent information of the child that is the current Item of sync commands such as Add, Move and Replace. TargetClientParentURI MUST be specified in Add, Replace and Move, if and only if the objects have hierarchical nature, i.e. have a parent and child relation, and the client side ID of the parent is known. TargetClientParentURI has meaning only when synchronizing objects with hierarchical structure.

In case the parent container is a root then the value of the TargetClientParentURI MUST be indicated by ‘/’, without the quotes.

TargetClientParentURI element always represents a LUID, i.e. the ID of client that was previously sent by the client using Map operation. TBD: TargetClientParentURI MUST be used by servers only.
Example: the server requests the client to move the item having the LUID ‘110’.

	<Move CmdID="1234" >
 <Cred>
 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>
 </Cred>
 <Meta Type="text/plain"/>

 <Item>
 <TargetClientURI>110</TargetClientURI>
 <TargetClientParentURI>1234</TargetClientParentURI>
 </Item>
</Move>

6.2.72 TargetServerURI
Usage: Specifies target routing or mapping information by server identifier.

Parent Elements: Item, Map, MapItem, Sync, SyncHdr
Content Model:

	<xs:element name="TargetServerURI" type="xs:anyURI"/>

Restrictions:
When specified in the Item element type, the Target element type specifies the server database item that is the target of the SyncML command.

When specified in the SyncHdr element type, the TargetServerURI element type specifies the target routing information for the network device that recieves the SyncML Message. This MUST be specified by the client of the session, and MUST NOT be specified by the server of the session.

TBD: The Filter element type can only be specified when the Target/Item element type is specified within a SyncAlert element.
When specified in the Map element type, the TargetServerURI element type specifies the server routing information of the database that is to maintain the map definition.

When specified in the MapItem element type, the TargetServerURI element type specifies the server identifier of the item.

When specified in the Sync element type, the TargetServerURI element type specifies the source routing information of the server database receiving the data synchronization request.

Example: The following is an example of the usage in a Map and MapItem element type sent from the client.

	<Map CmdID="3456" >

 <TargetServerURI>

 http://www.datasync.org/servlet/syncit?USER=jsmith

 </TargetServerURI>

 <SourceClientURI>./tables</SourceClientURI>

 <MapItem>

 <TargetServerURI>./0123456789ABCDEF</TargetServerURI>

 <SourceClientURI>./12</SourceClientURI>

 </MapItem>

</Map>

6.2.73 TargetServerParentURI
Usage Specifies the parent information of the current Item. This may be in the form of a path [More details] or the actual Server unique identifier. TBD: NOTE: Match Hiearchy examples.

Parent Element: Item
Content Model:

	<xs:element name="TargetServerParentURI" type="xs:anyURI"/>

Restrictions:

TargetServerParentURI provides parent information of the current Item of sync commands such as Add, Move and Replace. TargetServerParentURI MUST be specified in Add, Replace and Move, if and only if the objects have hierarchical nature, i.e. have a parent and child relation, and the client identifier is not known. TargetServerParentURI has meaning only when synchronizing objects with hierarchical structure.

In case the parent container is a root then the value of the TargetServerParentURI MUST be indicated by ‘/’, without the quotes.

TargetServerParentURI element always represents a GUID: TBD: LUID, i.e. the ID of client that was previously sent by the client using Map operation. TargetParentURI MUST be used by servers only.
Example: the server requests the client to move the item having the LUID ‘110’.

	<Move CmdID="1234" >

 <Cred>

 <Meta Type="syncml:auth-md5" Format="b64"/>

 <Data>Zz6EivR3yeaaENcRN6lpAQ==</Data>

 </Cred>

 <Meta Type="text/plain"/>

 <Item>

 <Target><LocURI>110</LocURI></Target>

 <TargetServerParentURI>1234</TargetServerParentURI>

 </Item>

</Move>

6.2.74 TargetRef

Usage: Specifies the Target referenced by a Status or Results element type

Parent Elements: Status, Results
Content Model:

	<xs:element name="TargetRef" type="xs:anyURI"/>

Restrictions:
When specified in the Status element type, specifies the target address specified in the command associated with the response status. When specified in the Results element type, specifies the target address specified in the associated Get command.

The element type MUST be specified in a Status command corresponding to any SyncML command that includes the Target element type.
Example:

	<Status CmdID="4321" MsgRef="1" CmdRef="1234" Cmd="Add">
 <TargetRef>./01234567890ABCDEF</TargetRef>
 <SourceRef>./12</SourceRef>
 <Code>200</Code>
</Status>

6.2.75 Type

Usage: Specifies the media type of the content information in the Data element.

Parent Element: Meta
Restrictions:
If this attribute is missing, then the default content-type is text/plain. The content information for this attribute SHOULD BE a registered MIME content-type. Alternatively, a URN can be used to specify the media type. In case a Meta element containing a Type attribute contains meta-information about a Data object, this Meta element MUST have the same parent as the Data object it refers to.

Content Model:

	<xs:attribute name="Type" type="xs:string"/>

Example: The following example illustrates how this attribute is used within a SyncML message to specify meta-information about the media type of the content information in the Item element type.

	<Item>

 <Target><LocURI>3</LocURI></Target>

 <Meta Format="chr" Type="text/directory;profile=vCard" />

 <Data>BEGIN:VCARD

VERSION:3.0

FN:Jim Smith

N:Smith;Jim

TEL;TYPE=WORK,VOICE,FAX:+1-919-555-1234 EMAIL;TYPE=INTERNET,WORK:Jim_Smith@mail.host.com

END:VCARD

 </Data>

</Item>

6.2.76 Version
Usage: Specifies the major and minor version identifier of the DS Syntax protocol specification used to represent the SyncML message.

Parent Element: SyncHdr
Content Model:

	<xs:attribute name="Version" type="xs:string"/>

Restrictions:
The first SyncML Message in each SyncML Package sent from an originator to a recipient MUST include the Version attribute in the SyncHdr.
Major revisions of the specification create incompatible changes that will generally require a new SyncML parser. Minor revisions involve changes that do not impact basic compatibility of the parser. When the XML document conforms to this revision of the OMA DS Syntax specification the value MUST be 2.0.

Example:

	<SyncHdr Version="2.0" SessionID="1" MsgID="1" >
 <Target>
 <LocURI>IMEI:001004FF1234567</LocURI>
 </Target>
 <Source>
 <LocURI>http://www.datasync.org/servlet/syncit/bruce1</LocURI>
 </Source>
</SyncHdr>

7. XML Schema
Please refer to the Syntax Schema specification.

8. WBXML Definition

The following tables define the token assignments for the mapping of the SyncML related Schemas and element types into WBXML as defined by [WBXML].

8.1 Code Space Definitions

This version of the SyncML representation protocol specification maps all the SyncML related Schemas into WBXML code spaces.

	DTD Name
	WBXML PUBLICID Token (Hex Value)
	Formal Public Identifier

	SyncML
	FD1
	-//SYNCML//DTD SyncML 1.0//EN

	SyncML 1.1
	FD3
	-//SYNCML//DTD SyncML 1.1//EN

	SyncML 1.2
	0x1201
	-//SYNCML//DTD SyncML 1.2//EN

	SyncML 2.0
	TBD
	TBD

Table 9: Code Space Definitions
The SyncML Schema is assigned the WBXML document public identifier (i.e., the "publicid" WBXML BNF production) associated with the TBD
token.

8.2 Code Page Definitions

The following code page tokens represent SyncML related public identifiers. This version of the SyncML representation protocol specification utilizes the WBXML code page tokens for identifying DTDs or schemas.

	DTD Name
	WBXML Code Page Token (Hex Value)
	Formal Public Identifier

	SyncML
	00
	-//SYNCML//DTD SyncML 1.2//EN

	MetInf
	01
	-//SYNCML//DTD MetInf 1.2//EN

	Reserved for DM usage
	02
	Reserved for DM usage

Table 10: Code Page Definitions

8.3 Token Definitions

The following WBXML token codes represent element types (i.e., tags) form code page x00 (zero), SyncML Schema.

	Element Type Name
	WBXML Tag Token (Hex Value)

	Add
	05

	Alert
	06

	
	07

	Atomic
	08

	Chal
	09

	Cmd
	0A

	CmdID
	0B

	CmdRef
	0C

	Copy
	0D

	Cred
	0E

	Data
	0F

	Delete
	10

	SyncAlert
	11

	Final
	12

	Get
	13

	Item
	14

	Lang
	15

	
	16

	LocURI
	17

	Map
	18

	MapItem
	19

	Meta
	1A

	MsgID
	1B

	MsgRef
	1C

	NoStatus
	1D

	
	1E

	Put
	1F

	Replace
	20

	RespURI
	21

	Results
	22

	
	23

	Sequence
	24

	SessionID
	25

	SftDel
	26

	Source
	27

	SourceRef
	28

	Status
	29

	Sync
	2A

	SyncBody
	2B

	SyncHdr
	2C

	SyncML
	2D

	Target
	2E

	TargetRef
	2F

	Reserved for future use.
	30

	Version
	31

	
	32

	NumberOfChanges
	33

	MoreData
	34

	Field
	35

	Filter
	36

	Record
	37

	FilterType
	38

	SourceParent
	39

	TargetParent
	3A

	Move
	3B

	Correlator
	3C

Table 11: Token Definitions
The WBXML token codes from code page x01 (one) represent the MetInf DTD. These token definitions are defined in the MetInf DTD specification[xxx].

Editor’s Notes: [xxx] must be replaced by the correct reference
9. Common URI Scheme Types

The following is a list of common URI scheme types

	URI Scheme Type
	Description

	FTP
	File Transfer Protocol

	HTTP
	Hypertext Transfer Protocol

	IMEI
	International Mobile Equipment Identifier

	LDAP
	Lightweight Directory Access Protocol

	OBEX
	IrDA Object Exchange Protocol

	SYNCML
	SyncML specific, as defined in one of the protocol or format specifications

	WSP
	Wireless Session Protocol

	ESN
	Electronic Serial Number

	MEID
	Mobile Equipment Identity

Table 12: Common URI Scheme Types

10. Alert Types

The alert types in SyncML are a numeric text value. The types are divided into two classes, User Alert, that are intended to be conveyed to the recipient's user agent, and Application Alert, that are intended to be conveyed to a target application on the recipient. The only valid values are the standard values defined in this specification.
Implementations that desire to add to these values SHOULD submit a change request to mailto:technical-comments@openmobilealliance.org

	Alert Code Value
	Name
	Description

	Alert Codes used for user alerts

	100
	DISPLAY
	Show. The Data element type contains content information that SHOULD be processed and displayed through the user agent.

	101-150
	-
	Reserved for future SyncML usage.

	Special Alert Codes

	211
	END SESSION
	Specifies a request to end the session.

	212
	ALERT POLL
	Specifies a request to poll.

	213
	ALERT IDLE
	Specifies a request to idle.

	214-220
	-
	Reserved for future SyncML usage.

	221
	RESULT ALERT
	Specifies a request for synchronization results.

	222
	NEXT MESSAGE
	Specifies a request for the next message in the package.

	223
	NO END OF DATA
	End of Data for chunked object not received.

	224
	SUSPEND
	Suspend synchronization session.

	225
	RESUME
	Resume synchronization session.

	226-250
	-
	Reserved for future SyncML usage.

Table 13: Alert Types

11. Response Status Codes

The response status codes in SyncML are a numeric text value. The codes are divided into five classes. The only valid values are the standard values defined in this specification.

Implementations that desire to add to these values SHOULD submit a change request to mailto:technical-comments@openmobilealliance.org.

	Status Codes
	Reason Phrase

	Informational 1xx

	101
	In progress. The specified SyncML command is being carried out, but has not yet completed.

	Successful 2xx

	200
	OK. The SyncML command completed successfully.

	201
	Item added. The requested item was added.

	202
	Accepted for processing. The request to alert a user or application was successfully performed.

	203
	Non-authoritative response. The request is being responded to by an entity other than the one targeted. The response is only to be returned when the request would have been resulted in a 200 response code from the authoritative target.

	204
	No content. The request was successfully completed but no data is being returned. The response code is also returned in response to a Get when the target has no content.

	205
	Reset content. The source SHOULD update their content. The originator of the request is being told that their content SHOULD be synchronized to get an up to date version.

	206
	Partial content. The response indicates that only part of the command was completed. If the remainder of the command can be completed later, then when completed another appropriate completion request status code SHOULD be created.

	207
	Conflict resolved with merge. The response indicates that the request created a conflict; which was resolved with a merge of the client and server instances of the data. The response includes both the Target and Source URLs in the Item of the Status. In addition, a Replace command is returned with the merged data.

	208
	Conflict resolved with client’s command "winning". The response indicates that there was an update conflict; which was resolved by the client command winning.

	209
	Conflict resolved with duplicate. The response indicates that the request created an update conflict; which was resolved with a duplication of the client’s data being created in the server database. The response includes both the target URI of the duplicate in the Item of the Status. In addition, in the case of a two-way synchronization, an Add command is returned with the duplicate data definition.

	210
	Delete without archive. The response indicates that the requested data was successfully deleted, but that it was not archived prior to deletion because this feature was not supported by the implementation.

	211
	Item not deleted. The requested item was not found. It could have been previously deleted.

	212
	Authentication accepted. No further authentication is needed for the remainder of the synchronization session. This response code can only be used in response to a request in which the credentials were provided.

	213
	Chunked item accepted and buffered.

	214
	Operation cancelled. The SyncML command completed successfully, but no more commands will be processed within the session.

	215
	Not executed. A command was not executed, as a result of user interaction and user chose not to accept the choice.

	216
	Atomic roll back OK. A command was inside Atomic element and Atomic failed. This command was rolled back successfully.

	Redirection 3xx

	300
	Multiple choices. The requested target is one of a number of multiple alternatives requested target. The alternative SHOULD also be returned in the Item element type in the Status.

	301
	Moved permanently. The requested target has a new URI. The new URI SHOULD also be returned in the Item element type in the Status.

	302
	Found. The requested target has temporarily moved to a different URI. The original URI SHOULD continue to be used. The URI of the temporary location SHOULD also be returned in the Item element type in the Status. The requestor SHOULD confirm the identity and authority of the temporary URI to act on behalf of the original target URI.

	303
	See other. The requested target can be found at another URI. The other URI SHOULD be returned in the Item element type in the Status.

	304
	Not modified. The requested SyncML command was not executed on the target. This is an additional response that can be added to any of the other Redirection response codes.

	305
	Use proxy. The requested target MUST be accessed through the specified proxy URI. The proxy URI SHOULD also be returned in the Item element type in the Status.

	Originator Exceptions 4xx

	400
	Bad request. The requested command could not be performed because of malformed syntax in the command. The malformed command MAY also be returned in the Item element type in the Status.

	401
	Invalid credentials. The requested command failed because the requestor MUST provide proper authentication. If the property type of authentication was presented in the original request, then the response code indicates that the requested command has been refused for those credentials.

	402
	Paymentneeded. The requested command failed because proper payment isneeded. This version of SyncML does not standardize the payment mechanism.

	403
	Forbidden. The requested command failed, but the recipient understood the requested command. Authentication will not help and the request SHOULD NOT be repeated. If the recipient wishes to make public why the request was denied, then a description MAY be specified in the Item element type in the Status. If the recipient does not wish to make public why the request was denied then the response code 404 MAY be used instead.

	404
	Not found. The requested target was not found. No indication is given as to whether this is a temporary or permanent condition. The response code 410 SHOULD be used when the condition is permanent and the recipient wishes to make this fact public. This response code is also used when the recipient does not want to make public the reason for why a requested command is not allowed or when no other response code is appropriate.

	405
	Command not allowed. The requested command is not allowed on the target. The recipient SHOULD return the allowed command for the target in the Item element type in the Status.

	406
	Optional feature not supported. The requested command failed because an OPTIONAL feature in the request was not supported. The unsupported feature SHOULD be specified by the Item element type in the Status.

	407
	Missing credentials. This response code is similar to 401 except that the response code indicates that the originator MUST first authenticate with the recipient. The recipient SHOULD also return the suitable challenge in the Chal element type in the Status.

	408
	Request timeout. An expected message was not received within the REQUIRED period of time. The request can be repeated at another time. The RespURI can be used to specify the URI and optionally the date/time after which the originator can repeat the request. See RespURI for details.

	409
	Conflict. The requested failed because of an update conflict between the client and server versions of the data. Setting of the conflict resolution policy is outside the scope of this version of SyncML. However, identification of conflict resolution performed, if any, is within the scope.

	410
	Gone. The requested target is no longer on the recipient and no forwarding URI is known.

	411
	SizeREQUIRED. The requested command MUST be accompanied by byte size or length information in the Meta element type.

	412
	Incomplete command. The requested command failed on the recipient because it was incomplete or incorrectly formed. The recipient SHOULD specify the portion of the command that was incomplete or incorrect in the Item element type in the Status.

	413
	Request entity too large. The recipient is refusing to perform the requested command because the requested item is larger than the recipient is able or willing to process. If the condition is temporary, the recipient SHOULD also include a Status with the response code 418 and specify a RespURI with the response URI and optionally the date/time that the command SHOULD be repeated.

	414
	URI too long. The requested command failed because the target URI is too long for what the recipient is able or willing to process. This response code is seldom encountered, but is used when a recipient perceives that an intruder might be attempting to exploit security holes or other defects in order to threaten the recipient.

	415
	Unsupported media type or format. The unsupported content type or format SHOULD also be identified in the Item element type in the Status.

	416
	Requested size too big. The request failed because the specified byte size in the request was too big.

	417
	Retry later. The request failed at this time and the originator SHOULD retry the request later. The recipient SHOULD specify a RespURI with the response URI and the date/time that the command SHOULD be repeated.

	418
	Already exists. The requested Put or Add command failed because the target already exists.

	419
	Conflict resolved with server data. The response indicates that the client request created a conflict; which was resolved by the server command winning. The normal information in the Status SHOULD be sufficient for the client to "undo" the resolution, if it is desired.

	420
	Device full. The response indicates that the recipient has no more storage space for the remaining synchronization data. The response includes the remaining number of data that could not be returned to the originator in the Item of the Status.

	421
	Unknown filtering grammar. The requested command failed on the server because the specified filtering grammar was not known. The client SHOULD re-specify the filtering using a known filtering grammar.

	422
	Bad CGI Script. The requested command failed on the server because the CGI scripting in the LocURI was incorrectly formed. The client SHOULD re-specify the portion of the command that was incorrect in the Item element type in the Status.

	423
	Soft-delete conflict. The requested command failed because the "Soft Deleted" item was previously "Hard Deleted" on the server.

	424
	Size mismatch. The chunked object was received, but the size of the received object did not match the size declared within the first chunk.

	425
	Permission Denied. The requested command failed because the sender does not have adequate access control permissions (ACL) on the recipient.

	426
	Partial item not accepted. Receiver of status code MAY resend the whole item in next package.

	427
	Item Not empty. Parent cannot be deleted since it contains children.

	428
	Move Failed

	4xx
	Key Exchange Algorithm not supported. The requested command failed because the recipient does not support the Key Exchange Algorithm. The recipient should return the suitable challenge in the <EncryptionChal> element within the <Status> element.

	4xx
	Data Encryption Algorithm not supported. The requested command failed because the recipient does not support the Data Encryption Algorithm. The recipient should return the suitable challenge in the <EncryptionChal> element within the <Status> element.

	4xx
	Key Length not supported. The requested command failed because the recipient does not support the Symmetric Key Length. The recipient should return the suitable challenge in the <EncryptionChal> element within the <Status> element.

	Recipient Exception 5xx

	500
	Command failed. The recipient encountered an unexpected condition which prevented it from fulfilling the request

	501
	Command not implemented. The recipient does not support the command REQUIRED to fulfill the request. This is the appropriate response when the recipient does not recognize the requested command and is not capable of supporting it for any resource.

	502
	Bad gateway. The recipient, while acting as a gateway or proxy, received an invalid response from the upstream recipient it accessed in attempting to fulfill the request.

	503
	Service unavailable. The recipient is currently unable to handle the request due to a temporary overloading or maintenance of the recipient. The implication is that this is a temporary condition; which will be alleviated after some delay. The recipient SHOULD specify the URI and date/time after which the originator SHOULD retry in the RespURI in the response.

	504
	Gateway timeout. The recipient, while acting as a gateway or proxy, did not receive a timely response from the upstream recipient specified by the URI (e.g. HTTP, FTP, LDAP) or some other auxiliary recipient (e.g. DNS) it needed to access in attempting to complete the request.

	505
	DTD Version not supported. The recipient does not support or refuses to support the specified version of SyncML DTD used in the request SyncML Message. The recipient MUST include the versions it does support in the Item element type in the Status.

	506
	Processing error. An application error occurred while processing the request. The originator SHOULD retry the request. The RespURI can contain the URI and date/time after which the originator can retry the request.

	507
	Atomic failed. The error caused all SyncML commands within an Atomic element type to fail.

	508
	RefreshREQUIRED. An error occurred that necessitates a refresh of the current synchronization state of the client with the server. Client is requested to initiate a slow sync with the server.

	509
	Reserved for future use.

	510
	Data store failure. An error occurred while processing the request. The error is related to a failure in the recipient data store.

	511
	Server failure. A severe error occurred in the server while processing the request. The originator SHOULD NOT retry the request.

	512
	Synchronization failed. An application error occurred during the synchronization session. The originator SHOULD restart the synchronization session from the beginning.

	513
	Protocol Version not supported. The recipient does not support or refuses to support the specified version of the SyncML Synchronization Protocol used in the request SyncML Message. The recipient MUST include the versions it does support in the Item element type in the Status.

	514
	Operation cancelled. The SyncML command was not completed successfully, since the operation was already cancelled before processing the command. The originator SHOULD repeat the command in the next session.

	516
	Atomic roll back failed. Command was inside Atomic element and Atomic failed. This command was not rolled back successfully. Server SHOULD take action to try to recover client back into original state.

	517
	Atomic response too large to fit. The response to an atomic command was too large to fit in a single message.

Table 14: Response Status Codes
Editor’s Note: The number of status codes to be assigned later.

12. Base Media and Content formats

	Content
	MIME Content Type
	URI
	Content Format

	Contact
	text/x-vcard
	http://imc.org/pdi/vcard-21.doc
	vCard 2.1

	
	text/vcard
	http://www.ietf.org/rfc/rfc2426.txt
	vCard 3.0

	Calendar
	text/x-vcalendar
	http://www.imc.org/pdi/vcal-10.doc
	vCalendar 1.0

	
	text/calendar
	http://www.ietf.org/rfc/rfc2445.txt
	iCalendar 2.0

	Memos
	text/plain
	http://www.ietf.org/rfc/rfc2046.txt
	

	Tasks
	text/x-vcalendar
	http://www.imc.org/pdi/vcal-10.doc,
	vCalendar 1.0

	
	text/calendar
	http://www.ietf.org/rfc/rfc2445.txt
	iCalendar 2.0

	Email
	message/rfc822
	http://www.ietf.org/rfc.html

	RFC822

	
	
	
	RFC2822

	
	
	
	RFC2045

	
	application/vnd.omads-email
	http://www.openmobilealliance.org/
	XML object

	File
	application/vnd.omads-file
	http://www.openmobilealliance.org/
	XML object

	Folder
	application/vnd.omads-folder
	http://www.openmobilealliance.org/
	XML object

 Table 15: Base Media and Content formats
13. MIME Media Type Registration

The following section is the MIME media type registrations for OMA Data Synchronization specific MIME media types.

13.1 application/vnd.syncml+xml

To: ietf-types@iana.org

Subject: Registration of MIME media type application/vnd.syncml+xml

MIME media type name: application

MIME subtype name: vnd.syncml+xml

REQUIED parameters: None

OPTIONAL parameters: charset, synctype, verproto, verdtd. May be specified in any order in the Content-Type MIME header field.

Content-Type MIME header.

charset Parameter

Purpose: Specifies the character set used to represent the SyncML document. The default character set for SyncML representation protocol is UTF-8, as defined in [RFC2279].

Formal Specification: The following ABNF defines the syntax for the parameter.

chrset-param = ";" "charset" "=" <any IANA registered charset identifier>

synctype Parameter

Purpose: Specifies the data synchronization protocol used by the SyncML document. If present, the value MUST be the same value as that specified by the "SyncType" element type in the SyncML MIME content information. There is no default value.

Formal Specification: The following ABNF defines the syntax for the parameter.

stype-param = ";" "synctype" "=" text

verproto Parameter

Purpose: Specifies the major/minor revision identifiers for the SyncML synchronization protocol specification for the workflow of messages with SyncML MIME content. If present, MUST be the same value as that specified by the "VerProto" element type in the SyncML MIME content information. If not present, the default value "1.2" is to be assumed.

Formal Specification: The following ABNF defines the syntax for the parameter.

verprot-param = ";" "verproto" "=" 1*numeric "." 1*numeric

text = 1*ALPHA

numeric = "0" / "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8"/ "9"

verdtd Parameter

Purpose: Specifies the major/minor revision identifiers for the SyncML representation protocol specification that defines the SyncML MIME media type. If present, MUST be the same value as that specified by the "VerDTD" element type in the SyncML MIME content information. If not present, the default value "1.2" is to be assumed.

Formal Specification: The following ABNF defines the syntax for the parameter.

verdtd-param = ";" "verdtd" "=" 1*numeric "." 1*numeric

text = 1*ALPHA

numeric = "0" / "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8"/ "9"

Encoding considerations: The default character set for the SyncML MIME content type is UTF-8. Transfer of this character set through some MIME systems could require that the content is first character encoded into a 7bit character set with an IETF character encoding mechanism such as Base64, as defined in [RFC2045]
 Security considerations:

Authentication: The SyncML MIME content type definition provides for the inclusion of authentication information for the purpose of authenticating the originator and recipient of messages containing the data synchronization content type. The content type definition supports Basic, Base64 userid/password mark-up, MD5 digest challenge and response strings and any other registered authentication credential scheme.

Threats: The SyncML MIME content type definition provides for the inclusion of remote execution commands. Administrators for MIME implementations that support this content type SHOULD take every standard precaution to assure the activation of the originator of SyncML content, as well as take every standard precaution to confirm the validity of the included remote execution command prior to allowing the command to be executed on the targeted recipient's system.

Interoperability considerations: Implementations that have support for the mandatory features of this content type will greatly increase the chances of interoperating with other implementations supporting this content type. Conformance to this content type requires an implementation to support every mandatory feature.
Published specification: URL:http://www.openmobilealliance.org/tech/docs
Applications, which use this media type: This MIME content type is intended for common use by networked data synchronization applications.

Additional information:

Magic number(s): None

File extension(s): XSM

Macintosh File Type Code(s): XSML

Person & email address to contact for further information: admins@syncml.org

Intended usage: COMMON
Author/Change controller: mailto:technical-comments@openmobilealliance.org
13.2 application/vnd.syncml+wbxml

To: ietf-types@iana.org

Subject: Registration of MIME media type application/vnd.syncml+wbxml

MIME media type name: application

MIME subtype name: vnd.syncml+wbxml

REQUIRED parameters: None

OPTIONAL parameters: charset, synctype, verproto, verdtd. May be specified in any order in the Content-Type MIME header field.

Content-Type MIME header.

charset Parameter

Purpose: Specifies the character set used to represent the SyncML document. The default character set for SyncML representation protocol is UTF-8, as defined [RFC2279].

Formal Specification: The following ABNF defines the syntax for the parameter.

chrset-param = ";" "charset" "=" <any IANA registered charset identifier>

synctype Parameter

Purpose: Specifies the data synchronization protocol used by the SyncML document. If present, the value MUST be the same value as that specified by the "SyncType" element type in the SyncML MIME content information. There is no default value.

Formal Specification: The following ABNF defines the syntax for the parameter.

stype-param = ";" "synctype" "=" text

verproto Parameter

Purpose: Specifies the major/minor revision identifiers for the SyncML synchronization protocol specification for the workflow of messages with SyncML MIME content. If present, MUST be the same value as that specified by the "VerProto" element type in the SyncML MIME content information. If not present, the default value "1.2" is to be assumed.

Formal Specification: The following ABNF defines the syntax for the parameter.

verprot-param = ";" "verproto" "=" 1*numeric "." 1*numeric

text = 1*ALPHA

numeric = "0" / "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8"/ "9"

verdtd Parameter

Purpose: Specifies the major/minor revision identifiers for the SyncML representation protocol specification that defines the SyncML MIME media type. If present, MUST be the same value as that specified by the "VerDTD" element type in the SyncML MIME content information. If not present, the default value "1.2" is to be assumed.

Formal Specification: The following ABNF defines the syntax for the parameter.

verdtd-param = ";" "verdtd" "=" 1*numeric "." 1*numeric

text = 1*ALPHA

numeric = "0" / "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8"/ "9"

Encoding considerations: The default character set for the SyncML MIME content type is UTF-8. Transfer of this character set through some MIME systems could require that the content is first character encoded into a 7bit character set with an IETF character encoding mechanism such as Base64, as defined in [RFC2045].

Security considerations:

Authentication: The SyncML MIME content type definition provides for the inclusion of authentication information for the purpose of authenticating the originator and recipient of messages containing the data synchronization content type. The content type definition supports Basic, Base64 userid/password mark-up, MD5 digest challenge and response strings and any other registered authentication credential scheme.

Threats: The SyncML MIME content type definition provides for the inclusion of remote execution commands. Administrators for MIME implementations that support this content type SHOULD take every standard precaution to assure the authentication of the originator of SyncML content, as well as take every standard precaution to confirm the validity of the included remote execution command prior to allowing the command to be executed on the targeted recipient's system.

Interoperability considerations: Implementations that have support for the mandatory features of this content type will greatly increase the chances of interoperating with other implementations supporting this content type. Conformance to this content type requires an implementation to support every mandatory feature.

Published specification: http://www.syncml.org/docs/syncml_sync_represent_v111_20021002.pdf

Applications, which use this media type: This MIME content type is intended for common use by networked data synchronization applications.

Additional information:

Magic number(s): None

File extension(s): BSM

Macintosh File Type Code(s): BSML

Person & email address to contact for further information: admins@syncml.org

Intended usage: COMMON

Author/Change controller: mailto:technical-comments@openmobilealliance.org
Appendix A. [SYNTAX] Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in 错误！未找到引用源。.
Further static conformance requirements for the usage of this specification are specified in [DSPRO].

A.1 Client Features

A.1.1 Security

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-SEC-C-001
	Support Basic and MD5
	
	M
	

	DS-Syntax-SEC-C-002
	Support optional authentication types
	
	O
	

Table 16: Client Features - Security
A.1.2 XML Usage

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-XML-C-001
	Support namespace usage
	5.3
	M
	

Table 17: Client Features - XML Usage
A.1.3 MIME Usage

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-MIME-C-001
	Support MIME content types
	5.4
	M
	

Table 18: Client Features - MIME Usage
A.1.4 Identifiers

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-IDS-C-001
	Support URI, URN, textual names
	5.5
	M
	

Table 19: Client Features - Identifiers
A.1.5 Common Use Elements

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-CUE-C-001
	
	
	
	

	DS-Syntax-CUE-C-002
	Support Chal
	6.2.2
	O
	DS-Syntax-DDE-C-003

	DS-Syntax-CUE-C-003
	Support Cmd
	6.2.8
	O
	

	DS-Syntax-CUE-C-004
	Support CmdID
	6.2.10
	O
	

	DS-Syntax-CUE-C-005
	Support CmdRef
	6.2.11
	O
	

	DS-Syntax-CUE-C-006
	Support Cred
	6.2.12
	O
	DS-Syntax-DDE-C-001

	DS-Syntax-CUE-C-007
	Support Field
	6.2.17
	O
	

	DS-Syntax-CUE-C-008
	Support Filter
	0
	O
	DS-Syntax-DDE-C-003

	DS-Syntax-CUE-C-009
	Support Filter Type
	
	O
	

	DS-Syntax-CUE-C-010
	Support Final
	6.2.27
	O
	

	DS-Syntax-CUE-C-011
	
	
	
	

	DS-Syntax-CUE-C-013
	Support LocURI
	错误！未找到引用源。
	O
	

	DS-Syntax-CUE-C-014
	Support MoreData
	6.2.40
	O
	

	DS-Syntax-CUE-C-015
	Support MsgID
	6.2.42
	O
	

	DS-Syntax-CUE-C-016
	Support NoStatus
	6.1.19
	O
	

	DS-Syntax-CUE-C-017
	
	
	
	

	DS-Syntax-CUE-C-018
	Support NumberOfChanges
	6.2.48
	O
	

	DS-Syntax-CUE-C-019
	Support Record
	6.2.49
	O
	

	DS-Syntax-CUE-C-020
	Support RespURI
	6.2.51
	O
	

	DS-Syntax-CUE-C-021
	Support SessionID
	6.2.53
	O
	

	DS-Syntax-CUE-C-022
	Support SftDel
	6.2.56
	O
	

	DS-Syntax-CUE-C-023
	Support Source
	
	O
	DS-Syntax-CUE-C-013

	DS-Syntax-CUE-C-024
	Support SourceParent
	6.2.57
	O
	

	DS-Syntax-CUE-C-025
	Support SourceRef
	6.2.60
	O
	

	DS-Syntax-CUE-C-026
	Support Target
	
	O
	DS-Syntax-CUE-C-013

	DS-Syntax-CUE-C-027
	Support TargetParent
	6.2.63
	O
	

	DS-Syntax-CUE-C-001
	Support TargetRef
	6.2.72
	O
	

	DS-Syntax-CUE-C-029
	Support Version
	6.2.75
	M
	

Table 20: Client Features - Common Use Elements
A.1.6 Message Container Elements

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-MCE-C-001
	Support SyncML
	错误！未找到引用源。
	M
	DS-Syntax-MCE-C-002 AND
DS-Syntax-MCE-C-003

	DS-Syntax-MCE-C-002
	Support SyncHdr
	错误！未找到引用源。
	M
	DS-Syntax-CUE-C-028 AND
DS-Syntax-CUE-C-029 AND
DS-Syntax-CUE-C-021 AND
DS-Syntax-CUE-C-015 AND
DS-Syntax-CUE-C-023 AND
DS-Syntax-CUE-C-026

	DS-Syntax-MCE-C-003
	Support SyncBody
	错误！未找到引用源。
	M
	DS-Syntax-PME-C-001 OR
DS-Syntax-PCE-C-001 OR
DS-Syntax-PCE-C-002 OR
DS-Syntax-PCE-C-003 OR
DS-Syntax-PCE-C-004 OR
DS-Syntax-PCE-C-005 OR
DS-Syntax-PCE-C-006 OR
DS-Syntax-PCE-C-007 OR
DS-Syntax-PCE-C-008 OR
DS-Syntax-PCE-C-011 OR
DS-Syntax-PCE-C-012 OR
DS-Syntax-PCE-C-013 OR
DS-Syntax-PCE-C-014 OR
DS-Syntax-PCE-C-015 OR
DS-Syntax-PCE-C-016

Table 21: Client Features - Message Container Elements
A.1.7 Data Description Elements

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-DDE-C-001
	Support Data
	错误！未找到引用源。
	M
	

	DS-Syntax-DDE-C-002
	Support Item
	错误！未找到引用源。
	M
	

	DS-Syntax-DDE-C-003
	Support Meta
	错误！未找到引用源。
	M
	

	DS-Syntax-DDE-C-004
	Support Correlator
	错误！未找到引用源。
	O
	

Table 22: Client Features - Data Description Elements
A.1.8 Protocol Management Elements

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-PME-C-001
	Support Status
	错误！未找到引用源。
	M
	

Table 23: Client Features - Protocol Management Elements

A.1.9 Protocol Command Elements

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-PCE-C-001
	Support Add
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-004 AND
DS-Syntax-DDE-C-003

	DS-Syntax-PCE-C-002
	Support Alert
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-004 AND
DS-Syntax-DDE-C-003

	DS-Syntax-PCE-C-003
	Support Atomic
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-004 AND
(DS-Syntax-PCE-C-001 OR
DS-Syntax-PCE-C-002 OR
DS-Syntax-PCE-C-003 OR
DS-Syntax-PCE-C-004 OR
DS-Syntax-PCE-C-005 OR
DS-Syntax-PCE-C-006 OR
DS-Syntax-PCE-C-007 OR
DS-Syntax-PCE-C-008 OR

DS-Syntax-PCE-C-010 OR
DS-Syntax-PCE-C-012 OR
DS-Syntax-PCE-C-015 OR
DS-Syntax-PCE-C-016)

	DS-Syntax-PCE-C-004
	Support Copy
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-004 AND
DS-Syntax-DDE-C-003

	DS-Syntax-PCE-C-005
	Support Delete
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-004 AND
DS-Syntax-DDE-C-003

	DS-Syntax-PCE-C-006
	Support SyncAlert
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-004 AND
DS-Syntax-DDE-C-003

	DS-Syntax-PCE-C-007
	Support Get
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-004 AND
DS-Syntax-DDE-C-003

	DS-Syntax-PCE-C-008
	Support Map
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-004 AND
DS-Syntax-PCE-C-009

	DS-Syntax-PCE-C-009
	Support MapItem
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-026 AND
DS-Syntax-CUE-C-023

	DS-Syntax-PCE-C-010
	Support Move
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-004 AND
DS-Syntax-DDE-C-003

	DS-Syntax-PCE-C-011
	Support Put
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-004 AND
DS-Syntax-DDE-C-003

	DS-Syntax-PCE-C-012
	Support Replace
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-004 AND
DS-Syntax-DDE-C-003

	DS-Syntax-PCE-C-013
	Support Results
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-004 AND
DS-Syntax-DDE-C-003

	DS-Syntax-PCE-C-014
	
	
	
	

	DS-Syntax-PCE-C-015
	Support Sequence
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-004 AND
 (DS-Syntax-PCE-C-001 OR
DS-Syntax-PCE-C-002 OR
DS-Syntax-PCE-C-003 OR
DS-Syntax-PCE-C-004 OR
DS-Syntax-PCE-C-005 OR
DS-Syntax-PCE-C-006 OR
DS-Syntax-PCE-C-007 OR
DS-Syntax-PCE-C-008 OR

DS-Syntax-PCE-C-010 OR
DS-Syntax-PCE-C-012 OR
DS-Syntax-PCE-C-016)

	DS-Syntax-PCE-C-016
	Support Sync
	错误！未找到引用源。
	O
	DS-Syntax-CUE-C-004 AND
 (DS-Syntax-PCE-C-001 OR
DS-Syntax-PCE-C-003 OR

DS-Syntax-PCE-C-004 OR

DS-Syntax-PCE-C-005 OR
DS-Syntax-PCE-C-010 OR

DS-Syntax-PCE-C-012 OR
DS-Syntax-PCE-C-015)

Table 24: Client Features - Protocol Command Elements
A.2 Server Features

A.2.1 Security

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-SEC-S-001
	Support Basic and MD5
	
	M
	

	DS-Syntax-SEC-S-002
	Support optional authentication types
	
	O
	

Table 25: Server Features - Security
A.2.2 XML Usage

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-XML-S-001
	Support namespace usage
	5.3
	M
	

Table 26: Server Features - XML Usage
A.2.3 MIME Usage

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-MIME-S-001
	Support MIME content types
	5.4
	M
	

Table 27: Server Features - MIME Usage
A.2.4 Identifiers

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-IDS-S-001
	Support URI, URN, textual names
	5.5
	M
	

Table 28: Server Features - Identifiers
A.2.5 Common Use Elements

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-CUE-S-001
	
	
	
	

	DS-Syntax-CUE-S-002
	Support Chal
	6.2.2
	O
	DS-Syntax-DDE-S-003

	DS-Syntax-CUE-S-003
	Support Cmd
	6.2.8
	O
	

	DS-Syntax-CUE-S-004
	Support CmdID
	6.2.10
	O
	

	DS-Syntax-CUE-S-005
	Support CmdRef
	6.2.11
	O
	

	DS-Syntax-CUE-S-006
	Support Cred
	6.2.12
	O
	DS-Syntax-DDE-S-001

	DS-Syntax-CUE-S-007
	Support Field
	6.2.17
	O
	

	DS-Syntax-CUE-S-008
	Support Filter
	0
	O
	DS-Syntax-DDE-S-003

	DS-Syntax-CUE-S-009
	Support Filter Type
	6.1.9
	O
	

	DS-Syntax-CUE-S-010
	Support Final
	6.2.27
	O
	

	DS-Syntax-CUE-S-011
	
	
	
	

	DS-Syntax-CUE-S-013
	Support LocURI
	错误！未找到引用源。
	O
	

	DS-Syntax-CUE-S-014
	Support MoreData
	6.2.40
	O
	

	DS-Syntax-CUE-S-015
	Support MsgID
	6.2.42
	O
	

	DS-Syntax-CUE-S-016
	Support NoStatus
	6.1.19
	O
	

	DS-Syntax-CUE-S-017
	
	
	
	

	DS-Syntax-CUE-S-018
	Support NumberOfChanges
	6.2.48
	O
	

	DS-Syntax-CUE-S-019
	Support Record
	6.2.49
	O
	

	DS-Syntax-CUE-S-020
	Support RespURI
	6.2.51
	O
	

	DS-Syntax-CUE-S-021
	Support SessionID
	6.2.53
	O
	

	DS-Syntax-CUE-S-022
	Support SftDel
	6.2.56
	O
	

	DS-Syntax-CUE-S-023
	Support Source
	
	O
	DS-Syntax-CUE-S-013

	DS-Syntax-CUE-S-024
	Support SourceParent
	6.2.57
	O
	

	DS-Syntax-CUE-S-025
	Support SourceRef
	6.2.60
	O
	

	DS-Syntax-CUE-S-026
	Support Target
	
	O
	DS-Syntax-CUE-S-013

	DS-Syntax-CUE-S-027
	Support TargetParent
	6.2.63
	O
	

	DS-Syntax-CUE-S-001
	Support TargetRef
	6.2.72
	O
	

	DS-Syntax-CUE-S-029
	Support Version
	6.2.75
	M
	

Table 29: Server Features - Common Use Elements
A.2.6 Message Container Elements

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-MCE-S-001
	Support SyncML
	错误！未找到引用源。
	M
	DS-Syntax-MCE-S-002 AND
DS-Syntax-MCE-S-003

	DS-Syntax-MCE-S-002
	Support SyncHdr
	错误！未找到引用源。
	M
	DS-Syntax-CUE-S-028 AND
DS-Syntax-CUE-S-029 AND
DS-Syntax-CUE-S-021 AND
DS-Syntax-CUE-S-015 AND
DS-Syntax-CUE-S-023 AND
DS-Syntax-CUE-S-026

	DS-Syntax-MCE-S-003
	Support SyncBody
	错误！未找到引用源。
	M
	DS-Syntax-PME-S-001 OR
DS-Syntax-PCE-S-001 OR
DS-Syntax-PCE-S-002 OR
DS-Syntax-PCE-S-003 OR
DS-Syntax-PCE-S-004 OR
DS-Syntax-PCE-S-005 OR
DS-Syntax-PCE-S-006 OR
DS-Syntax-PCE-S-007 OR
DS-Syntax-PCE-S-008 OR
DS-Syntax-PCE-S-011 OR
DS-Syntax-PCE-S-012 OR
DS-Syntax-PCE-S-013 OR
DS-Syntax-PCE-S-014 OR
DS-Syntax-PCE-S-015 OR
DS-Syntax-PCE-S-016

Table 30: Server Features - Message Container Elements

A.2.7 Data Description Elements

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-DDE-S-001
	Support Data
	错误！未找到引用源。
	M
	

	DS-Syntax-DDE-S-002
	Support Item
	错误！未找到引用源。
	M
	

	DS-Syntax-DDE-S-003
	Support Meta
	错误！未找到引用源。
	M
	

	DS-Syntax-DDE-S-003
	Support Correlator
	错误！未找到引用源。
	O
	

Table 31: Server Features - Data Description Elements
A.2.8 Protocol Management Elements

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-PME-S-001
	Support Status
	错误！未找到引用源。
	M
	

Table 32: Server Features - Protocol Management Elements
A.2.9 Protocol Command Elements

	Item
	Function
	Ref.
	Status
	Requirement

	DS-Syntax-PCE-S-001
	Support Add
	错误！未找到引用源。
	O
	DS-Syntax-CUE-S-004 AND
DS-Syntax-DDE-S-003

	DS-Syntax-PCE-S-002
	Support Alert
	错误！未找到引用源。
	O
	DS-Syntax-CUE-S-004 AND
DS-Syntax-DDE-S-003

	DS-Syntax-PCE-S-003
	Support Atomic
	错误！未找到引用源。
	O
	DS-Syntax-CUE-S-004 AND (DS-Syntax-PCE-S-001 OR
DS-Syntax-PCE-S-002 OR
DS-Syntax-PCE-S-003 OR
DS-Syntax-PCE-S-004 OR
DS-Syntax-PCE-S-005 OR
DS-Syntax-PCE-S-006 OR
DS-Syntax-PCE-S-007 OR
DS-Syntax-PCE-S-008 OR

DS-Syntax-PCE-S-010 OR
DS-Syntax-PCE-S-012 OR
DS-Syntax-PCE-S-015 OR
DS-Syntax-PCE-S-016)

	DS-Syntax-PCE-S-004
	Support Copy
	错误！未找到引用源。
	O
	DS-Syntax-CUE-S-004 AND
DS-Syntax-DDE-S-003

	DS-Syntax-PCE-S-005
	Support Delete
	错误！未找到引用源。
	O
	DS-Syntax-CUE-S-004 AND
DS-Syntax-DDE-S-003

	DS-Syntax-PCE-S-006
	
	
	
	

	DS-Syntax-PCE-S-007
	Support Get
	错误！未找到引用源。
	O
	DS-Syntax-CUE-S-004 AND
DS-Syntax-DDE-S-003

	DS-Syntax-PCE-S-008
	Support Map
	错误！未找到引用源。
	O
	DS-Syntax-CUE-S-004 AND
DS-Syntax-PCE-S-009

	DS-Syntax-PCE-S-009
	Support MapItem
	错误！未找到引用源。
	O
	DS-Syntax-CUE-S-026 AND
DS-Syntax-CUE-S-023

	DS-Syntax-PCE-S-010
	Support Move
	错误！未找到引用源。
	O
	DS-Syntax-CUE-S-004 AND
DS-Syntax-DDE-S-003

	DS-Syntax-PCE-S-011
	Support Put
	错误！未找到引用源。
	O
	DS-Syntax-CUE-S-004 AND
DS-Syntax-DDE-S-003

	DS-Syntax-PCE-S-012
	Support Replace
	错误！未找到引用源。
	O
	DS-Syntax-CUE-S-004 AND
DS-Syntax-DDE-S-003

	DS-Syntax-PCE-S-013
	Support Results
	错误！未找到引用源。
	O
	DS-Syntax-CUE-S-004 AND
DS-Syntax-DDE-S-003

	DS-Syntax-PCE-S-014
	
	
	
	

	DS-Syntax-PCE-S-015
	Support Sequence
	错误！未找到引用源。
	O
	DS-Syntax-CUE-S-004 AND (DS-Syntax-PCE-S-001 OR
DS-Syntax-PCE-S-002 OR
DS-Syntax-PCE-S-003 OR
DS-Syntax-PCE-S-004 OR
DS-Syntax-PCE-S-005 OR
DS-Syntax-PCE-S-006 OR
DS-Syntax-PCE-S-007 OR
DS-Syntax-PCE-S-008 OR

DS-Syntax-PCE-S-010 OR
DS-Syntax-PCE-S-012 OR
DS-Syntax-PCE-S-016)

	DS-Syntax-PCE-S-016
	Support Sync
	错误！未找到引用源。
	O
	DS-Syntax-CUE-S-004 AND (DS-Syntax-PCE-S-001 OR
DS-Syntax-PCE-S-003 OR

DS-Syntax-PCE-S-004 OR

DS-Syntax-PCE-S-005 OR
DS-Syntax-PCE-S-010 OR

DS-Syntax-PCE-S-012 OR
DS-Syntax-PCE-S-015)

Table 33: Server Features - Protocol Command Elements

Appendix B. [Syntax] Static Conformance Requirements
(Normative)

Static conformance requirements (SCR) specify the features that are OPTIONAL and MANDATORY within implementations conforming to this specification.

B.1 Client Data Sync Usage of SyncML Representation

	Item
	Functionality
	Reference
	Status
	Requirement

	SCR-DS-CUE-C-001
	
	
	
	

	SCR-DS-CUE-C-002
	Support for Chal element
	6.1.2
	M
	SCR-DS-DDE-C-003

	SCR-DS-CUE-C-003
	Support for Cmd element
	6.1.3
	M
	

	SCR-DS-CUE-C-004
	Support for CmdId element
	6.1.4
	M
	

	SCR-DS-CUE-C-005
	Support for CmdRef element
	6.1.5
	M
	

	SCR-DS-CUE-C-006
	Support for Cred element
	6.1.6
	M
	SCR-DS-DDE-C-001

	SCR-DS-CUE-C-007
	Support for Field element
	6.1.7
	O
	

	SCR-DS-CUE-C-008
	Support for Filter element
	6.1.8
	O
	SCR-DS-CUE-C-09 AND
(SCR-DS-CUE-C-007 OR
SCR-DS-CUE-C-020)

	SCR-DS-CUE-C-009
	Support for FilterType element
	6.1.9
	O
	

	SCR-DS-CUE-C-010
	Support for Final element
	6.1.10
	M
	

	SCR-DS-CUE-C-011
	
	
	
	

	SCR-DS-CUE-C-013
	Support for LocURI element
	6.1.13
	M
	

	SCR-DS-CUE-C-014
	Support for MoreData element
	6.1.14
	O
	

	SCR-DS-CUE-C-015
	Support for MsgID element
	6.1.15
	M
	

	SCR-DS-CUE-C-016
	Support for MsgRef element
	6.1.16
	M
	

	SCR-DS-CUE-C-017
	Support for NoStatus element
	6.1.17
	M
	

	SCR-DS-CUE-C-018
	
	
	
	

	SCR-DS-CUE-C-019
	Support for NumberOfChanges element
	6.1.19
	O
	

	SCR-DS-CUE-C-020
	Support for Record element
	6.1.20
	O
	

	SCR-DS-CUE-C-021
	Support for RespURI element
	6.1.21
	M
	

	SCR-DS-CUE-C-022
	Support for SessionID element
	6.1.22
	M
	

	SCR-DS-CUE-C-023
	Support for SftDel element
	6.1.23
	O
	

	SCR-DS-CUE-C-024
	Support for Source element
	6.1.24
	M
	SCR-DS-CUE-C-013

	SCR-DS-CUE-C-025
	Support for SourceParent
	6.1.25
	O
	SCR-DS-CLIENT-012

	SCR-DS-CUE-C-026
	Support for SourceRef element
	6.1.26
	M
	

	SCR-DS-CUE-C-027
	Support for Target element
	6.1.27
	M
	SCR-DS-CUE-C-013

	SCR-DS-CUE-C-028
	Support for TargetParent
	6.1.28
	O
	SCR-DS-CLIENT-012

	SCR-DS-CUE-C-029
	Support for TargetRef element
	6.1.29
	M
	

	SCR-DS-CUE-C-031
	Support for Version element
	6.2.75
	M
	

Table 34: Client Common Use Elements

	Item
	Functionality
	Reference
	Status
	Requirement

	SCR-DS-MCE-C-001
	Support for SyncML element
	6.2.1
	M
	SCR-DS-MCE-C-002 AND
SCR-DS-MCE-C-003

	SCR-DS-MCE-C-002
	Support for SyncHdr element
	6.2.2
	M
	SCR-DS-CUE -C-015 AND
SCR-DS-CUE -C-022 AND
SCR-DS-CUE-C-024 AND
SCR-DS-CUE-C-027 AND
SCR-DS-CUE-C-030 AND
SCR-DS-CUE-C-031

	SCR-DS-MCE-C-003
	Support for SyncBody element
	6.2.3
	M
	SCR-DS-PCE-C-001 AND
SCR-DS-PCE-C-002 AND
SCR-DS-PCE-C-005 AND
SCR-DS-PCE-C-007 AND
SCR-DS-PCE-C-011 AND
SCR-DS-PCE-C-012 AND
SCR-DS-PCE-C-015 AND
SCR-DS-PCE-C-016

Table 35: Client Message Container Elements

	Item
	Functionality
	Reference
	Status
	Requirement

	SCR-DS-DDE-C-001
	Support for Data element
	6.3.1
	M
	

	SCR-DS-DDE-C-002
	Support for Item element
	6.3.2
	M
	

	SCR-DS-DDE-C-003
	Support for Meta element
	6.3.3
	M
	SCR-DS-METINF-S-011

Table 36: Client Data Description Elements

	Item
	Functionality
	Reference
	Status
	Requirement

	SCR-DS-PME-C-001
	Support for Status element
	6.4.1
	M
	SCR-DS-CUE-C-003 AND
SCR-DS-CUE-C-004 AND
SCR-DS-CUE-C-005 AND
SCR-DS-CUE-C-015 AND
SCR-DS-CUE-C-024 AND
SCR-DS-CUE-C-026 AND
SCR-DS-DDE-C-001 AND
SCR-DS-DDE-C-002

Table 37: Client Protocol Management Elements

	Item
	Functionality
	Reference
	Status
	Requirement

	SCR-DS-PCE-C-001
	Support for Add element
	6.5.1
	M
	SCR-DS-CUE-C-004 AND
SCR-DS-DDE-C-002

	SCR-DS-PCE-C-002
	Support for Alert element
	6.5.2
	M
	SCR-DS-CUE-C-004 AND
SCR-DS-DDE-C-002

	SCR-DS-PCE-C-003
	Support for Atomic element
	6.5.3
	O
	SCR-DS-CUE-C-004

	SCR-DS-PCE-C-004
	Support for Copy element
	6.5.4
	O
	SCR-DS-CUE-C-004 AND
SCR-DS-DDE-C-002

	SCR-DS-PCE-C-005
	Support for Delete element
	6.5.5
	M
	SCR-DS-CUE-C-004 AND
SCR-DS-DDE-C-002

	SCR-DS-PCE-C-006
	
	
	
	

	SCR-DS-PCE-C-007
	Support for Get element
	6.5.7
	M
	SCR-DS-CUE-C-004 AND
SCR-DS-DDE-C-002

	SCR-DS-PCE-C-008
	Support for Map element
	6.5.8
	O
	SCR-DS-CUE-C-004 AND
SCR-DS-PCE-C-009

	SCR-DS-PCE-C-009
	Support for MapItem element
	6.5.9
	O
	SCR-DS-CUE-C-024 AND
SCR-DS-CUE-C-027

	SCR-DS-PCE-C-010
	Support for Move element
	6.5.10
	O
	

	SCR-DS-PCE-C-011
	Support for Put element
	6.5.11
	M
	SCR-DS-CUE-C-004 AND
SCR-DS-DDE-C-002

	SCR-DS-PCE-C-012
	Support for Replace element
	6.5.12
	M
	SCR-DS-CUE-C-004 AND
SCR-DS-DDE-C-002

	SCR-DS-PCE-C-013
	Support for Result element
	6.5.13
	O
	SCR-DS-CUE-C-004 AND
SCR-DS-DDE-C-002

	SCR-DS-PCE-C-014
	
	
	
	

	SCR-DS-PCE-C-015
	Support for Sequence element
	6.5.15
	O
	SCR-DS-CUE-C-004

	SCR-DS-PCE-C-016
	Support for Sync element
	6.5.16
	M
	SCR-DS-CUE-C-004

Table 38: Client Protocol Command Elements

	Item
	Functionality
	Reference
	Status
	Requirement

	SCR-DS-CONTENT-C-001
	Support for Contact Synchronization
	
	O
	SCR-DS-CONTENT-C-008 OR SCR-DS-CONTENT-C-009

	SCR-DS-CONTENT-C-002
	Support for Calendar Synchronization
	
	O
	SCR-DS-CONTENT-C-010 OR SCR-DS-CONTENT-C-011

	SCR-DS-CONTENT-C-003
	Support for Memo Synchronization
	
	O
	SCR-DS-CONTENT-C-012

	SCR-DS-CONTENT-C-004
	Support for Task Synchronization
	
	O
	SCR-DS-CONTENT-C-013

	SCR-DS-CONTENT-C-005
	Support for Email Synchronization
	
	O
	SCR-DS-CONTENT-C-014 OR SCR-DS-CONTENT-C-015 OR SCR-DS-CONTENT-C-016 OR SCR-DS-CONTENT-C-017

	SCR-DS-CONTENT-C-006
	Support for File Synchronization
	
	O
	SCR-DS-CONTENT-C-018

	SCR-DS-CONTENT-C-007
	Support for Folder Synchronization
	
	O
	SCR-DS-CONTENT-C-019

	SCR-DS-CONTENT-C-008
	Support for vCard 2.1
	
	O
	

	SCR-DS-CONTENT-C-009
	Support for vCard 3.0
	
	O
	

	SCR-DS-CONTENT-C-010
	Support for vCalendar 1.0
	
	O
	

	SCR-DS-CONTENT-C-011
	Support for iCalendar 2.0
	
	O
	

	SCR-DS-CONTENT-C-012
	Support for text/plain
	
	O
	

	SCR-DS-CONTENT-C-013
	Support for vTodo 1.0
	
	O
	

	SCR-DS-CONTENT-C-014
	Support for message/rfc822
	
	O
	

	SCR-DS-CONTENT-C-015
	Support for message/rfc2822
	
	O
	

	SCR-DS-CONTENT-C-016
	Support for Message/rfc2045
	
	O
	

	SCR-DS-CONTENT-C-017
	Support for x-email
	
	O
	

	SCR-DS-CONTENT-C-018
	Support for x-file
	
	O
	

	SCR-DS-CONTENT-C-019
	Support for x-folder
	
	O
	

Table 39: Client Content Formats
B.2 Server Data Sync Usage of SyncML Representation

	Item
	Functionality
	Reference
	Status
	Requirement

	SCR-DS-CUE-S-001
	
	
	
	

	SCR-DS-CUE-S-002
	Support for Chal element
	6.1.2
	M
	SCR-DS-DDE-S-003

	SCR-DS-CUE-S-003
	Support for Cmd element
	6.1.3
	M
	

	SCR-DS-CUE-S-004
	Support for CmdId element
	6.1.4
	M
	

	SCR-DS-CUE-S-005
	Support for CmdRef element
	6.1.5
	M
	

	SCR-DS-CUE-S-006
	Support for Cred element
	6.1.6
	M
	SCR-DS-DDE-S-001

	SCR-DS-CUE-S-007
	Support for Field element
	6.1.7
	O
	

	SCR-DS-CUE-S-008
	Support for Filter element
	6.1.8
	O
	SCR-DS-CUE-S-009 AND
(SCR-DS-CUE-S-007 OR
SCR-DS-CUE-S-020)

	SCR-DS-CUE-S-009
	Support for FilterType element
	6.1.9
	O
	

	SCR-DS-CUE-S-0010
	Support for Final element
	6.1.10
	M
	

	SCR-DS-CUE-S-011
	
	
	
	

	SCR-DS-CUE-S-013
	Support for LocURI element
	6.1.13
	M
	

	SCR-DS-CUE-S-014
	Support for MoreData element
	6.1.14
	M
	

	SCR-DS-CUE-S-015
	Support for MsgID element
	6.1.15
	M
	

	SCR-DS-CUE-S-016
	Support for MsgRef element
	6.1.16
	M
	

	SCR-DS-CUE-S-017
	Support for NoStatus element
	6.1.17
	M
	

	SCR-DS-CUE-S-018
	
	
	
	

	SCR-DS-CUE-S-019
	Support for NumberOfChanges element
	6.1.19
	M
	

	SCR-DS-CUE-S-020
	Support for Record element
	6.1.20
	O
	

	SCR-DS-CUE-S-021
	Support for RespURI element
	6.1.21
	M
	

	SCR-DS-CUE-S-022
	Support for SessionID element
	6.1.22
	M
	

	SCR-DS-CUE-S-023
	Support for SftDel element
	6.1.23
	O
	

	SCR-DS-CUE-S-024
	Support for Source element
	6.1.24
	M
	SCR-DS-CUE-S-013

	SCR-DS-CUE-S-025
	Support for SourceParent
	6.1.25
	O
	SCR-DS-SERVER-012

	SCR-DS-CUE-S-026
	Support for SourceRef element
	6.1.26
	M
	

	SCR-DS-CUE-S-027
	Support for Target element
	6.1.27
	M
	SCR-DS-CUE-S-013

	SCR-DS-CUE-S-028
	Support for TargetParent
	6.1.28
	O
	SCR-DS-SERVER-012

	SCR-DS-CUE-S-029
	Support for TargetRef element
	6.1.29
	M
	

	SCR-DS-CUE-S-031
	Support for Version element
	6.2.75
	M
	

Table 40: Server Common Use Elements

	Item
	Functionality
	Reference
	Status
	Requirement

	SCR-DS-MCE-S-001
	Support for SyncML element
	6.2.1
	M
	SCR-DS-MCE-S-002 AND
SCR-DS-MCE-S-003

	SCR-DS-MCE-S-002
	Support for SyncHdr element
	6.2.2
	M
	SCR-DS-CUE-S-015 AND
SCR-DS-CUE-S-022 AND
SCR-DS-CUE-S-024 AND
SCR-DS-CUE-S-027 AND
SCR-DS-CUE-S-030 AND
SCR-DS-CUE-S-031

	SCR-DS-MCE-S-003
	Support for SyncBody element
	6.2.3
	M
	SCR-DS-PCE-S-001 AND
SCR-DS-PCE-S-002 AND
SCR-DS-PCE-S-005 AND
SCR-DS-PCE-S-007 AND
SCR-DS-PCE-S-010 AND
SCR-DS-PCE-S-011 AND
SCR-DS-PCE-S-015 AND
SCR-DS-PCE-S-016

Table 41: Server Message Container Elements

	Item
	Functionality
	Reference
	Status
	Requirement

	SCR-DS-DDE-S-001
	Support for Data element
	6.3.1
	M
	

	SCR-DS-DDE-S-002
	Support for Item element
	6.3.2
	M
	

	SCR-DS-DDE-S-003
	Support for Meta element
	6.3.3
	M
	SCR-DS-METINF-S-011

Table 42: Server Data Description Elements

	Item
	Functionality
	Reference
	Status
	Requirement

	SCR-DS-PME-S-001
	Support for Status element
	6.4.1
	M
	SCR-DS-CUE-S-003 AND
SCR-DS-CUE-S-004 AND
SCR-DS-CUE-S-005 AND
SCR-DS-CUE-S-015 AND
SCR-DS-CUE-S-024 AND
SCR-DS-CUE-S-026 AND
SCR-DS-DDE-S-001 AND
SCR-DS-DDE-S-002

Table 43: Server Protocol Management Elements

Table 44: Server Protocol Elements

	Item
	Functionality
	Reference
	Status
	Requirement

	SCR-DS-PCE-S001
	Support for Add element
	6.5.1
	M
	SCR-DS-CUE-S-004 AND
SCR-DS-DDE-S-002

	SCR-DS-PCE-S-002
	Support for Alert element
	6.5.2
	M
	SCR-DS-CUE-S-004 AND
SCR-DS-DDE-S-002

	SCR-DS-PCE-S-003
	Support for Atomic element
	6.5.3
	O
	SCR-DS-CUE-S-004

	SCR-DS-PCE-S-004
	Support for Copy element
	6.5.4
	M
	SCR-DS-CUE-S-004 AND
SCR-DS-DDE-S-002

	SCR-DS-PCE-S-005
	Support for Delete element
	6.5.5
	M
	SCR-DS-CUE-S-004 AND
SCR-DS-DDE-S-002

	SCR-DS-PCE-S-006
	
	
	
	

	SCR-DS-PCE-S-007
	Support for Get element
	6.5.7
	M
	SCR-DS-CUE-S-004 AND
SCR-DS-DDE-S-002

	SCR-DS-PCE-S-008
	Support for Map element
	6.5.8
	M
	SCR-DS-CUE-S-004 AND
SCR-DS-PCE-S-009

	SCR-DS-PCE-S-009
	Support for MapItem element
	6.5.9
	M
	SCR-DS-CUE-S-024 AND
SCR-DS-CUE-S-027

	SCR-DS-PCE-S-010
	Support for Move element
	6.5.10
	O
	

	SCR-DS-PCE-S-011
	Support for Put element
	6.5.11
	M
	SCR-DS-CUE-S-004 AND
SCR-DS-DDE-S-002

	SCR-DS-PCE-S-012
	Support for Replace element
	6.5.12
	M
	SCR-DS-CUE-S-004 AND
SCR-DS-DDE-S-002

	SCR-DS-PCE-S-013
	Support for Result element
	6.5.13
	M
	SCR-DS-CUE-S-004 AND
SCR-DS-DDE-S-002

	SCR-DS-PCE-S-014
	
	
	
	

	SCR-DS-PCE-S-015
	Support for Sequence element
	6.5.15
	M
	SCR-DS-CUE-S-004

	SCR-DS-PCE-S-016
	Support for Sync element
	6.5.15
	M
	SCR-DS-CUE-S-004

Table 45: Server Protocol Elements

	Item
	Functionality
	Reference
	Status
	Requirement

	SCR-DS-CONTENT-S-001
	Support for Contact Synchronization
	ALL*
	O
	SCR-DS-CONTENT-S-008 AND SCR-DS-CONTENT-S-009

	SCR-DS-CONTENT-S-002
	Support for Calendar Synchronization
	ALL*
	O
	SCR-DS-CONTENT-S-010 AND SCR-DS-CONTENT-S-011

	SCR-DS-CONTENT-S-003
	Support for Memo Synchronization
	ALL*
	O
	SCR-DS-CONTENT-S-012

	SCR-DS-CONTENT-S-004
	Support for Task Synchronization
	ALL*
	O
	SCR-DS-CONTENT-S-013

	SCR-DS-CONTENT-S-005
	Support for Email Synchronization
	ALL*
	O
	SCR-DS-CONTENT-S-014 OR SCR-DS-CONTENT-S-015 OR SCR-DS-CONTENT-S-016 OR SCR-DS-CONTENT-S-017

	SCR-DS-CONTENT-S-006
	Support for File Synchronization
	ALL*
	O
	SCR-DS-CONTENT-S-018

	SCR-DS-CONTENT-S-007
	Support for Folder Synchronization
	ALL*
	O
	SCR-DS-CONTENT-S019

	SCR-DS-CONTENT-S-008
	Support for vCard 2.1
	ALL*
	O
	

	SCR-DS-CONTENT-S-009
	Support for vCard 3.0
	ALL*
	O
	

	SCR-DS-CONTENT-S-010
	Support for vCalendar 1.0
	ALL*
	O
	

	SCR-DS-CONTENT-S-011
	Support for iCalendar 2.0
	ALL*
	O
	

	SCR-DS-CONTENT-S-012
	Support for text/plain
	ALL*
	O
	

	SCR-DS-CONTENT-S-013
	Support for vTodo 1.0
	ALL*
	O
	

	SCR-DS-CONTENT-S-014
	Support for message/rfc822
	ALL*
	O
	

	SCR-DS-CONTENT-S-015
	Support for message/rfc2822
	ALL*
	O
	

	SCR-DS-CONTENT-S-016
	Support for Message/rfc2045
	ALL*
	O
	

	SCR-DS-CONTENT-S-017
	Support for x-email
	ALL*
	O
	

	SCR-DS-CONTENT-S-018
	Support for x-file
	ALL*
	O
	

	SCR-DS-CONTENT-S-019
	Support for x-folder
	ALL*
	O
	

* There are examples which use the various content types throughout the specifications.
 Table 46: Server Content Formats

Appendix C. Example Validation Aids
(Informative)

Many of the examples of this document may be validated against the schema. Since the examples are generally incomplete, they need to be incorporated into an appropriate framework for this to work. Some of the frameworks used, and the examples that can validate with them are shown below.
C.1 Inside Sync Examples

Examples for the following commands may be validated with this framework: Add, Del
	<?xml version="1.0" encoding="UTF-8"?>

<SyncML xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:noNamespaceSchemaLocation=

 "OMA-SUP-XSD_DS_Syntax_Schema-V2XX-YYYYMMDD-Z.xsd">

 <SyncHdr MsgID="1" SessionID="100" Version="2.0">

 <TargetServerURI>ServerURIGoesHere</TargetServerURI>

 <SourceClientURI>ClientIdentifierGoesHere</SourceClientURI>

 </SyncHdr>

 <SyncBody>

 <Sync CmdID="1">

 <!-- Insert Example Below Here -->

 <!-- Insert Example Above Here -->

 </Sync>

 </SyncBody>

</SyncML>

Appendix D. Change History
(Informative)

D.1 Approved Version History

	Reference
	Date
	Description

	
	
	

D.2 Draft/Candidate Version 2.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version

OMA-TS-DS_Syntax-V2_0
	05 Sep 2006
	8
	Updated according to agreed CR:

OMA-DS-DS_2_0-2006-0030R02

	
	20 Mar 2007
	6
	Updated according to agreed CR:

OMA-DS-DS_2_0-2006-0063

	
	21 Mar 2007
	All
	Clean up word generated errors!

	
	25 Apr 2007
	All
	Updated according to agreed CR:

OMA-DS-DS_2_0-2007-0008R01

	
	26 Apr 2007
	All
	Added table and figure titles & numbers

	
	01 Jun
	All
	Updated according to agreed CR:

OMA-DS-DS_2_0-2006-0023R04

	
	8 Oct 2007
	6.1, 6.5, 7, 8.3, A.1.5, A.2.5, B.1, B.2
	Updated according to agreed CR:

OMA-DS-DS_2_0-2007-0004-CR_Clarify_NoResp.doc

	
	29 Oct 2007
	All
	Updated according to agreed CRs:

OMA-DS-DS_2_0-2007-0066-CR_To_clarify_the_use_of_Cmd_in_Syntax_Document

OMA-DS-DS_2_0-2007-0067R01-CR_Remove_Atomic_Exec_Sequence_in_Syntax

	
	26 Nov 2007
	6.5.15, 6.5.2

6.3.3

6.1.17

6.1.1
	Updated according to agreed CRs:

OMA-DS-DS_2_0-2007-0068-CR_Alert_SyncAlert_Schema

OMA-DS-DS_2_0-2007-0070-CR_MetaInfo_Schema

OMA-DS-DS_2_0-2007-0073-CR_NextNonce_Schema

OMA-DS-DS_2_0-2007-0074-CR_Anchor_Schema

	
	2 Dec 2007
	6.2.2

6.1.15 (new)

6.1.16 (new)

6.5.14

6.1

6.1.2

6.1.11

6.5.5

6.5.6

6.5.10

	Updated according to agreed CRs:

OMA-DS-DS_2_0-2007-0072R01-CR_MaxMsgSize_MaxObjSize_Schema

OMA-DS-DS_2_0-2007-0078-CR_Remove_Archive_Lang_In_Syntax

	
	20 Dec 2007
	6.1.6, 6.1.2

6.1.18, 6.5.11

6.1.12, 6.1.13

6.1.12, 6.1.16

All
	Updated according to agreed CRs:

OMA-DS-DS_2_0-2007-0069R02-CR_Cred_Chal_Schema

OMA-DS-DS_2_0-2007-0077R01-CR_FieldLevel_Schema

OMA-DS-DS_2_0-2007-0081-CR_IDContainer_Schema

OMA-DS-DS_2_0-2007-0082-CR_Add_Fingerprint_Attribute_to_LocURI

OMA-DS-DS_2_0-2007-0086R01-CR_Overall_Cleanup_Syntax

	
	29 Jan 2008
	6.1.28, 6.1.23, 6.6.1

New 6.1.6, 6.5.2, 6.4.1
6.1.2, 6.2.2

New 6.1.30, New 6.1.33

6.1.38, 6.1.39, 6.2.2, 6.3.1, New 6.3.1.1, 6.4.1

6.1.25, 6.5.14

6.1.36, 6.1.37

6.1.10, 6.1.11

6.3.3
	OMA-DS-DS_2_0-2008-0001-CR_Type_for_SftDel_NoStatus

OMA-DS-DS_2_0-2008-0002-CR_Syntax_for_Alert

OMA-DS-DS_2_0-2008-0003-CR_Syntax_for_Chal

OMA-DS-DS_2_0-2008-0004-CR_Syntax_for_Source_Target

OMA-DS-DS_2_0-2008-0005-CR_Syntax_for_Encryption

OMA-DS-DS_2_0-2008-0007-CR_Syntax_for_NumberOfChanges

OMA-DS-DS_2_0-2008-0008-CR_Syntax_for_VerSchema_VerProto

OMA-DS-DS_2_0-2008-0009-CR_Syntax_for_FilterType

OMA-DS-DS_2_0-2008-0011-CR_Syntax_for_Meta

	
	06 Feb 2008
	Footer, TOC, Numerous
	OMA-DS-DS_2_0-2008-0016-CR_Syntax_Editorial_Cleanup

	
	18 Feb 2008
	Table 2,

6.1.19 MsgID, 6.1.26 SessionID, 6.1.28 Source, 6.1.34 Version, 8.3, A.1.5, A.2.5, B.1, B.2
	OMA-DS-DS_2_0-2008-0019-CR_Remove_LocName

OMA-DS-DS_2_0-2008-0020-CR_Syntax_Version_Element

	
	28 Feb 2008
	Reorder sections
	OMA-DS-DS_2_0-2008-0017R02-CR_Syntax_Editorial_Reorder – reordering only.

	
	03 Mar 2008
	Cred, NextNonce, SyncBody, Global changes
	OMA-DS-DS_2_0-2008-0022-CR_Add_Cred_AuthName

OMA-DS-DS_2_0-2008-0017R02-CR_Syntax_Editorial_Reoarder

	
	10 Mar 2008
	CmdID related
	OMA-DS-DS_2_0-2008-0033-CR_Syntax_CmdID_updates

	
	21 Mar 2008
	Source/Target
	OMA-DS-DS_2_0-2008-0015R01-CR_Source_Target_Revision

	
	22 Mar 2008
	Map command, examples
	OMA-DS-DS_2_0-2008-0035R01-CR_Map_Syntax

	
	23 Mar 2008
	Atomic, Sequence, use and examples
	OMA-DS-DS_2_0-2008-0040-CR_Syntax_Atomic_Sequence_Updates

	
	24 Mar 2008
	Alerts, SyncAlert, SyncHdr
	OMA-DS-DS_2_0-2008-0039-CR_Alert_Types, OMA-DS-DS_2_0-2008-0041-CR_SyncAlert_SyncHdr_Syntax

	
	31 Mar 2008
	AuthName
	OMA-DS-DS_2_0-2008-0042-CR_AuthName_Syntax

	
	16 Apr 2008
	All
	OMA-DS-DS_2_0-2008-0036R02-CR_Add_Syntax
OMA-DS-DS_2_0-2008-0052R01-CR_Delete_Syntax
OMA-DS-DS_2_0-2008-0058-CR_Syntax_Editorial_Examples
OMA-DS-DS_2_0-2008-0059-CR_Syntax_Editorial_Examples
OMA-DS-DS_2_0-2008-0044R03-CR_DeviceFull_Handling
OMA-DS-DS_2_0-2008-0050R03-CR_Syntax_Update

�This should probably be a MUST for the server to receive incoming field level replaces

�This should probably be a MUST for the server to respect the client’s MaxMsgSize

�This might be a MUST for the server to respect the client’s MaxObjSize

�TBD

�TBD

�TBD?

�Delete?

�To be merged with [REPU].

(2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20030912}
(2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20040205]

