[image: image1.jpg]"sOMaQa

Open Mobile Alliance

OMA-REQ-2003-0869R01-OSPE_deploying_new_service
Submitted to OMA-REQ (OSPE)
30 Jan 2004
OMA-REQ-2003-0869R01-OSPE_deploying_new_service
Submitted to OMA-REQ (OSPE)
30 Jan 2004

Input Contribution

	Title:
	Deploying a new service
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-REQ (OSPE)

	Source:
	Stéphane H. Maes, Oracle Corporation
+1-203-300-7786
stephane.maes@oracle.com

	Attachments:
	n/a

	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

The OSPE requirement collection activity is in the use case collection phase.
Version R-01 addresses comments received in Singapore about the notion of service champion.
2 Summary of Contribution

This contribution provides a use case that describes some of the steps involved in the deployment of a new service in an existing environment.

As the service is deployed in an existing environment; instead of simply having to deploy the required components, mostly existing and already deployed components must be used. In the contribution, we identify in particular issues with:

 - Sharing data (existing and new data required for new service)

 - Possibly having to upgrade some of these components (or even removing and replacing some) and therefore having to:

 - Preserve data (backup, restore, upgrade, ...)

 - Carry over settings

 - Handling possible setting differences between the current settings and settings required for using some component to support the new service

 - Monitoring, debugging and launching live the upgraded components,

- Managing the dependencies of existing services on the components that are modified or for which the settings are changed.
3 Detailed Proposal
5.1 Deploying New Services in and Existing Environment
5.1.1 ASK * MERGEFORMAT Short Description

This use case describes describes some of the steps involved in the deployment of a new service in an existing environment.
5.1.2 Actor

The involved actors are all within the same service provider:

· The administrator of the existing services and components

· The system integrator responsible for deploying a new service and integrating it within the existing environment

· The developer / owner of the new service

5.1.2.1 Actor Specific Issues

The issues for the actors are:

· Administrator:

· Maintain every existing services in good working condition
· Manage and administer the existing services at any stage of their life cycle
· Manage and Administer the new service in conjunction with the existing services
· Integrator:

· Identify the technical requirements to support the new service including:
· Required components

· Required settings

· Integrate new components within the environment

· Upgrade as needed the existing components and their settings
· Support the deployment / execution of the new service

· Developer/owner:

· Deploy a new service within the service provider environment
5.1.2.2 Actor Specific Benefits

The benefits for the actors are:

· Administrator:

· Being able to manage throughout their life cycle and administer each services, independently of the fact that new services are added, removed or updated.
· Integrator:

· Being able to:

· Add new components in the environment

· Upgrade or update the settings of existing components for new services while maintaining compatibility with existing services
· Developer/owner:

· Being able to deploy new services rapidly and in a cost effective manner

5.1.3 Pre-conditions

The required pre-conditions are:

· A service provider environment exists it consists of several components
· Services are deployed, supported by these components.

· The overall system is managed by the administrator through an extensible application that relies on the life cycle management (including monitoring) interfaces of each component
· The developer/owner has identified a new service that must be deployed in the environment
5.1.4 Post-conditions

The required post-conditions are:

· The environment includes old and new components.

· Some of the old components may have been upgraded

· Some of the settings of the old components may have been adapted

· The old services are still working as before
· The new service is available and deployed

· The administrator can continue to administer old services and components.
· The administrator can similarly administer new services and components

5.1.5 Normal Flow

The normal flow for this use case is:

1. The developer/owner develops a new service as a application

2. The developer/owner and the integrator identify the components (including version) required to support the new services: the application will call the different components that it depends on. These components may need to have particular settings.
3. The integrator generates a system architecture design that describes how components relate to each others and the necessary physical connections and settings

4. The integrator possibly with the help of the administrator identify the components along with versions, settings and deployment choices (including physical connections) made in the service provider environment
5. As part of the usual routine or as an additional one off the administrator backs-up settings and data associated to each of the components

6. New versus existing components are identified
7. The new components are deployed in the service provider environment by establishing the necessary physical connections
8. The new components are configured through the life cycle management interfaces that they expose

· This may include configuring component settings as well as pointers (e.g. addresses, URI, …) to other components (new and older) that they depend on.

9. The old components are determined to be suitable versions with the correct configurations.

10. The new service is deployed as an application that relies on the different components, with the required settings

11. The new service is exposed to the appropriate authorized parties (e.g. end users or third party) by providing an accessible address
· This can be done for example by protecting the address and setting up the desired access rules for a “gatekeeper” mechanism

12. The administrator can monitor and manage the older components as before
13. The integrator, in collaboration with the administrator, extends the administration application to the new components by integrating the modules provided independently by the vendor of these new components

14. The developer/owner in collaboration with the integrator and the administrator, develop administration modules (monitoring and life cycle management including operational management) for the new service.
15. The administrator can manage all aspects of the life time of the new service, older services and all the components (new and older)

5.1.6 Alternative Flow

Several alternate flows may take place.
5.1.6.1 Component upgrades
At step 9, it is possible that the old components are not the appropriate version to support the new service. In such case, the integrator must work with the administrator to determine the impact of an upgrade of say one older component.

If the new version is backward compatible, we revert to the normal flow. However, if there are incompatibilities for services built for older versions, the integrator and administrator must decide between upgrading the older incompatible services or maintaining within the environment an older version of the problematic component. In the latter case, calls to the component must be appropriately re-directed to the appropriate version.
When installing newer services later, the re-direction rules must be updated based on the requirements of these newer services.

5.1.6.2 Setting changes
Similarly, at step 9, it is possible that the settings of a component must change in order to support the new service.

The integrator must then work with the administrator to determine if two versions of the components should be maintained within the environment or if it is possible dynamically change the settings of the component depending on the service that calls it. This may be performed by an additional component that monitors the type of call and configures the components on the fly in a side channel. It is also possible that the component offers an interface to the administrator that enables dynamic configuration. Intercepted calls to the components can be composed (the intermediary performs the necessary configuration steps) or transformed (into a new call that is the original call + configuration call) by the intermediary that intercepted the call.
During operation, the administrator can tune the ratio of components with one setting versus the other based on usage. This can even be dynamically done using optimization algorithms.
5.1.6.3 Data sub-setting
Similarly, at step 9, it is possible that the data used by a component must change in order to support the new service.

This can be considered as a particular case of the settings discussed in section 5.1.6.2, where a setting is used to select the appropriate data sub-set.
5.1.7 Operational and Quality of Experience Requirements

· Components should present interfaces to identify the version of a component
· Components should provide interfaces that allow their configuration. These should preferably support dynamic configuration.
· Such configuration interface should enable designation of the data store to be used by the component.

· Component should provide interfaces that allow monitoring of usage and complete life cycle management.

· When developing a service, it is good practice to expose similar interfaces (versioning, configuration and monitoring) to components in general.
· Components interface should allow backup and restore of components and data settings

· A service provider environment should provide ways to expose components to authorized parties

· A service provider environment should provide ways to control the conditions for exposing components to authorized parties

· In a service provider environment, there should exist mechanisms to direct request to the appropriate component based on rules set by the administrator
· In a service provider environment, there should be ways to monitor usage of a component

· Components should be backward compatible from version to version

4 Intellectual Property Rights Considerations

We are not aware of any IPR associated to this contribution.
5 Recommendations
We recommend adoption of the text of section 3 for section 5 of the OSPE RD.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20031003]

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20031003]

