[image: image3.jpg]
OMA-RPT-ApplicationPerformance-V1_0-20031028-A
Page 25 V(26)

	Application Performance Issues Report
Version 1.0 – 28 Oct 2003

	

	Open Mobile Alliance

OMA-RPT-ApplicationPerformance-V1_0-20031028-A

	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope

2.
References
5
2.1
Normative References
5
2.2
Informative References
5
3.
Terminology and Conventions
6
3.1
Conventions
6
3.2
Definitions
6
3.3
Abbreviations
6
4.
Introduction
7
5.
Definition of End-user Performance Requirements
9
5.1
Quality of Experience (QoE)
9
5.1.1
What is QoE ?
9
5.1.2
Why is QoE Important?
9
5.1.3
QoE Determination
9
5.1.4
Examples of QoE Targets
10
5.1.5
QoE and QoS
11
6.
Examples of Types of Applications
13
6.1
Web-browsing
13
6.2
Bulk Data
13
6.3
High-priority Transaction Services (E-commerce)
13
6.4
Still Image
13
6.5
Interactive Games
13
6.6
E-mail
13
6.7
Instant Messaging
14
6.8
Short Message Service and MMS
14
6.9
Video Services
14
6.9.1
Download and Playback
15
6.9.2
Streaming of Stored Content
15
6.9.3
Streaming of a Live Broadcast
15
6.9.4
Peer-to-peer Two-way Communication
16
7.
Wireless Performance Constraints
17
7.1
Characteristics of Cellular Connections
17
7.2
Main Application Vulnerabilities/Manifestations for these Characteristics
18
7.3
Issues Regarding Data Formats, Representation, and User Control of Applications.
19
8.
Design Guidelines for Maximising User Satisfaction for Applications
21
8.1
Application Best Practice Design Guidelines
21
8.1.1
Application
21
8.1.2
Data
22
8.1.3
User Control
22
8.1.4
Development Process
23
8.1.5
Client-Server Relationship
23
8.1.6
Transport Layer
23
9.
Conclusion
24
Appendix A
Change History (Informative)
25
A.1
Approved Version History
25

1. Scope

This document focuses on packet-based data applications (primarily client-server based) to be run over cellular connections. Guidelines are provided to optimise communication. The main objective is to provide high QoE (Quality of Experience) as manifested in user satisfaction.

These guidelines are not concerned with low-level application implementation details such as choice of programming language or widget set, nor with operating systems issues except to note that these must not have adverse impact on QoE when carrying data. Likewise processing delays in the terminals and in the servers will not be dealt with. Proper management of these two components which do contribute to the end-to-end delay is absolutely critical in facilitating high QoE, but these are not the focus for the present discussion. Lastly, we are not concerned here with general usability and interface design issues as we expect that developers will consult with experts in those areas during the software and terminal design processes. Again, these are critical QoE-determining issues, but are not the focus of these guidelines.

This document does not remove the requirement on cellular operators to continue their work on improving the performance of the cellular connection, as this will complement the guidelines to provide even higher QoE. All else being equal, any reduction in the delay between a user requesting information and the fulfillment of that request will generally result in better QoE.

This document is an informative document and QoE requirements are not intended to be mandatory when they are stated in the OMA Requirements documents.
2. References

2.1 Normative References

	
	None

2.2 Informative References

	[1]
	"TCP in Wired-Cum-Wireless Environments." Pentikousis, K. (2000). IEEE Communications Surveys & Tutorials. Q4, 2000.

http://www.comsoc.org/livepubs/surveys/public/2000/dec/pentikousis.html

	[2]
	"Effect of Delays on TCP Performance", Gurtov, A. (2001). Proceedings of IFIP Personal Wireless Communications '2001, August 2001, Lappeenranta, Finland.

http://www.cs.helsinki.fi/u/gurtov/papers/pwc01.pdf

	[3]
	"Improving TCP performance over mobile networks", Elaarag, H. ACM Computing Surveys, (2002) 34, 3, 357 - 374.

	[4]
	"Wireless internet access using is-2000 third generation system: a performance and capacity study", Dziong, Z., Khan, F., Medepalli, K., & Nanda, S. Wireless Networks (2002) 8, 325-336.

	[5]
	"Fundamental Challenges in Mobile Computing", Satyanarayanan, M. (1996). Fifteenth ACM Symposium on Principles of Distributed Computing May 1996, Philadelphia, PA

http://www-2.cs.cmu.edu/afs/cs/project/coda/Web/docdir/podc95.pdf

	[6]
	WAP 2.0 Specifications

http://www.wapforum.org/

	[7]
	Cordell, P., Courtenay, M., Rudkin, S. (1997) Conferencing on the Internet BT Technology Journal, vol.15, no.4, Oct. 1997

http://www.btexact.com/docimages/70855/70855.pdf

	[8]
	ITU-T Recommendation G.1010 “End-user multimedia QoS categories” (11/2001)

	[9]
	Bertoglio, L., Leonardi, R., & Migliorati, P. (1999) Intermedia synchronization for video conference over IP. Signal Processing: Image Communication, 15, 149-164.

	[10]
	Hollier, M. Rimell, A., Hands, D., & Voelcker, R. (1999) Multi-modal Perception. BT Technology Journal, January 17, pp 35-46

http://www.bt.com/bttj/vol17no1/04.pdf

	[11]
	McInerney, P., & Li, J. (2002) Progress indication. IBM developerWorks, Web architecture

http://www-106.ibm.com/developerworks/usability/library/us-progind/?loc=dwmain

	[12]
	ITU-R Recommendation BT.1359-1 (11/1998) Relative timing of sound and vision for broadcasting

3. Terminology and Conventions

3.1 Conventions

This is an informative document, which is not intended to provide testable requirements to implementations.

The term cellular connections is used to depict the underlying bearer paths with similar characteristics (e.g. latency, jitter, data rate) as described in section 7.1.
3.2 Definitions
	Quality of Experience
	a measure of the overall acceptability of an application or service, as perceived by the user. There are multiple factors that interact to determine QoE including cost, reliability, usability, utility, and fidelity

3.3 Abbreviations

	LAN
	Local Area Network

	MOS
	Mean Opinion Score

	OMA
	Open Mobile Alliance

	QoE
	Quality of Experience

	QoS
	Quality of Service

	WAN
	Wide Area Network

	WAP
	Wireless Application Protocol

4. Introduction

It is widely recognised that packet-based data services represent an emerging revenue opportunity for the cellular industry, which has, up to now, largely depended on voice services. Current cellular networks are mature and highly optimized to provide an acceptable Quality of Experience (QoE) to voice users -- QoE is a measure of the overall acceptability of an application or service, as perceived by the end user. In the case of voice users, QoE is primarily determined by delay, echo control and voice reproduction quality because these directly impact the ability to hold a natural conversation. See Chapter 6 for a more thorough consideration of QoE.

The extension of these networks to provide acceptable QoE to packet-data users presents some significant engineering challenges. The very nature of cellular data networks (discussed in Chapter 7) implies that applications and services that have been so successful in the wired campus or office high speed LAN environment on a powerful desktop computer will need to be carefully crafted to respect the quite different wireless environment lest they risk low QoE. Likewise, QoE for embedded applications running on resource scarce devices that may be battery powered with modest processing speed and display capability can also benefit from the best practices articulated here. Though the amount of data transferred may in some cases be smaller for these devices, the applications are still at the mercy of cellular data characteristics, which will include larger network delay than wired access, and potential periods of dis-connectivity. Applications and devices that are not engineered with this in mind risk low QoE.

QoE should not be confused with Quality of Service (QoS), which is used to control network attributes, such as packet delay, jitter, packet loss rate, and availability, which are not directly experienced by the user. One of the main goals of QoS is to provide high QoE. QoE is a multifaceted concept, which is determined by many factors including cost, reliability, usability, utility, and fidelity. In terms of network and application performance, and for the purposes of this document, the primary factors that correlate with QoE are delay and loss in the network.

Thus, the guidelines point out optimisations and strategies at these lower layers that will directly improve QoE at the user layer, a layer above the OSI 7 layer model in the figure below.

 [image: image1.png]
The multi-layer nature of data transmission across multiple media with many intervening protocols makes it obvious that QoE is a product of performances at all these layers and in the terminals and servers. Design decisions towards reducing delay (considering the type of data and the relative importance of loss vs. delay for the user and application) and increasing robustness and availability need to made at all layers. At the same time, optimizations at one layer must be tested to make sure that they do not adversely affect subsequent layers. An end-to-end perspective (where end-to-end can frequently means a user requesting data and then receiving it) is needed. Ownership for QoE spans all layers.

The emphasis here is on data carried via IP packets [packet network bearer (packet data) and to a lesser extent circuit-borne data] over cellular. The basic recommendations are also valid for applications served by any access technology. After all, the user is likely to be unaware of the nature of the transport and merely wants access to data in a timely fashion at a fidelity that is appropriate for the task.

We all know that users (irrespective of the access technology they use) will not adopt services that have a poor user Quality of Experience (QoE) due to cumbersome or overly complicated interfaces, frustrating delays in accomplishing tasks, or failure to address a human need. Significant effort has been spent defining the functionality to allow IP applications to run over a cellular connection and provide mechanisms to control the Quality of Service of that connection. However, relatively little effort has been directed towards making sure these IP applications have good performance in terms of speed, reliability and efficiency: key factors in ensuring high QoE. This is of concern, as the majority of data applications are designed and tested on high speed LANs, often masking performance issues that go undiscovered until these applications are run over a cellular connection. IS managers are already encountering this problem when deploying applications on corporate WANs, which have poorer performance (viz; higher and more variable delay) than LANs.

Rather than re-engineer applications after they have caused unnecessary expense and frustration, the guidelines contained here can be used to design applications to provide good QoE for cellular connections from the start, thereby avoiding costly troubleshooting and wasted money in missed revenue opportunities. One of the simplest ways to ensure that applications meet their QoE targets is to optimise how applications communicate over the cellular connection (both at the protocol level, and in terms of the representation of the data that are exchanged).

In the future, users will connect to the network over a wide range of access technologies and cellular data will be one of the preferred options. Users will expect seamless connectivity and transparent access to their data on various devices.

Therefore, applications which today primarily operate in a LAN environment will also be increasingly used in a cellular environment (e.g., with WLAN NICs and cellular modems on a laptop computer). These guidelines should not only be applied to systems specifically optimised for the cellular environment, but also for all applications that may work across

heterogeneous access technologies. Many of the guidelines benefit not only the user in a more responsive interface, but the service provider as well benefits with better usage of resources and potential reduction in support costs and churn.

The information presented in this document provides a consolidated view of 'best practice' design guidelines for optimising the performance of data applications over wide-area cellular networks. These guidelines can also benefit applications that access data over wireline networks especially where these networks exhibit significant delay, data loss, and periods of disconnection. The guidelines described in this paper are distilled from many research domains including (inter alia) Human Factors, Software Performance Engineering, Network Engineering, and Usability. This knowledge base is applied in the context of recent experience in the deployment of applications and services over nascent wide-area packet data networks.

By considering the effect of network characteristics on application performance more compelling services can be offered to users. At the same time, the effect of applications on the network must be considered to ensure network availability and economy. These considerations must be balanced to provide acceptable levels of service to the users while permitting an acceptable return on investment for operators. It is an explicit goal of this paper to provide guidelines that help strike this balance.
5. Definition of End-user Performance Requirements
5.1 Quality of Experience (QoE)

5.1.1 What is QoE ?

Quality of Experience (QoE) is a measure of the overall acceptability of an application or service, as perceived by the user. In other words, QoE describes the ease with which a person can use a device, a system, an application, or a service for its intended purpose to complete a task or accomplish a goal. There are multiple factors that interact to determine QoE including cost, reliability, usability, utility, and fidelity. An indirect measure of QoE is user adoption: Users vote with their wallets. In general, applications, services, and devices that are too cumbersome (low usability) or do not address a human need (low utility) are ignored.

5.1.2 Why is QoE Important?

5.1.2.1 Engineering Benefits of Early QoE Analysis

Ignoring QoE in designing a device or system and waiting for users to vote with their money is expensive and wasteful. Delivering high QoE depends on gaining an understanding of the factors contributing to user perception/usability of the target services, and applying that knowledge to define the operating requirements. This top-down approach reduces development costs and the risks of user rejection and complaint, by ensuring that the device or system will meet user requirements. Furthermore, understanding QoE (human needs, capabilities, limitations, expectations, etc) can provide engineering optimizations that benefit the provider and the user. Two potent examples of this are broadcast television and fluorescent lighting which were optimized to respect human perception of colour, and flicker. Both these technologies took advantage of the bandpass characteristics of the human visual system to reduce technological demands while retaining an acceptable QoE.

5.1.2.2 QoE is a Quality Test for Architectures

“By what criteria do we evaluate a particular network architecture? The Internet was designed to meet the needs of users, and so any evaluative criteria must reduce, in essence, to the following question: how happy does this architecture make the users?'' Shenker, IEEE JSAC 1995.

This statement clearly and precisely articulates the "litmus test" for networked applications and services. If the Quality of the user Experience (QoE) is high, then the user is happy and satisfied. Low QoE indicates that the user did not have a good experience -- the very devices called on to get a task done for the user, got in the way. Clear performance requirements need to be set to enable performance testing, otherwise there is nothing to measure performances against.

5.1.2.3 Importance of QoE in a Wireless Environment

Wireless networks exhibit different performance characteristics than their wired counterparts. Wired LAN native applications and protocols may result in low QoE because they misbehave when out of their native/intended environments. Wireless data access will in some cases not be as good as a V.90 dialup modem, at least in the early stages. For example, an average web page (20KB of html + ten 5 KB images) will take 20-30 sec to download on early wireless (e.g., GPRS) vs. subsecond times on LAN and 10-12s on a V.90 modem. A 4MB email attachment will take longer than 10 minutes to download and potentially much longer to upload.

Thus applications, servers, terminals, networks, and middleware must all be designed with the goal of providing acceptable QoE according to the targets established and yet to be established by empirical research. Human-centric design tries to identify goals in a target user population, provides functionality that supports people in achieving those goals, and makes sure that it is easy for people to match the functionality to their goals.

5.1.3 QoE Determination

A start towards understanding these benefits is available in ITU-T Rec. G.1010 ”End-user multimedia QoS categories”. This Recommendation seeks to reduce the problem space (the number and nature of the engineering categories needed to support high QoE) and provide some first-pass QoE targets as input to QoS (Quality of Service) decisions.

The determination of these targets draws on many years of research in many disciplines including Human Factors Engineers, Human Computer Interaction (HCI) specialists, experimental psychologists, ergonomists, and others responsible for defining and quantifying human experience. The methods used rely on careful experimental design, control of extraneous variables, and usually involve statistical analysis in the determination of the result.

The most common approach is to simulate the key aspects of the target experience with control over suitable parameters and then to ask a number of subjects to rate the experience on a scale of good to bad. By averaging the results over a reasonable number of subjects, a graph can be produced mapping the relevant parameter setting to the average score obtained. This approach is generally known as a Mean Opinion Score (MOS). Variations on this include comparison to an ideal experience and scoring the degradation with respect to that experience (DMOS) or comparison with a fixed standard (CMOS).

Defining the QoE targets seems at first to be a boundless and daunting task. However, three simple facts greatly reduce the problem:

First, the human sensory, perceptual, cognitive, and psychomotor performance issues are relatively fixed.

Second, because networks are designed to deliver content (audio, text, video, still images ...) we generally have an original to reference against the reproduced copy delivered by the network.

Third, when the reproduced copy is displayed to the user, there are often only two QoE-relevant factors:

1. the delay the user experienced in fulfillment of a request (e.g., the time between clicking a URL and the eventual display of the web page)

2. the fidelity (e.g., mutes, clicks, frequency passband in a voice call).

For TCP/IP applications and services, these two artefacts often reduce to one; viz delay, because loss in the network translates into delay as the protocol stack acquires another copy of the lost or damaged information. For UDP and circuit-borne data, delay and fidelity both come into play.

5.1.4 Examples of QoE Targets

Many years of research in the military, academia and industry have provided QoE targets for low level functions such as character echo and system feedback from the days of serial-line terminals and main frame batch processing. Furthermore, the success of the World Wide Web (and probably the direct impact QoE confers on e-commerce revenues) spurred intensive research on acceptability of Web page delays. Though the QoE targets implied by this research are somewhat varied, they converge on a range of 2-10 seconds and recent research reveals other factors (e.g., delay consistency, user intention) which mediate tolerance of delay. Note that this figure represents the range of acceptable delay for the end user, but not the lowest and highest level performance targets for the applications.

These successes demonstrate that quantification of QoE is possible, and can be used for practical design. It is worth noting that QoE as measured empirically in MOS tests and laboratory psychophysical tests is a continuous function of response time and fidelity as shown below.

[image: image2.png]
Knowledge of the QoE function has important design implications. The acceptance range is not a single point and increases rapidly as system responsivity increases. The “System Response” at the x-axis of the above figure can also be interpreted as the QoS of the system in the light of the discussion in the succeeding section.

5.1.5 QoE and QoS

QoE is a concept, which captures the acceptability for a person while trying to accomplish a goal, in this case, running an application over a networked device. This abstract concept is indexed, in various ways, using forms of rating scale (e.g. MOS), or using task-based analyses (e.g. number of errors, time to complete task), or even physiological methods (e.g. heart rate). QoE exists just by virtue of a person experiencing something, and the point is to determine a measure how a user experiences the interaction and identify means to improve this user experience.
QoS as a concept was the realization that QoE can be improved by designing in and creating methods inside the network, for example, by giving priority to some kinds of packets according to the human requirement for the payload. Thus the implicit goal of QoS was improving QoE. However, by time, means have become more important than the goal and the focus of QoS turned into introducing mechanisms for networks to handle packets without considering their impact to user experience (i.e. QoE). In other words, to infer that QoE is improved because QoS mechanisms are used to reduce jitter or average packet delivery delay may not be accurate in all circumstances. During deployment phase, the positive impact of employing QoS mechanisms to end-user experience should be demonstrated in order not to waste any system resources or add unnecessary complexity to the network design. Put succinctly, what is important is the good user experience and the goal of QoS should be to deliver high QoE. Note that, QoS mechanisms, which may not directly benefit a given user but allow more users to access the services or enable cost reduction for the users, do actually improve the QoE, but in a less obvious way.
Applying the general QoE vs. system response model to the case of Web-page downloading, QoE is seen to be asymptotic. In the Figure of the preceding section, at the left side of the yellow "acceptable" region the rate may be about 1 page per 10 seconds. At the right side of the yellow "acceptable" region, we have about 1 page every 2 seconds. Note that providing pages faster than this has very little incremental value (QoE increase to a user). Thus, whatever QoS strategies might be in place, their goal should be to make sure that web pages arrive reliably in the acceptable region. This statement illuminates the distinction between QoS and QoE.

To reiterate, first, if there are no users, there is no QoE, though QoS may exist. Second, those who talk about QoS discuss such things as packet drop probability and delay and their higher order moments, i.e., packet loss rates and jitter. These may be influenced by QoS strategies but may or may not influence QoE. These terms are simply non-existent in QoE terms because the user does not experience them directly.

In order to achieve high QoE for applications and services intelligent design choices must be made at all seven layers of the OSI Reference Model and in the applications and devices themselves.

The relation between QoE and QoS is not straightforward and in most cases it is not one-to-one mapping. Even though this relation will be different from one application to another, it will always take the form of an S-curve as shown in the Figure, in section 5.1.4. To summarize, QoE is user-centric, QoS is system centric. In general, it is apparent that satisfactory QoS would be a necessary, but insufficient condition for QoE.

Deriving the specific relationship between QoE and QoS for a given application is part of the ongoing work. This relation is pretty well understood for voice, and some information exists for non-voice services in documents such as ITU-T G.1010 [8], but more work needs to be done in this area.

6. Examples of Types of Applications

This section provides examples of types of applications and the key factors that contribute to QoE for those applications. It is not intended to be an exhaustive list of all possible application types. Not all the applications mentioned may be in scope of OMA standardisation.

For many services, delay as it relates to how fast the system carries out user actions is a key factor in the QoE. For most services it is assumed that all data is delivered without losses or errors. However, for specific service types some losses or errors may be acceptable. This is specifically mentioned if it applies.

The example targets mentioned are not meant to be normative, but illustrate the types of parameters and the range of values that contribute to the QoE.

6.1 Web-browsing

In this category we refer to retrieving and viewing a web page which includes the page text and any inline images. From the user point of view, the main performance factor is how quickly a page appears after it has been requested. Delays of several seconds are acceptable,. In addition the user may be influenced by how easy the page is to read and how well graphics and pictures appear.

6.2 Bulk Data

This category includes file transfers (patches, plug-ins, and media files that are stored rather than streamed) and is clearly influenced by the size of the file and the data rate of the bearer. A determinant of QoE will be the variability of the download during the transfer (constant rates allow a user/client to predict completion time) and across transfers (all 2MB download should take a similar amount of time). As long as there is an indication that the file transfer is proceeding, it is reasonable to assume somewhat longer tolerance to delay than for a single Web-page.

6.3 High-priority Transaction Services (E-commerce)

The main performance requirement here is to provide a sense of immediacy to the user that the transaction is proceeding smoothly, and a delay of no more than a few seconds is desirable. The onus is on the content provider to make sure that images have been optimized for their purpose (see the discussion of data representation in section 7.2).

6.4 Still Image

This category includes a variety of encoding formats, some of which may be tolerant to information loss since they will be viewed by a human eye. However, given that even single bit errors can cause large disturbances in other still image formats, it is argued that this category should in general have zero information loss. However, delay requirements for still image transfer are not stringent and may be comparable to that for bulk data transfer, given that the image tends to be built up as it is being received, which provides an indication that data transfer is proceeding.

The visual quality of the received still image is also a factor in the overall QoE.

6.5 Interactive Games

Requirements for interactive games are obviously very dependent on the specific game, but it is clear that the games that rely on immediate response from the players will require very short delays of the order of a fraction of a second.

6.6 E-mail

E-mail is generally thought to be a store and forward service which, in principle, can tolerate delays of several minutes or even hours. However, it is important to differentiate between communications between the user and the local email server, and server to server transfer. When the user communicates with the local mail server, there is an expectation that the mail will be accessed within a few seconds.

6.7 Instant Messaging

Instant messaging primarily relates to text, but can also include audio, video and image. In any case, despite the name, it is not a real-time communication in the sense of conversational voice, . When both parties are available delays of several seconds to transfer the message from one to the other are acceptable.

6.8 Short Message Service and MMS

These services operate in a “store and forward” mode. However, in the case when both parties are available users generally expect the message to be delivered fairly quickly. In this case, delays of a few seconds are an acceptable delivery delay value to deliver messages.

6.9 Video Services

Video Services can be grouped into four categories, which may have different constraints, characteristics, attributes and end user expectations:

1) Download and playback of static audio/video content:

The content file, for example, a movie trailer or an archived video clip is transferred to the device and stored locally (e.g. in Flash memory or hard drive). The local storage likely contains the entire file, which may exist in non-volatile storage and can be accessed at will (except for possible memory limitations). After successful transfer most QoE issues are likely to be purely client-side (not network bound). Because play-out occurs after a large proportion of the file (often 100%) has arrived at the client, TCP/IP is appropriate, though it is possible that the file could arrive over WAP/WDP, email protocols or other protocols. In any case, an intact and uncorrupted file is desired and it is up to the downloading application to guarantee the integrity of the file. This is essentially a bulk-download class services and the primary QoE concerns are consistency in the download rate, and the ability to resume at transfer failure point in case of disconnection. Data transfer is highly asymmetric.

2) Streaming of stored/buffered audio/video content:

The content file, for example, a trailer, advertisement or news-feed audio/video clip is streamed to the device. The intent is for the viewer to begin watching and listening to the content within several seconds of the request and before the transfer is complete. In fact, the stream may be continuous rather than of fixed length. A certain amount of client-side buffering is implied (enough for several seconds or more worth of material) to hide transient transport failures. The content is basically a throw-away service and might not be stored (other than some buffering) on the client. Subsequent access to earlier/later parts of the stream may require a 'seek' command be sent to the server and some re-buffering. RTSP/RTCP/UDP is appropriate because the media player can calculate whether lost data can be re-acquired in time for playout. The primary QoE issues are audio and video distortion (transport and codec interactions) introduced by network loss, delay (+variation) and jitter, and time-to-start playout. Data transfer is highly asymmetric.

3) Streaming of live or lightly buffered audio/video content:

Live content, for example, a security camera, live videocast or remote control video is streamed into the device. The intent is for the delay between encoding and playout to be very short. In this case there is little or no chance to re-request lost data, and long server or client buffering is not acceptable because it will destroy the synchronicity of the server and client. UDP is likely most appropriate here because transport layer protection (TCP) and lower-layer bearer protection (e.g. ARQ) or compression (e.g. V.42bis) do not work well against the synchronistic requirement. The primary QoE issues are, as in the previous case, audio and video distortion (transport and codec interactions) introduced by network loss, delay (+variation) and jitter, and time-to-start playout. Data transfer is highly asymmetric.

4) Peer-to-peer two-way communication:

This is essentially a videoconference scenario and follows the characteristics of the previous case with the added complication that live audio/video data is streamed into both devices, i.e. the streaming nature is bi-directional. The primary QoE issues are, in addition to the ones mentioned above, low delay (to maintain conversational/social relationships) and audio/video synchronization. The data transfer may approach symmetry, depending on codec and conversation symmetry.

In all of these cases, audio/video rendering can be based on any applicable video encoding open standard. Synchronization of audio/video must fall within the commonly accepted limit. Refer to [8], [9], [10], and [12].

It is also important to distinguish several types of delay, as follows.
Human visible delays:

Client (player) startup: This is primarily a client-side issue (OS, resources, UI design) and should be insulated from network issues (e.g. a client should not freeze or block other applications if connectivity is transient).

Acknowledgement delay: This is the delay between a user requesting some stream/file and the acknowledgement by the server that the request has been received. This could be a request to initiate, restart, or seek a place in a stream or file.

Start-of-playout delay: This is the time from acknowledgement of the request, to the time the play-out starts. This will depend on buffering and in the cases of 1) and 2) above, extremely short delay is not necessary. Note that during this phase (buffering) the user should be kept apprised of progress according to usability best practices [11]. This delay will be heavily influenced by the goodput of the link and the codec/resolution of the stream.

Download delay: This is relevant to type 1) services only and is primarily data-rate bound.

Network Delays:

Users do not directly experience propagation, or network layer delay. They only see the effect that these have on audio/video playout. When transferred over a reliable transport protocol with good connectivity (and appropriate buffering) lost data are recovered, and audio/video playout is not likely to show much degradation beyond the codec artifacts. The quality of the video or audio is also limited by the capabilities of the device.
Performance issues and examples of end user needs of these video services are discussed in the following sections.

6.9.1 Download and Playback

For video rendering, a frame-rate of 30 fps should be used at the maximum, but the quality of implementation should strive to achieve a frame-rate as close to the best quality as allowed by the applicable video standard. The video renderer should be able to use the maximum screen size and colour depth as allowed by the device. The audio portion of the video clip should normally support stereo (2 channel) output, but mono output should also be acceptable. The latency between a user launching a video clip (e.g. by clicking PLAY) and the first acknowledgement and the first appearance of rendered video on screen should be less than a few seconds (e.g. < 2 sec and < 5 sec, respectively). VCR like commands should be functional with acceptable delays (e.g. < 2 sec of delay).

6.9.2 Streaming of Stored Content
For this category, the delay/loss/jitter requirements are the least stringent amongst all streaming video services; big amount of streamed data could be buffered, the data could be compressed and the transfer rate could be different than the playout rate (above or below). For video rendering, a frame-rate of 30 fps should be used at the maximum, but the quality of implementation should strive to achieve a frame-rate as close to the best quality as allowed by the applicable video standard. In order to improve the video quality by increased frame-rate, higher buffering delays could be tolerated. The video renderer should be able to use the maximum screen size and colour depth as allowed by the device. The audio portion of the video clip should be rendered with minimal frame loss (e.g. less than 1%), since these are easily perceived as "audio clicks" by human ear. The audio portion of the video clip should normally support stereo (2 channel) output, but mono output should also be acceptable. The latency between a user launching a video clip (e.g. by clicking PLAY) and the first acknowledgement and the first appearance of rendered video on screen should be less than few seconds (e.g. < 10 sec and < 30 sec -due to buffering-, respectively), if it does not contradict the aforementioned minimum frame-rate. Before the start of the streaming video, the status of the access should be updated on the device screen every second. VCR like commands should be functional, with minimum impact to the streaming (e.g. delays <10 seconds).
6.9.3 Streaming of a Live Broadcast
With this category of streaming, buffering of data is still possible but to a lesser extend than the previous case, because of the lag it introduces between the actual event and its rendering, jitter greater than the lag time and loss will have a negative impact to the quality of the video. A frame-rate of 30 fps is desirable but a frame-rate of (as low as) 5 fps should be acceptable depending on the delay/loss/jitter/data-rate characteristics of the network layer. It is desirable that the video renderer uses the maximum screen size and colour depth, however smaller screen size and lesser colour depth should be acceptable depending on the delay/data-rate characteristics of the network layer. The audio portion of the video clip should be rendered with minimal frame loss (e.g. less than 1%), since these are easily perceived as "audio clicks" by human ear. The audio portion of the video clip should normally support stereo (2 channel) output, but mono output should also be acceptable. The latency between a user launching a live broadcast (e.g. by clicking SHOW) and the first acknowledgement and the first appearance of the live broadcast on screen should be less than few seconds (e.g. < 10 sec and < 15 sec, respectively)
. Before the start of the streaming video, the status of the access should be updated on the device screen every second. If there is an issue with the access to break the streaming video, the client should automatically re-connect to the server to re-start the streaming.

6.9.4 Peer-to-peer Two-way Communication
In two-way communication, very little buffering is possible, data loss and jitter will have an adverse effect to the video quality. A frame-rate of 30 fps is desirable but a frame-rate of (as low as) 10 fps should be acceptable depending on the delay/loss/jitter/data-rate characteristics of the network layer. The network delay on the bearer path should in principle be the same as for conversational voice (e.g. < 400 ms, see ITU-T G.1010). It is desirable that the video renderer uses the maximum screen size and colour depth, however smaller screen size and lesser colour depth should be acceptable depending on the delay/data-rate characteristics of the network layer. The audio portion of the video clip should be rendered with minimal frame loss (e.g. less than 1%), since these are easily perceived as "audio clicks" by human ear. The audio portion of the video clip should normally support stereo (2 channel) output, but mono output should also be acceptable. The latency between a user starting a conference (e.g. by clicking CONNECT) and the first acknowledgement and the first appearance of the other party on screen should be less than few seconds (e.g. < 10 sec and < 15 sec, respectively). Before the start of the conference, the status of the connection should be updated on the device screen every second.
7. Wireless Performance Constraints

7.1 Characteristics of Cellular Connections

Cellular connections provide considerable convenience to users in terms of ubiquity and mobility. However, they are often referred to as Long Thin Networks, due to their high latency, jitter, low data rates and higher loss rates. It is critical for application designers to be familiar with cellular characteristics because applications that perform well on other access technologies (xDSL, LAN, cable, dial-up) may not necessarily perform well on a cellular connection (i.e., risking lower QoE). This section summarizes the main characteristics of 2.5G and 3G access networks for the benefits of application designers who may not be familiar with this medium. Further information concerning the impact of these characteristics on TCP/IP, applications, and users can be found in many places e.g., [1], [2], [3], [4].

Higher Delay:

Round Trip Times (RTT) for IP packets over cellular networks range from a few hundred milliseconds to a few seconds, compared with hundreds of microseconds in the LAN or 10s of ms in a wired WAN. Much of the latency occurs in the radio access portion of the cellular network due to intensive signal processing, serialization, and reassembly.

More Jitter (delay variance):

Any given IP packet traveling across a cellular network is subject to delay from many sources; serialization, propagation, processing, and delays resulting from various prioritization strategies in the network just to name a few. In addition, one must always remember that some portion of the data that users request must also transit the public Internet adding yet another source of variability. This will greatly affect the packet arrival rate in the client IP stack. Add user mobility and the potential of multiple TCP connections at the terminal and the variability increases greatly due to protocol and RF issues.

Relatively lower data rates:

GPRS networks are commonly configured to allow users to share up to 4 downstream timeslots with a throughput of about 42kb/s and is usually limited to 1 or 2 upstream timeslots with an effective throughput of 10-20kb/s. 3G technologies such as UMTS can support downlink data rates up to 384 Kbps, however, this will be at the expense of reduced capacity per cell. Even in 3G networks, operators will look to offer lower data rates (perhaps 64kb/s or 128kb/s) in order to increase user capacity.

Asymmetric data rates:

In order, to conserve scarce radio spectrum, operators engineer sessions with asymmetric data rates i.e. different Uplink (towards server) and Downlink (towards mobile) data rates. Note that this compromise capitalizes on an observation of user behaviour, viz; downstream: upstream byte count ratio is frequently as skewed as 10:1. For many client-server based applications, the client makes small requests of a few hundred of bytes (e.g., an HTTP GET request) and receives tens to hundreds of KBytes in reply (estimates for a typical web page are 60-100KB, though this varies widely).

Radio bandwidth costs money and it's expensive:

The business model for Cellular connections is different from wireline connections such as dial-up, cable and xDSL. Cellular operators have invested in great deal in license fees, and bandwidth is very scarce and expensive. To ensure that it is used properly, most operators are adopting a per megabyte pricing scheme. Even for flat-rate or block purchase packages, bandwidth should be conserved. Essentially, the more bits it takes to transmit a service, the higher the cost of that service to the user and the operator. Furthermore, inefficiency in transmission may result in unnecessary network loading and users experience slow and uneven service, or being denied network access; a losing proposition for all.

In addition, IP packetization, TCP packets, and security protocols add overhead to the data in both directions. For example, TCP requires in the best case one upstream acknowledgement for every few thousands of bytes of IP payload [see RFC 2581]. These various overheads can be in some cases more than single digit percentages of the user data. Some of this overhead is absolutely necessary. Some of it can be eliminated or greatly reduced. For example, modern network operating systems used in a LAN environment may be configured to query or answer protocols not appropriate to a nomadic or standalone terminal. These must be controlled (ideally eliminated), because they increase the cost of the service and waste capacity.

Mute Periods:

Cellular connections are subject to mute periods during which IP session connectivity remains, but physical connectivity is temporarily unavailable for periods of a few seconds, minutes, or even hours. During these periods it is not possible to send packets to/from the mobile client. Mute periods may occur as a result of mobility (e.g. handover from one cell or node to another), lack of radio coverage (e.g. tunnel, rural area) and poor RF. This is what is meant by the term "weak connectivity". Applications and operating systems must be configured to allow for this by making sure that no application can block the user from doing other work should that application momentarily (or for extended periods of time) be unable to send/receive data.

Roaming:

Roaming is the means by which users can still obtain connectivity in areas where they are not under the geographical coverage of their (home) cellular provider. Both national and international roaming is currently supported. From a technical perspective, roaming is mostly transparent to the application layer as users will normally obtain their services from their cellular provider. Roaming can cause increased latency (depending on the performance of the GRX network provider, i.e., WAN link(s) between home and visited networks). The most visible factor from the user's perspective, is the fact that roaming normally means higher access charges and/or per megabyte pricing. There may also be different imposed limits on radio resources, differing QoS and heterogeneous roaming policies as a user roams amongst providers. As a result of increased charges, user behaviour can differ between roaming and non-roaming scenarios e.g., shorter call duration.

Battery consumption of end user devices:

Because mobile devices (e.g., cell phones, PDAs, tablets, and laptop computers) will frequently be running on battery power, processing of unnecessary data reduces the amount of time these devices can be used between charges. Many mobile devices have a "standby" or low-power mode to conserve precious battery power during idle times. They may be 'awoken' by network events (e.g., WOL wake-on-LAN). Care must be taken to eliminate spurious network traffic which has no value to the user, yet consumes battery power. This use of standby or suspend modes also contributes to the "weak connectivity" concerns because users will expect applications to survive and simply continue business as usual upon reactivation of the mobile device.
7.2 Main Application Vulnerabilities/Manifestations for these Characteristics
The following discussion concerning applications and their vulnerabilities to network events is not specific to a cellular environment; these vulnerabilities exist independent of the transport. However, they are magnified greatly on cellular networks with long RTT and the other characteristics noted in Section 4. The goal is not to develop applications specifically for cellular networks, but to make applications work efficiently over any network inlcuding the cellular. The discussion points in this section are not only applicable to the applications that are still to be developed but also to the existing applications.

Application Turns:

In a client-server application, a user directly or indirectly makes a request for some data from a remote server as part of the task at hand. The request must traverse the network and be processed by the server, which then replies with the data or a message. The request/response pairs at the application protocol level which may consist of many lower level message exchanges, are called application turns. Thus the application turn is lower bounded in time by the round trip delay in the network. From a user perspective, there may be a single "user turn" --a user asks for a web page by clicking a link, and eventually sees a web page. However, at the application layer several turns may have taken place including some turns such as DNS and authentication that are not at all obvious to the user. At the TCP layer dozens of turns may have taken place -- at the radio layer hundreds, all of which must complete to complete the single user turn.

Application turns are highly sensitive to RTT potentially making the response times seen at the user interface unacceptable. For example, a simple SQL data query request can require 200 serial request-response cycles. With, for example, an average round trip time of 400 ms on a particular cellular connection, this application turn would take (200 trips * 0.4 s) 80 seconds to complete. An 80 second response for an interactive type application would result in unacceptable QoE. A better design strategy (probability of a higher QoE) would be to pipeline the queries (send all queries in a single upstream request), or to request a block of data where appropriate, rather than row-by-row requests.

Application Chattiness:

An application's chattiness is a broad term used to indicate the level of communication activity between a client and server. Chattiness incorporates things like the average number of application turns per transaction, periodic polling to retrieve new information, background messaging used to ensure the application remains active (i.e. heartbeat or hello messages). Generally speaking, application chattiness will result in to lower QoE for the application itself and will also lower QoE for other applications running concurrently (e.g., polling a POP sever ever 10 seconds may slow web page download). Such chattiness will also result in increased cost.

Application Resiliency:

Applications must be resilient to the characteristics of cellular connections. Applications with high-fidelity QoE requirements (absolutely no corruption or loss of application level data permitted) must use connection oriented transport protocols such as TCP, but must be able to tolerate the increased delay that this can cause (delay is increased because TCP will request the damaged data again which is RTT bounded). For many conventional TCP/IP data applications, (e.g., email, web browsing, file transfer, etc) loss or corruption of even a single bit can at worst be fatal for the application and potentially render the data useless to the user. Thus, mechanisms (CRCs, TCP acknowledgement) are in place to obviate this.

Applications with relaxed fidelity QoE requirements (e.g., voice, some forms of streaming audio and video) take advantage of the ability of codecs and the human receiver to overcome this loss or corruption of data. The amount of loss or corruption for circuit or UDP based applications will likely be higher in cellular connections so applications must be written so that they can survive potentially lower quality data.

Mute periods are probably one of the most important cellular characteristics against which applications must be resilient. This is because momentary loss of connection has the potential to cause applications to appear to hang, or perhaps place the user in a state of uncertainty as to whether it is prudent to await the return of connectivity or to terminate then restart the application. In the case of an interactive service, the user will not be certain if some transaction such as payment or request for services has been registered. The dilemma for the user then is to redo the transaction (and risk double billing) or assume the transaction went through and risk non-fulfillment. If the user could be confident that when connection is eventually re-established the session would continue where it left off, then the uncertainty could be eliminated. To the extent that such seamless application resumption is not assured in some cases, certainty (and QoE) is reduced. Remember, users are trying to achieve some goal, and are paying for the ability to do so: they will not tolerate applications hanging and having to continuously restart them after temporary loss of communication due to lack of coverage (e.g. tunnel) or poor RF.

7.3 Issues Regarding Data Formats, Representation, and User Control of Applications.

Inefficient data representation and transmission:

Inefficiencies in data transmissions increase the cost (and time) to deliver a service, thus reducing QOE. Application designers may not have the time to consider whether they are transmitting data efficiently because they have many other concerns such as basic and future functionality, debugging/stability, and deadlines. In addition, Rapid Application Development Kits, and licensed APIs may mean that a software designer only has limited parts of the application under direct control. This means that applications may communicate large amounts of unnecessary data, large amounts of redundant data, and fail to benefit from simple strategies such as lossless data compression and delta-coding (e.g., see RFCs 1952, 1951, 3229). Very often, redundant information is sent that is not required for the application to function properly. Simple techniques such as sending compressed data or providing more granular query type functions can greatly reduce the amount of data to be transmitted. Efficiencies can also be gained by configuring the transport protocol (e.g. TCP) at the client and server for optimal performance over a cellular connection.

There are two additional simple methods for improving QoE (by reducing the number of bytes sent and decreasing delay) for Web-based services. First, the choice of image format (e.g., gif vs. jpeg, vs. png) should be done with a good knowledge of the relative abilities of these formats to represent images of different types. Cartoon type images (few colours and large homogeneous regions) are generally best encoded as gif or potentially png. Photographic images (large number of colours and little homogeneity) are better encoded as jpegs and again some forms of png. It might seem odd to be discussing specific image formats in a general "best practices" paper, however, the QoE benefits in terms of perceived delay are huge. In some cases, an image rendered in the non-optimal format can easily result in a file size that is 10 times larger than necessary. (Consider too that many early cell phone and PDA terminals have neither the spatial nor colour resolution to benefit from anything more than 16 bit colour, and in fact may be limited to fewer than a few thousand colours . Sending resolutions above what can be reproduced on the terminal wastes time, money, and battery power to convert them locally to a usable format). The UAProf and CC/PP work done by the W3 is a step in the right direction [www.w3.org]. Also, where a verbatim image is not required by the user (e.g., for some logos, photos, and utility images such as web page bullets and dividers) low pass resolution versions may be perfectly acceptable.

Some applications already allow for internal lossless compression of data. For example, the very common multi-platform document viewer Acrobat Reader [www.adobe.com] can read pdf files that have been compressed by the document generating program. Such compression can reduce the file size by 50% or more. In addition, having documents available in a format that is readable on many operating system platforms and viewers as opposed to formats that can only be read by a smaller number of devices will surely increase QoE. Very likely, the operating systems and programs will become increasingly heterogeneous as mobile devices in many form factors come to market. If you want users to read your content, make it available in multiple formats. Separation of content from form is often a very useful strategy.

Greater flexibility and control:

Application data transmission has a Boolean result i.e. success or failure. If an application fails to successfully transmit the data, the end user normally has to re-attempt the entire operation. If the operation fails a few times in succession, this starts to greatly increase the cost to the end user, not to mention the amount of frustration it causes. Often, end users don't even realize how much data needs to be transmitted to complete the operation as no size or average time to download indication is provided. If applications offered greater flexibility to control data transmission to the end users, providing capabilities to pause, cancel, defer, or restart from point of failure, QoE would be raised because the user does not feel at the mercy of the application or network. Likewise, the usability best practice of keeping the user informed of progress and estimated time to completion will help mediate the user interface level manifestations of the cellular network characteristics discussed above. It's important to note that QoE is a subjective measure and can be improved by appropriately managing user expectations and permitting them the perception of control.

This control is critical, especially because users may be asked to pay per byte, a priori knowledge of the amount of data to be transferred will allow the user to assess the cost before commencing the transaction. Also, Pop-up ads, spam, push services and so forth, must be under user control. Not only would these annoyances increase cost to the user needlessly, but they could reduce QoE for the user's primary task. For example, downloading spam would increase the time to get useful mail, pop-ups would slow web page loading.
8. Design Guidelines for Maximising User Satisfaction for Applications

8.1 Application Best Practice Design Guidelines

The following is a list of best practice design guidelines for improving application performance over cellular connections.

8.1.1 Application
Reduce number of Application Turns:

Application transactions that require a large number of turns are inefficient and with the intrinsically higher delay experienced on cellular connections can render interactive applications useless. Every effort must be made to reduce the number of turns per transaction to ensure QoE can be met.

Group requests/responses where possible:

Note that for Web browsing, HTTP 1.1 request pipelining does this (RFC 3002, 2068). Pipelining is a capability of requesting multiple objects in a single web request using one TCP connection (e.g. GETLIST image file1, 2, 3). Note also that HTTP 1.1 is given as a n example protocol that groups requests by means of pipelining, it should not be inferred that any given implementation of HTTP 1.1 will always perform better than all implementations of HTTP 1.0. A similar facility is available for POP mail (see RFC 2449).

Client Server Negotiation:

Structure the clients so their requests can be made specific enough to return only the information that is required. For example, for many cellular data applications, negotiation of codecs for audio/video streaming should start at values no higher than the bearer (i.e., over GPRS it is wasteful for a server to ask a client if it will accept a 90kb/s codec for live video).

Reduce/Eliminate Application Chattiness:

A "chatty" application requiring the transfer of many packets back and forth across the network generally will not meet end-user response time expectations, even if the total volume of data transferred is considered low. In addition to reducing the number of turns, background 'chatter' not critical to the maintenance of the application should be removed. Even though cellular connections often experience mute periods, applications should avoid periodically 'pinging' the client to ensure it is still reachable as this can have an adverse impact on radio resource management tools designed to conserve radio spectrum.

Ensure Applications are Resilient to Mute Periods:

Mute periods are an inherent characteristic of cellular networks. As a cellular network matures, mutes become less frequent due to increased coverage, stable implementation and more advanced techniques to combat against them. For example, voice is the current killer application on 2G networks (GSM, TDMA, CDMA) today. One of the reasons why voice is so successful on cellular networks is that it can tolerate small mute periods (perhaps 100s of milliseconds) without overly impacting voice quality. Unfortunately, many data applications behave quite poorly during a mute and hang or even crash. This causes great frustration to the end user, as they have to restart the application and may have lost some critical work.

Applications must be tolerant to mute periods. They must act gracefully during a mute and not hang, ideally allowing users to return to the point where they left off when connectivity returns. At the same time no network application, which is in a state of waiting for connectivity to return should block the user from other client-side applications (e.g., during an extended mute period, a user may wish to switch from an email client which stalled awaiting data to a word processing application). Mute periods vary significantly from a few seconds to several minutes, even hours. Obviously, there is a limit for how long an application can remain in a suspended state before it must be deactivated due to server capacity reasons. These guidelines recommend that an application must be able to support mute periods of at least 30 mins, preferably up to a few hours.

Perform Tasks Asynchronously:

When the application layer turns are serial (turn n-1 must complete before turn n can commence) the end user response time attributed to RTT is magnified. By designing application turns to run asynchronously (independent of each other), the impacts of long RTT can be reduced. By running delay insensitive background tasks in parallel, even greater gains can be obtained.
8.1.2 Data

Optimise Data that Needs to be Transmitted:

A key to a low cost cellular service with high QoE is to reduce the amount of data that needs to be transmitted. This may seem like an obvious statement, but many applications have redundant and unnecessary content, which is not important to the user. This is not a unique problem to cellular, wireline users are also turned off by applications that are too large to download. For example, many websites today are very sophisticated, containing Dynamic HTML (CGI scripts, JavaScript, etc.), a lot of graphics (avg. web page contains 10 images) and banners etc. These websites are only useful to broadband users, as they take too long to download. Remember that even at 64kb/s (8kB/s) a static 60KB web page containing a few images will take at least 10 seconds to arrive. This 10 seconds is at the high end of the commonly accepted user QoE target. Size definitely matters here. (see www.wirelessready.org/10tips.asp).
Separate form from content. Users with large screens and broadband connections maybe interested in fancy graphics, however, mobile phone users are more interested in content. Likewise, there may be limited graphics capability on the client device. High resolution images and documents may not be viewable or may require scarce client-side resources to convert/render.
Avoid sending duplicate content. Use delta's to allow users to synchronize information where possible. In addition common compression methods (zip, gzip, bzip, stuffit etc) can greatly reduce transmitted data in a lossless fashion. Choose the encoding technique carefully. Compromise between data transmission efficiency and processing requirements on the end device.
Cache Data on the Client or in the Network:

Caching is a very effective method for cutting down on the amount of network traffic. There are two general types of caching techniques, client and proxy caching:
Client caching involves the storage of already accessed data on the client so repeat requests can be serviced more quickly. Internet browsers use caching techniques to great effect. Web pages consist of static and dynamic objects. Each time a client requests a page from a Web site, it must request each object on the page. By using the features available in the HTTP 1.1 specifications, it is possible to cache the static involve the storing of web pages at objects and reduce the number of object requests from the client for subsequent page requests.
Proxy caches a local server so subsequent requests by different users do not have to access the content directly from the source can also improve user performance.
Client caches improve QoE more than proxy caches as they remove the impacts of the cellular connection RTT and the data transmittal costs. Proxy caches should also be employed by operators to further reduce response times.
8.1.3 User Control

Allow User-Control of Data Transmission:

A sure way to displease any user is if they un-expectedly start to transfer a very large piece of content or launch an application remotely and have no graceful means of canceling the transfer. The dissatisfaction level is further increased for cellular users who pay per KByte. It's important that users are aware of the actual size and estimated download times for different access technologies, so they can make informed decisions before they start to transfer information. Additional controls should also be provided to allow the user to determine what data gets transmitted (e.g. summary, alerts, mail headers, e.g., POP3 TOP command), also enabling users to cancel, defer, pause, compress etc. existing data transmissions. Given the nature of cellular characteristics (mutes, packet loss, loss of connection etc.), there is a higher probability that a data transfer may fail. From a user perspective it would be better to restart the transmission from the point of failure, rather than re-transmitting all the information again (e.g., ftp reget continuation).
8.1.4 Development Process
Understand Performance Implications of Underlying Development Environment:

With rapid-application-development (RAD) tools available today, application developers are no longer required to be intimately familiar with every line of code. Developers have at their disposal programming tools, such as remote procedure calls, API's, dynamic linked libraries and shared code modules, which allow them to exploit already written code versus developing it on their own. While these tools are increasing the productivity of application developers and allowing them to churn out code at Web speed, these tools are also causing many developers to overlook important details related to the applications intended-operating environment. Unfortunately, this situation too often leads to poorly performing solutions resulting in dissatisfied end-users. Application developers must pay more attention to the performance of the code generated by these tools and indeed the code they generate by themselves. They must ensure that their output is acceptable for a cellular connection. Where the results are found to be unsatisfactory, application developers must write more efficient procedures, while in parallel encourage development tool providers to offer more efficient procedures.
Know the Base Application or API:

Applications that are built on top of other applications must leverage any performance tuning tricks of the base application. These recommendations should be captured in the application documentation to ensure they are implemented in the field. For example, standard web browsers can have significantly improved performance by tuning a few parameters on both the client and the server.
8.1.5 Client-Server Relationship

Consider the Division of Labour: Client vs. Server Responsibilities.

Assigning tasks appropriately between the client and the server can greatly optimise network traffic. In addition to conserving bandwidth, this technique will also reduce the impact of network latency on the application's performance. When assigning tasks, especially to the client, careful consideration must be given to the processing power requirements of the task, as many end user devices may not be able to effectively perform the task. Downloading single player games, rather than playing it interactively over the network is a good example of sensible logical partitioning of tasks between client and server.

8.1.6 Transport Layer

Improve TCP Performance:

The performance of TCP over cellular bearers has been the subject of ongoing study in both academia and private industry for at least 10 years. It is generally recognized that TCP, which evolved and was optimised for wire-line networks, will not perform optimally in a wireless environment.
One obvious way to improve TCP performance over cellular connections is to optimise TCP for cellular on both the client and server side. This optimisation can be achieved by tuning TCP parameters to the wireless characteristics (large window size, large MTU, SACK, PILC IETF group recommendations, etc.). The tuning of certain TCP parameters has been recommended by the WAP Forum for WAP 2.0 [6] and also by the IETF PILC group [RFC 3150]. OMA supports and encourages these recommendations to be used.
Also consider whether the application is better served by TCP or UDP and, if the latter, are compression/retransmission strategies at the lower layers working towards or against the QoE goals, see for example [7].

9. Conclusion

The performance of applications is an important factor in determining user acceptance and their success in the market. Cellular data connections have particularly challenging characteristics. To ensure good application performance over cellular data connections requires performance aspects to be considered throughout the design process.

This report has introduced the concept of “Quality of Experience” as an indication of users perception of how well an application performs. A number of factors contribute to the overall Quality of Experience (QoE) and these are discussed with examples.

Based on this discussion it is recommended that:

· For the applications defined by OMA, Quality of Experience targets should be set. More specifically, for use-cases that capture an ”action-reaction” scenario where the actor is the end-user, a Quality of Experience target should be defined.

· The workgroups defining applications in the Open Mobile Alliance include these Quality of Experience targets in the use-cases and requirements documents as advisory information.

· The workgroups developing the technical specifications in the Open Mobile Alliance map the Quality of Experience targets into performance targets for the overall applications architecture. OMA may also define example reference architecture to show how QoE targets can be achieved by practical implementations.

· The Open Mobile Alliance cooperates with fora specifying various bearer technologies to ensure that these technologies can be configured to meet the performance needs of OMA specifications.

· Organisations and companies developing applications that may be used in a cellular environment use designs that will provide good performance.

Appendix A Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	OMA-RPT-ApplicationPerformance-V1_0-20031028-A
	28 Oct 2003
	Initial document to capture the Applications Performance Issues

 Ref TP Doc# OMA-TP-2003-0518-Application-Performance-Report for approval

� Please note, this statement places a restriction on the "Live Encoder" in such a way that the time difference between the two synch points should not be bigger than 15sec, in this specific example.

(2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20030824]
(2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20030824]

