Doc# OMA-LOC-2016-0053-CR_NavSe_1_0_TS_Sequence_Diagrams[image: image7.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-LOC-2016-0053-CR_NavSe_1_0_TS_Sequence_Diagrams
Change Request

Change Request

	Title:
	Sequence Diagrams of NavSe v1.0
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA LOC WG

	Doc to Change:
	OMA-TS-REST_NetAPI_NavSe-V1_0-20161101-D

	Submission Date:
	07 Dec 2016

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Jaehyuk Choi, ETRI, jh.choi@etri.re.kr
Youngsu Cho, ETRI, choys@etri.re.kr

	Replaces:
	n/a

1 Reason for Change

This CR proposes sequence diagram for vehicle navigation services. Proposed sequence diagrams are as below:
· Request of Route Information and Related Traffic Information by the Application in a Lightweight ND
· Request of Traffic Information Related to Routes Estimated by the Application and re-routing conditions in Smart ND
· Request of Traffic Information for a Defined Area by Application in Smart ND
Proposed contents are from DynNav 1.1 with some modifications.
2 Impact on Backward Compatibility

n/a
3 Impact on Other Specifications

n/a
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Discuss and agree to incorporate this CR into the NavSe v1.0 RESTful Network API TS
6 Detailed Change Proposal

5.3
Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.

7.1.1

·
·

1.
a)
b)
2.
3.

1.
a)
b)
2.
3.
5.3.1
Request of Route Information and Related Traffic Information by the Application in a Lightweight ND
This section describes a typical scenario of NavSe application where lightweight ND requests route and traffic information from the NavSe server. The main functionalities defined for this scenario are: (1) the delivery of route information in summarized format and/or full format, (2) the subscription to notification services, (3) current position reporting by the application, and (4) the re-routing in case of: (a) congestion along the proposed route, and (b) deviation and diversion from the route in use.

In this scenario the user of NavSe application defines the journey in terms of origin, destination and other preferences; these parameters are immediately sent by the ND to the NavSe server. The NavSe server will reply with a set of routes matching with journey parameters taking into account real-time and forecast traffic information. For bandwidth optimization, the routes are available in the NavSe server in two different formats, summarized and full. The application accesses the proposed routes in summarized format: with this information the user can select a route out of the proposed set to be used for navigation. The application requests the full format for the selected route and it may delete the routes not used. Due to limited length, complexity of the journey and network capabilities, the proposed routes may be encoded right from the beginning in full format; in this case the NavSe server does not need to encode the routes in summarized format. The application may request from the server the information about the segments shape of routes (WGS84 coordinates polyline), if this data is not available on the ND in a roads database.
The NavSe application subscribes to notification services for receiving traffic information updates (performance parameters and traffic events for selected categories) for the route in use, alternative route proposals in case of congestion along that route. The application will update its current position on the NavSe server after the vehicle drives a certain distance. With this information, the server will delete segments already travelled from the route in use and remove the routes not compatible anymore with current position (if not previously deleted by the application).

Afterwards, the user deviates and diverts from the route in use. Under these conditions, the application uploads its updated current position, and the NavSe server recognizes that the current position is not compatible with the route in use and proceeds to new route estimation, based on updated position information; the new route identifier is sent to the application in the current position update procedure (the notification procedure for the new route is therefore not needed). To minimize the interaction with the user for safety reason, the notification service will be automatically extended to the new proposed route(s).

Later, due to a traffic jam on the selected route, the NavSe server notifies the application of updated traffic information for the route in use and a proposal of an alternative route and the application accesses the notified resources. The NavSe server will automatically provide notification service for the new proposed route if not deleted.
The sequence describes the following operation on the resources:

· To define and modify the parameters of a trip, create and modify resource under
http://{serverRoot}/navse/1/{appId}/trips
· To access the identifiers of the proposed routes related to the defined trip, read resource under
http://{serverRoot}/navse/1/{appId}/trips/{tripId}

· To access information related to summarized route, read resource under
http://{serverRoot}/navse/1/{appId}/trips/{tripId}/routes/{routeId}/sumRoute

· To access information related to one or more full routes, read resource under
http://{serverRoot}/navse/1/{appId}/trips/{tripId}/routes/{routeId}

· To access traffic events related to the route, read resource under
http://{serverRoot}/navse/1/{appId}/events/{eventId}

· To remove unnecessary routes, delete resource under
http://{serverRoot}/navse/1/{appId}/trips/{tripId}/routes/{routeId}

· To subscribe to notification service for a trip and related routes, create resource under
http://{serverRoot}/navse/1/{appId}/subscriptions
(The server will send notifications to the URL specified in the subscription resource; the notification will contain the URLs of the updated resources)

· To send notification to the application with the identifiers for the updated resources, create resource under the resource defined by the application
(This resource is provided by the client)

[image: image4]
Figure 2: Sequence for Lightweight ND
Outline of the flows:

1. The application creates a trip using the journey parameters defined by the user using POST: the server proposes a set of routes for the journey with related traffic information and replies with a representation of created “trip” resource, which contains route identifiers of the proposed routes.

2. The application accesses the set of routes in summarized format using GET. This step is repeated for all the routes proposed by the server. If, however, the length and complexity of the trip is limited and the network quality is adequate, full format route information can be used at this stage. The application may request shape information (WGS84 coordinates polyline) for the proposed routes, if this information is not available in the ND.

3. The user of the application selects one route among the proposed set, the application accesses full format information for the route the user has selected, using GET. The application may request shape information (WGS84 coordinates polyline) for the proposed route, if this information is not available in the ND. If, in the step 2, the full format route has been retrieved, this step is not required. The server replies with the selected route information with related traffic information.
4. The application accesses traffic events related to the route in use, using links to traffic events resources provided in route representation, using GET. The access to the traffic events may be limited to the categories selected by the user.
5. The application removes unnecessary routes previously proposed by the server and not selected by the user, using DELETE.

6. The application creates a subscription to notification services for the trip using POST. The client is notified by the server of the following events:

a. Performance parameters update and new traffic events (for selected categories) for all the routes related to the trip.
b. Alternative proposed routes in case of congestion on the route in use.

7. The vehicle deviates and diverts from the route in use; the application modifies origin parameter in Trip resource with PUT operation. The server recognizes that the current position does not belong to the route in use and it calculates a new route with the new origin. The server replies to the PUT operation with the identifier of the new route included in the Trip representation, and it removes the old one. In case the modified origin parameter used in the PUT operation belongs to the route, the NavSe server uses this information to delete segments already travelled from the route representation.

Note: This step (PUT operation on Trip resource) occurs when the vehicle deviates and diverts and when the vehicle drives a certain distance from the previous reporting position, and/or when the vehicle enters a segment where the NavSe server has requested to upload the current position.
8. The application accesses the new proposed route with performance parameters and traffic events using GET operation. Since the application has subscribed to notification service for the Trip resource, the subscription will cover the new proposed route.
9. Traffic events and/or severe congestion along the proposed routes are detected by the server, the server notifies using POST the URL of updated information.
10. The application accesses the updated information for the route in use, new related traffic events and/or the proposed alternative route using GET, as the subscription to notification service include all the routes related to the trip, notification will be extended to the proposed alternative route.
5.3.2
Request of Traffic Information Related to Routes Estimated by the Application and re-routing conditions in Smart ND
This section describes a typical scenario of NavSe application where a smart ND, with route estimation functionalities, requests traffic information related to one or more estimated routes from the NavSe server. The main functionalities defined for this scenario are: (1) preliminary access to traffic information related to selected areas, (2) access to performance parameters for a set of routes estimated by smart ND for the defined trip and (3) the subscription to notification services for real time traffic information updates, (4) current position reporting by the application, and (5) access traffic information for routes described with partial information, in case of re-routing by the smart ND.
In this scenario, the user of the NavSe application defines the journey parameters (e.g. origin, destination, and road preferences), these parameters are uploaded on the NavSe server by the application; the smart ND estimates one or more geographical areas related to the defined journey and it accesses traffic information (events and performances parameters) reported by the NavSe server for the selected areas; Using this traffic information, the ND can propose to the user a set of routes for the defined journey, trying to avoid congested road segments; the user selects a reference route. The application uploads the selected route on the NavSe server accessing related traffic information (real-time and forecast performance parameters). Furthermore, for real time optimal route estimation, the application subscribes to notification services for the trip, in order to receive updated traffic information related to the route in use (performance parameters and traffic events for selected categories).
At a given moment, an accident and/or severe congestion may occur along the current route: a notification message is triggered by the NavSe server toward the application. The application accesses updated traffic information available for the route: as a consequence of degraded performances, the ND estimates an alternative route and requests related traffic information from the NavSe server. If the new route is less congested than the previous one, the old one is then removed by the ND, since the ND is no longer interested in the notification service for this resource. In case the performances of the proposed alternative route are poor, before removing the previous one, the ND may look for a less congested one. The ND can repeatedly estimate a set of alternative routes uploading them on the server. The application may choose to upload partial route information for bandwidth optimization (see Appendix X).

The application periodically reports its current position to the NavSe server, based on travelled distance: with updated position information the server can remove the segments already travelled by the vehicle from the route representation.
In a later stage the vehicle diverts from the planned route, the ND estimates a new route that is uploaded on the server to access related traffic information: The new route replaces the previous one and the notification service will cover the new resource.

The sequence describes the following operation on the resources:

· To define and modify the parameters of a trip, create and modify resource under
http://{serverRoot}/navse/1/{appId}/trips
· To define areas related to the trip, create resource under
http://{serverRoot}/navse/1/{appId}/areas
· To access traffic events related to the area, read resource under
http://{serverRoot}/navse/1/{appId}/events/{eventId}

· To access traffic information related to a route, create or modify a full format route under
http://{serverRoot}/navse/1/{appId}/trips/{tripId}/routes
· To subscribe to notification service for an area and/or trip with the related route, create resource under
http://{serverRoot}/navse/1/{appId}/subscriptions
(the server will send notifications to the URL specified in the subscription resource; the notification will contain the URLs of the updated resources)
· To remove an old route, delete a route under
http://{serverRoot}/navse/1/{appId}/trips/{tripId}/routes
· To send notification to the application with the identifiers for the updated resources, create resource under the resource defined by the application
(This resource is provided by the client)

[image: image5]
Figure 3: Sequence for Smart ND
Outline of the flows:

1. The application creates a Trip with the journey parameters defined by the user using POST and it receives from the server a representation of created “trip” resource, with trip identifier and defined parameters. The application specifies that routes estimation functionalities are not requested.
2. The application creates an Area description using POST to request traffic information related to the trip (in this case the Area structure will be identified with origin and destination coordinates). The server may reply with traffic information including selected categories of traffic events for the area related to the described trip, and performance parameters for the area around the origin only in case there is severe congestion.

3. The application reads the reported link(s) to traffic information using GET. This information, together with performance parameters retrieved in step 2, is used by the ND to calculate a set of routes avoiding critical road segments (affected by accidents, construction, or congestions).
4. The application uploads an estimated route (selected by the user among a set proposed by ND) on the server using POST. The server replies with a representation of the ‘route’ resource, which contains performance parameters and link(s) to traffic events.

5. The application subscribes to the notification service for the selected area (step 2) and for the uploaded route (step 4). The application will be notified of performance parameters and/or traffic events related to selected area and to the routes uploaded for the trip.
6. The application periodically updates its current position using PUT to modify the origin parameter of Trip resource. This operation is triggered when the vehicle drives a certain distance from the previous reporting position; the NavSe server utilizes this information to delete the segments already travelled from the route information.
7. When traffic events and/or severe congestion along the proposed routes are detected by the server, the server notifies the application. The server provides updated traffic information on the current route using POST on the link specified by the application.
8. The application accesses the updated traffic information (selected traffic events and performance parameters) related to the route using GET.
9. The ND decides to re-calculate a new route under the conditions:

a) The application receives the updated traffic information in the step 8.

b) The ND detects that the vehicle is deviating and diverting from the defined route.
The application uploads the new calculated route to the server with modify or create operation using PUT on a an existing route or POST on route factory resource, depending on whether or not the application wishes to keep valid the previous route. The server replies with a representation of the “route” resource which contains performance parameters.
This step may be repeated several times until the performance of the re-calculated route is better than the previous routes. However, in order to avoid going into a loop, the application can define a new area description to acquire traffic information in the area where the repeated query occurs with operations similar to those described in the step 2 and 3.
Note: for bandwidth optimization, the application can choose to use partial route schema (see Appendix X), uploading only the changed segments with respect to already defined reference route.

10. The application deletes the previous routes from the set of proposed routes when the previous routes are no longer in use. The application deletes the new calculated route from the set of proposed routes when the performance of the new route is worse than the route in use. The application unsubscribes the previous routes from notification service using DELETE. (If the new route has replaced the old one, with a modify operation, at the step 9, the DELETE operation is not needed).
Note: If the delete operation is executed on a route that is referenced in resources described with partial route information, the server has to keep the resources description consistent (i.e. complete route description should be provided for route previously encoded as partial).
5.3.3
Request of Traffic Information for a Defined Area by Application in Smart ND
The figure below shows a scenario for the application in smart ND that calculates the routes and interacts with the NavSe server to retrieve traffic information. In this scenario the application requests traffic information (performance parameters and events for selected categories) related to an area from the NavSe server in order to estimate a route for given origin and destination. No further interactions with the NavSe server will be required, as the user does not want to subscribe to real time traffic updates.

The resources:

· To define a new area for which traffic events are requested, create resource under
http://{serverRoot}/navse/1/{appId}/areas
· To read parameters and events related to a previously defined area, read resource under
http://{serverRoot}/navse/1/{appId}/areas/{areaId}

· To access a specific traffic event related to the area, read resource under
http://{serverRoot}/navse/1/{appId}/events/{eventId}

[image: image6]
Figure 4: Smart ND requesting traffic and Point Of Interest information
Outline of the flows:
1. The user of NavSe application selects an area where performance parameters and selected categories of traffic events are requested from the server. The application sends the d escription of the area to the server using POST, the server replies with a resource containing performance parameters and links to events (parted in categories) available for the selected area.

a) Server may reply with the location of the created resource. In this case an additional get operation on the location is needed to retrieve content of resource.
2. The application reads all events of categories that it considers interesting using GET. The access to traffic events may be limited to categories selected by the user. Considering all information available at this point, application (or user) may decide to request traffic information for other areas repeating steps 1 and 2.

4. GET: request traffic events related to the route

1. POST: create trip description

Response: created trip id and route ids (summarized)

3. GET: request the selected full format route

Create a trip

Response: traffic event information

Response: route information and performance parameters

Read traffic events

Submit a notification

9. POST: notify by CallBackNotifURL

Response

10. GET: updated information in the notification

Response with the updated information

2. GET: request a set of summarized routes

Response: route information of a selected summarized route

Estimate a new route�and/or remove� travelled route

7. PUT: modify the Trip parameters

Response

8. GET: request route id resource

Response with the selected route

Read the new route

Response

6. POST: subscription to notification for the Trip

Create a subscription

Application

Server

Server

Read the summarized routes and select one

Read a route in full format

Response

5. DELETE: remove unnecessary routes

Remove unnecessary routes

Read the updated information

4. POST: create a route calculated by application

1. POST: create trip description

Response: created trip id

3. GET: request the traffic events

Create a trip

Response: performance parameters

Response: traffic events

Calculate route(s) �with traffic information

9. PUT/POST: modify/create calculated route

Response: performance parameters

2. POST: create area description

Response: traffic information related to the area

7. POST: notification under CallBackNotifURL

Response

8. GET: request the traffic info based on the notification

Response:

Response

6. PUT: update the trip parameter

Create a subscription for the trip

Application

Server

Server

Read �traffic information

Response

5. POST: subscription to notification for the trip

Create a route �resource

Create traffic information related to the area

10. DELETE: remove the previous route resource

Response

Update the trip parameter (origin)

Update the route resource

Remove the previous route

Read the updated �traffic information

Server

1. POST: Area Description

Response with Area det. and Events List

2. GET: EventIds resources with traffic info.

Create an Area

Response with the selected events

Read a list of events

Application

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2016 Open Mobile Alliance All Rights Reserved.
Page 1 (of 12)
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.
[OMA-Template-ChangeRequest-20160602-I]

© 2016 Open Mobile Alliance All Rights Reserved.
Page 11 (of 12)
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.
[OMA-Template-ChangeRequest-20160602-I]

_1357634611/example-flow.zip

example-flow.ppt

3. Remove a call participant (including

resourceURL with participantId) from the session

Application

Server

1. POST CallSessionInformation

Response with created call session

resource incl. callSessionId

2. POST CallParticipantInformation to

resourceURL of new call session

Response with information about added call

Participant incl. resourceURL with participantId

Create a new call

session

Add participant to

session

4. GET participant list for callSessionId

Response with information about each

participant incl. their status

Fetch participants

5. Terminate the call session

Response or error message

Terminate call

session

Request removal

of participant

Response whether removal was successful

Delete participant

from session

