Doc# OMA-LOC-2012-0152-CR_DynNav_1 0_TS_EventsCategoryDefinition[image: image3.jpg]
Change Request

Doc# OMA-LOC-2012-0152-CR_DynNav_1 0_TS_EventsCategoryDefinition
Change Request

Change Request

	Title:
	Description of route with polyline structure
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA LOC WG

	Doc to Change:
	OMA-TS-REST_NetAPI_DynNav-V1_0-20120524

	Submission Date:
	8 Jun 2012

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Giorgio Ghinamo, Telecom Italia

	Replaces:
	n/a

1 Reason for Change

This CR propose to add the information about shape description for the proposed route with polyline strucutre.
2 Impact on Backward Compatibility

N/A
3 Impact on Other Specifications

N/A
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Agree to changes and update DynNav 1.0 TS accordingly
6 Detailed Change Proposal

Change 1: Data Structures
7.1.1.1 Type: Trip

Description of single trip defined by the application for which route information and/or traffic information is provided.

	Element
	Type
	Optional
	Description

	originWGS84
	Location_Point
	Yes
	Location_Point structure is defined in tpeg-locML [TTI LOC]. At least one element originWGS84 or originAddress MUST be specified when Trip resource is created. This element is mandatory when the Trip resource is read by the client and can be used to indicate the assumed current position of the client for the route information update case.

	originAddress
	Civic Location Format
	Yes
	Civic Location Format is defined by IETF [RFC4776]. At least one element originWGS84 or originAddress MUST be specified.

	destinationWGS84
	Location_Point
	Yes
	Location Point structure is defined in tpeg-locML [TTI LOC]. At least one element destinationWGS84 or destinationAddress MUST be specified when Trip resource is created. This structure is mandatory when the Trip resource is read by the client..

	destinationAddress
	Civic Address Format
	Yes
	Civic Location Format is defined by IETF [RFC4776]. At least one element destinationWGS84 or destinationAddress MUST be specified.

	waypoints
	Location_Point [0…unbounded]
	Yes
	Location_Point structure is defined in tpeg-locML [TTI LOC].

	startingTime
	xsd:dateTime
	Yes
	Starting time of the planned trip. If not present, current time is assumed.

	tollRoad
	xsd:boolean
	Yes
	If true or not present, toll road are allowed.

	vehicleType
	Vehicle_Info
	Yes
	Vehicle_Info structure is defined in tpeg-rtmML [TTI RTM].

	calculateRoute
	xsd:boolean
	Yes
	If present and set to true, the server MUST propose, for the defined Trip, a set of routes and/or alternative routes in case of congestion.

	requestedEventsCategorie
	xsd:string [0..unbounded]
	yes
	List of categories of events that are requested by the application related to the defined Trip. This field shall be encoded according to the list of values defined in the rtm00_x table available in tpeg-rtmML definition [TTI RTM].
If this field is not present, the server MUST provide traffic events for all the defined categories

	Link
	common:Link [0..unbounded]
	Yes
	Links to routes related to the trip. Attribute “rel” must be set to “Route”.

	resourceURL
	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named trip of type Trip is allowed in request and/or response bodies.
7.1.1.2 Type: Area

Description of a single area
	Element
	Type
	Optional
	Description

	areaDesc
	Location Container
	No
	Location Container structure as defined in tpeg-locML [TTI LOC].
The Area_tree_entity defined in the human readable area description of LocML [TTI LOC chap. 5.3.1.1] is not used in DynNav application and parameters of Area_tree_entity structure have no meaning

	startValidityTime
	xsd:dateTime
	No
	Starting time of the interval for which events and performance are requested.

	endValidityTime
	xsd:dateTime
	No
	Ending time of the interval for which events and performance are requested.

	requestedEventsCategorie
	xsd:string [0..unbounded]
	yes
	List of categories of events that are requested by the application. This field shall be encoded according to the list of values defined in the rtm00_x table available in tpeg-rtmML definition [TTI RTM].
If this field is not present, the server MUST provide traffic events for all the defined categories

	events
	CategorizedEventListReference [0..unbounded]
	Yes
	List of events related to the defined area. The information provided relates to the road network and associated infrastructure.

	resourceURL

	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named area of type Area is allowed in request and/or response bodies.
Change 2: Sequence Diagram

7.2 Sequence Diagrams

The following sub-sections describe the resources, methods and steps involved in typical scenarios for DynNav.
5.3.1 Request of routing Information and Related Traffic Information by the Application in a Lightweight ND

This section describes a typical scenario of DynNav application where lightweight ND requests route and traffic information from the DynNav server. The main functionalities defined for this scenario are: (1) the delivery of summarized format and/or full format route information, (2) the subscription to notification services, (3) current position reporting by the application, (4) the re-routing in case of congestion along the proposed route and in case of deviation and diversion from the route in use.

In this scenario the user of DynNav application defines the journey in terms of starting point, destination and other preferences, these parameters are immediately sent by the ND to the DynNav server. The DynNav server will reply with a set of routes that match with journey parameters taking into account real time traffic information and forecast.. For bandwidth optimization, the routes are available in the DynNav server in two different format, summarized and full. The application accesses to the proposed routes in summarized format: with this information the user can select the route(s) which is/are interested in; the application requests the full format for the selected routes and it may delete the routes which the user is not interested in. Due to limited length, complexity of the journey and network capabilities, the proposed routes may be encoded right from the beginning in full format; in this case the DynNav server does not need to encode the routes in summarized format.

The application subscribes to notification services for receiving traffic information updates for the current routes (performance parameters and traffic events for selected categories) and alternative route proposals in case of congestion along the proposed ones. The application will update its current position on the DynNav server after the vehicle drives a certain distance. With this information, the server will delete segments already travelled from the reference route(s) and remove routes not compatibles anymore with current position (if not previously deleted by the application).

Afterwards, the user deviates and diverts from the current route. Under these conditions, the application uploads its updated current position, and the DynNav server recognizes that the current position is not compatible with current route(s) and proceed to new route estimation, based on updated position information; the new route identifier is sent to the application in the current position update procedure (the notification procedure for the new route is therefore not needed). To minimize the interaction with the user for safety reason, the notification service will be automatically extended to the new proposed route(s).

Later, due to a traffic jam on the selected route, the DynNav server notifies the application of updated traffic information for the selected route and a proposal of an alternative route. The application accesses to new traffic parameters for the current route and to the proposed alternative route. The DynNav server will automatically provide notification service for the new proposed route if not deleted.
The sequence describes the following operation on the resources:

· To define and modify the parameters of a trip, create and modify resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips
· To access to the identifiers of the proposed routes related to the defined trip, read resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips/{tripId}

· To access to information related to summarized route, read resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips/{tripId}/routes/{routeId}/sumRoute

· To access to information related to one or more full routes, read resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips/{tripId}/routes/{routeId}

· To access to traffic events related to the route, read resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/events/{eventId}

· To remove unnecessary routes, delete resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips/{tripId}/routes/{routeId}

· To subscribe to notification service for a trip and related routes, create resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/subscriptions
(The server will send notifications to the URL specified in the subscription resource; the notification will contain the URLs of the updated resources)

· To send notification to the application with the identifiers for the updated resources, create resource under the resource defined by the application
(This resource is provided by the client)

[image: image1]
Outline of the flows:

1. The application creates a trip using the journey parameters defined by the user using POST: the server proposes a set of routes for the journey with related traffic information and replies with a representation of created “trip” resource, which contains route identifiers of the proposed routes.

2. The application access to the set of routes in summarized format using GET, with performance parameters for main segments of the route. This step is repeated for all the routes proposed by the server. If, however, the length and complexity of the trip is limited and the network quality is adequate, full format route information may be requested already at this stage. Routes in summarized or full format may be encoded with partial information schema (see Appendix H).
3. The user of the application selects one route among the proposed set, The application, using GET; accesses to full format information for the route the user has selected; if, in the step 2, the full format route have been used, this step is not required..
4. The application accesses to traffic events related to the route in use, using links to traffic events resources provided in route representation, using GET. The access to traffic events may be limited to categories selected by the user.

5. The application removes unnecessary routes previously proposed by the server and not selected by the user, using DELETE.

6. If the DELETE operation is executed on a route that is referenced in resources described with partial route schema, the server has to keep the resources description consistent (i.e. complete route description should be provided for route previously encoded as partial).

7. The application creates a subscription to notification services for the trip using POST. The client is notified by the server of the following events:

a. Performance parameters updates and new traffic events for all the routes related to the trip

b. Alternative proposed routes in case of congestion on the existing one

8. The vehicle deviates and diverts from the current route(s), the application modifies origin parameter in Trip resource with PUT operation; the server recognizes that the current position does not belong to the current route and it calculates a new route with the new origin. The server replies to the PUT operation with the identifier of the new route included in the Trip representation, removing the old one. In case the modified origin parameter used in the PUT operation belongs to the route(s), the DynNav server uses this information to delete segments already travelled from the route(s) representation.

Note: This step (PUT operation on Trip resource) occurs when the vehicle deviates and diverts and when the vehicle drives a certain distance from the previous reporting position.

9. The application access the new proposed route with and performance parameters and traffic events using GET operation; since the application has subscribed to notification service for the Trip resource, the subscription includes all the routes related to the trip, the server will send notification for new events affecting the new route.

10. Traffic events and/or severe congestion along the proposed routes are detected by the server, the server notifies using POST the availability of updated information on the current route and a proposed alternative route

11. The application access to the updated information for the current route and reads the proposed alternative route using GET, as the subscription to notification service include all the routes related to the trip, notification will be extended to the alternative route.

5.3.2 Request of Traffic Information Related to Routes Estimated by the Application in Smart ND
This section describes a typical scenario of DynNav application where a smart ND, with route estimation functionalities, requests from the DynNav server traffic information related to one or more estimated routes. The main functionalities defined for this scenario are: (1) preliminary access to traffic events related to selected areas, (2) access to performance parameters for a set of routes estimated by smart ND and (3) the subscription to notification services for real time traffic information updates, (4) current position reporting by the application, and (5) access to traffic information for routes described with partial information, in case of re-routing by the smart ND.

In this scenario the user of the DynNav application defines the journey parameters (e.g. origin, destination, and road preferences), these parameters are uploaded on the DynNav server by the application; the smart ND estimates one or more geographical areas related to the defined journey and it accesses to traffic information (events and performances parameters) reported by the DynNav server for the selected areas; Using this traffic information, the ND can propose to the user a set of routes for the defined journey, trying to avoid congested road segments; the user select a reference route. The application uploads the selected route on the DynNav server accessing to related detailed traffic information (real time and forecast performance parameters). Furthermore, for real time optimal route estimation, the application subscribes to notification services for the trip, in order to receive updated traffic information related to the route (performance parameters and traffic events for the selected categories) .
At a given moment, an accident and/or severe congestion may occur along the current route: a notification message is triggered by the DynNav server toward the application. The application accesses to updated traffic information available for the route: as a consequence of degraded performances, the ND estimates an alternative route and requests related traffic information from the DynNav server. If the new route is less congested than the previous one, the old one is then removed by the ND, since the there is no more interested in the notification service for this resource. In case the performances of the proposed alternative route are poor, before removing the previous one, the ND may look for a less congested one. The ND can repeatedly estimate a set of alternative routes uploading them on the server. The application may choose to upload partial route information for bandwidth optimization (see Appendix H).

The application periodically reports its current position to the DynNav server, based on travelled distance: with updated position information the server can remove from the route representation the segments already travelled by the vehicle. In a later stage the vehicle diverts from the planned route, the ND estimates a new route that is uploaded on the server to access to related traffic information: the new route replaces the previous one and the notification service will cover the new resource.

The sequence describes the following operation on the resources:

· To define and modify the parameters of a trip, create and modify resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips
· To define an areas related to the trip, create resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/areas
· To access to traffic events related to the area, read resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/events/{eventId}

· To access to traffic information related to a route, create or modify a full format route under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips/{tripId}/routes
· To subscribe to notification service for an area and/or trip with the related route, create resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/subscriptions
(the server will send notifications to the URL specified in the subscription resource; the notification will contain the URLs of the updated resources)
· To remove an old route, delete a route under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips/{tripId}/routes
· To send notification to the application with the identifiers for the updated resources, create resource under the resource defined by the application
(This resource is provided by the client)

[image: image2]
Outline of the flows:

1. The application creates a Trip with the journey parameters defined by the user using POST and it receives from the server a representation of created “trip” resource, with trip identifier and defined parameters. The application specifies that routes estimation functionalities are not requested.
2. The application creates one or more areas, related to the defined trip using POST, to access to traffic events reported for the defined areas. The server replies with representations of areas that include identifiers of traffic events (accidents, constructions, congestions, and etc.).

Note: according to event data structure [TTI RTM] performance parameters are defined as traffic events.
3. The application requests the reported traffic events using GET: this information is used by the ND to propose a route for the defined journey, trying to avoid critical road segments (affected by accidents, construction, or congestions). The access to traffic events may be limited to categories selected by the user.
4. The application uploads an estimated route (selected by the user among a set proposed by ND) on the server with using POST: the server replies with a representation of the ‘route’ resource, which contains performance parameters and links to traffic events.

5. The application subscribes to the notification service for the area selected (step 2) and for the defined trip (step 3) using POST. The application will be notified of performance parameters and traffic events related to selected area and to all the route uploaded for the trip.
6. The application periodically updates its current position using PUT, to modify origin parameter of Trip resource, this operation is triggered when the vehicle drives a certain distance from the previous reporting position; the DynNav server utilizes this information to delete the segments already travelled from the route(s) information.

7. When traffic events and/or severe congestion along the proposed routes are detected by the server; the server notify to the application updated traffic information on the current route, using POST on the url specified by the application.
8. The application accesses to the updated traffic information (traffic events and performance parameters) related to the route using GET.
9. The application decides to re-calculate a new route under the conditions:

a) The application receives the updated traffic information in step 8.

b) The application detects that the vehicle is deviating and diverting from the defined route.

The application uploads the new calculated route to the server with create or modify operation using PUT on a an existing route or POST on route factory resource, depending on whether or not the application wishes to keep valid the previous route. . The server replies with a representation of the “route” resource which contains performance parameters. This step may be repeated until a route that satisfies performance requirements is found.
Note: for bandwidth optimization, the application can choose to use partial route schema (see Appendix H), uploading the changed segments with respect to already defined reference route.

10. The application deletes the previous route no more in use from the set of proposed routes, in order to unsubscribe to notification service for the that resource using DELETE (If the new route has replaced the old one, with a modify operation, at step 9, the delete operation is not need).
Note: If the delete operation is executed on a route that is referenced in resources described with partial route information, the server has to keep the resources description consistent (i.e. complete route description should be provided for route previously encoded as partial).
4. GET: request traffic events related to the route

1. POST: create trip description

Response: created trip id and route ids (summarized)

3. GET: request the selected full format route

Create a trip

Response: traffic event information

Response: route information

Read traffic events

Submit a notification

9. POST: notify by CallBackNotifURL

Response

10. GET: route information in the notification

Response with the selected route

2. GET: request a set of summarized routes

Response: route information of a selected summarized route

Estimate a new route�and/or remove� travelled route

7. PUT: modify Trip parameters

Response

8. GET: request route id resource

Response with the selected route

Read the new route

Response

6. POST: subscription with subscription id

Create a subscription

Application

Server

Server

Read the summarized route and select one

Read a route in full format

Response

5. Delete: remove unnecessary routes

Remove unnecessary routes

Read the new route

Figure � SEQ Figure * ARABIC �2� Sequence for Lightweight ND

Figure � SEQ Figure * ARABIC �3� Sequence for Smart ND

4. POST: create a route calculated by application

1. POST: create trip description

Response: created trip id

3. GET: request the traffic events

Create a trip

Response: performance parameters

Response: traffic events

Calculate route(s) �with traffic events

9. PUT/POST: modify/create calculated route

Response: performance parameters

2. POST: create area description

Response: event ids related to the area

7. POST: notification under CallBackNotifURL

Response

8. GET: request the traffic info based on the notification

Response:

Response

6. PUT: update the trip parameter

Create a subscription for the trip

Application

Server

Server

Read traffic events

Response

5. POST: subscription to the trip

Create a route �resource

Create traffic events related to the area

10. DELETE: remove the previous route resource

Response

Update the trip parameter (origin)

Update the route resource

Remove the previous route

Read the updated �traffic information

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20120101-I]

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 9 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20120101-I]

