Doc# OMA-WID_0210-WRAPI-V1_0-20100819-D.doc[image: image4.jpg]"sOMaQa

Open Mobile Alliance

Work Item Document

Doc# OMA-WID_0210-WRAPI-V1_0-20100819-D.doc
Work Item Document

Work Item Document

	Title:
	Web Runtime API (WRAPI) 1.0
	 FORMCHECKBOX
 Public

	Registered Name:
	Web Runtime API (WRAPI) 1.0

	Assigned Number:
	W0210

	Draft Expiration:
	2011-02-18
	 FORMCHECKBOX
 Date Reflects Extension

1 Description

Description and Objectives of Work to be Undertaken (including Justification and Use Cases):

This work item calls for the initial follow up to the CSEA 1.0 work item, which defined requirements for Web Runtime Environment (WRE) APIs exposing OMA enabler-based services available through the OMA Push, OMA Dynamic Content Delivery (DCD), and OMA Device Profile Evolution (DPE) enablers. This work item will deliver upon those requirements by defining a package of WRE API bindings for Push, DCD, and DPE. In addition, it will produce an API design best practices document for use by OMA WGs in the extension of their enablers via WRE APIs.

The rapidly expanding Web applications market environment in which the CSEA 1.0 requirements were defined has continued to develop. With the formation of the Wholesale Applications Community (WAC), developers will soon have access to a global marketplace where they can offer Web applications to users, with certified consistency in Web standards and API compliance by the WRE products that run the applications.

OMA has a key opportunity to leverage the global attention currently focused on the development of the Web as application platform, e.g. with broad HTML5 support near, and development of APIs continuing and converging within W3C.

WREAP will deliver on the CSEA release requirements, and help OMA adopt the WRE API platform consistently, through development of API best practices.
Provided as background, the description below is taken from the CSEA 1.0 work item.

APIs are a core Web 2.0 feature. They make client and server functions programmable, and change the market impact of what were previous siloed or inaccessible applications and functions, by integrating them into Web 2.0. Initiatives underway in a variety of SDO’s and organizations are developing open, standardized device APIs for Web applications, e.g. in the Wholesale Application Community (WAC) which is continuing the work of the OMTP’s BONDI project and JIL (the Joint Innovation Lab), W3C’s WebApps (Web Applications), DAP (Device API and Policy), UWA (Ubiquitous Web Applications), and HTML5 working groups. These initiatives are focused on a core set of use cases for access to generic device functions, e.g. PIM, Messaging, File System, Camera, Location, and Application Interaction.

While the availability of these APIs holds great promise for the richness of mobile Web applications, they address generic functions, and not the specific service enablers developed by OMA. The motivation to support this open, programmable environment should also extend to the enablers developed by OMA, e.g.:
· For the market served by OMA enablers, the further opportunity to leverage infrastructure investments and extend value-added services to Web applications
· For Web developers, opening up simple/interoperable interfaces to previously inaccessible OMA service enablers
OMA, and especially the CD WG, have made initial advances in this direction by defining standardized interfaces at least, for some enablers, e.g.:
· DCD’s Client Application Registration (CAR) and Client Application Delivery (CADE)

· Push’s Client Application Interface (CAI)

Key use cases can include:

· Web applications that use ATOM/RSS content formats can access that content through DCD, enabling simpler access to those services, and enhanced content delivery features. For example, developers can take advantage of DCD Push methods, which enable syndicated content delivery in ways not currently possible with conventional RSS/ATOM protocols, e.g. automatic network-initiated content delivery. Developers also avoid the complications of deploying/running their own Web application servers, while being able to create innovative mashup applications using content from many content providers. Using a DCD Server will avoid the same-domain restrictions which otherwise inhibit the development of mashup applications, by acting as a managed bridge to content sources. A DCD API will also provide developers with direct access to content, freeing them from implementing complex AJAX based APIs and XML/HTTP transaction management.

[image: image1.wmf]CSEA

–

 Enabled Terminal

DCD Client

DCD Server

Content

Provider

Web Runtime Environment

Browser

|

Widgets

Other API’s

API

Content Cache

,

Channel Guide

,

Application

Profiles

DCD Client

/

Server Protocol

(

online and offline use

)

AJAX

/

HTTP

(

online use

only

)

DCD Enabler

CSEA

Component of

,

or

interface provided by

DCD Server API

(

online and offline use

)

Note

:

arrows show primary

direction of data flow

Request

:

Register

,

Subscribe

,

Discover

,

Get

,

Submit

,

Suspend

,

Resume

Response

/

Notification

:

Registered

,

 Subscribed

,

Discovered

,

Delivered

,

Submitted

,

Supended

,

Resumed

Content Cache

,

Channel Guide

,

Application

Profiles

Figure 1 Overview of CSEA role in an OMA DCD-enabled terminal
· Web applications can support both online and offline use cases with access to the OMA Push enabler, and can use the OMA-standardized content types or application-specific content. OMA Push enables the direct delivery of content in network contexts (point-to-point IP, SMS, SIP/IMS, and broadcast/multicast) and via methods (e.g. connectionless Push) that are otherwise unachievable using W3C-standard specifications alone. OMA Push can complement the HTML5 native APIs Push-capable APIs such as Server-Sent Events and Web Sockets, with these additional capabilities that will be unsupported by the HTML5 APIs.

[image: image2.emf]CSEA–Enabled Terminal

Push Client

Push Proxy

Gateway (PPG)

Content

Provider

Browser | Widgets

Web Runtime Environment

Other API’s API

Connection

Profiles,

Application

Profiles

Push-OTA Protocol

(online and offline use)

HTML5

EventSource

API

(online use)

Push Enabler

CSEA

Component of, or

interface provided by

Push Access Protocol (PAP)

or RESTful Push API

(online and offline use)

Note: arrows show primary

direction of data flow

Register Push Application

Receive Push Events

Push Services,

Client/Application

Profiles

Figure 1 Overview of CSEA role in an OMA Push-enabled terminal
· Via DPE, Web applications can disclose application capabilities/preferences/status to content/service providers in both online and offline use cases, enabling content and services to be matched to the application. DPE supports extensions to its core vocabulary, enabling access to application-specific properties. In addition, the Delivery Context Ontology (DCO, a comprehensive and extensible characteristics data model for Web applications developed by the W3C’s Ubiquitous Web Applications (UWA) working group, can be used through DPE to convey standardized properties and application-specific properties. Via DPE, multiple content/service providers can have access to current Webapp properties, without the Webapp needing to synchronize each directly (which may not be possible anyway due to security limitations). DPE will also enable Webapp status to be automatically synchronized with content providers when the user switches devices.

[image: image3.wmf]CSEA

–

Enabled Terminal

DPE Client

DPE Server

Content

Provider

Property

Cache

Get

:

Publish

/

Query

/

Subscribe

Web Runtime Environment

Browser

|

Widgets

*

Device Status API

*

(

DCCI

)

API

[

Get

:

Query

/

Subscribe

,

Set

]

[

Device OS

]

Property

Groups

&

Report

Policies

DPE Client

/

Server

Protocol

Query

/

Subscribe

(

online and offline use

)

AJAX

/

HTTP

(

online use

only

)

DPE Enabler

(

W

3

C

/

UWA

)

*

WAC

/

DAP

*

CSEA

Component of

,

or

interface provided by

DPE Server API

Query

/

Subscribe

(

online and offline use

)

Note

:

arrows show primary

direction of data flow

[

Device

/

OS

]

[

Get

:

Query

/

Subscribe

]

Figure 2 Overview of CSEA role in an OMA DPE-enabled terminal
Work Areas:

This WI is divided into three work areas:

1. Specification of WRE API bindings (e.g. Javascript) for Web applications to access services via OMA DCD and Push, as enablers focused on access to content, a typical Web application need
2. Specification of WRE API bindings (e.g. Javascript) for Web applications to leverage the features of OMA DPE, as an enabler supplementing the Web application experience with key capabilities enabling application personalization and contextualization
3. Establishment of best practices for WRE APIs exposing services of OMA enablers to Web applications, e.g. API design patterns. In addition to these best practices, the completion of concrete API examples for OMA Push, DCD, and DPE in conformance to these best practices will provide further guidance to OMA WGs.
Issues this Work Item is Aimed to Solve

There is demonstrated interest in exposing client-side OMA enablers via APIs (e.g. see “Uniqueness”), The supporters of this WID agree that there is a broader opportunity here for the market built upon OMA enablers, and this has been supported also by the recent OMA BOD and TP activity related to APIs in general. Yet OMA enablers are largely inaccessible to Web applications through standardized APIs, and will remain so unless OMA takes the lead in initiating work in this area, by specifying the bindings for those APIs. The three APIs in scope for this WID in particular are of significant value in extending the reach of Web applications into OMA enabler-based service environments, as they address key needs of typical Web applications:
· DCD: Resource-efficient, context-aware, and automated content delivery

· Push: An “always-on” experience without the cost of an “always-on” persistent connection

· DPE: service adaptation to the context of the device, its applications, and its serving environment

Market Benefits:

The market served by OMA enablers will see significant benefit through successful incorporation of OMA enablers into Web application based services. Further, the markets supported by OMA enablers can be more easily broadened, i.e. to any client environment which supports Web applications.
Expected Market Penetration:

It is widely believed that Web 2.0 has proven that the Web applications model, especially as based upon W3C standards, is an effective approach toward the rapid development and easy deployment of applications. Further with HTML5, Web application environments will soon support first-order applications (i.e. comparable to native applications), and especially for application developers focused on the “long-tail” applications market, the Web application will be the chosen application model. Every mobile device has a browser, and browsers are extending into many other environments, e.g. consumer electronics and personal network devices. Further with the advent of widget platforms, the concept of downloadable applications will extend to many devices which currently have no support for native application development. There will be no other platform of comparable scale to the Web.

Complexity:

The development of API bindings for WREs is a fairly straightforward process of mapping existing OMA interfaces and enabler functions into API concepts. A variety of standardization efforts providing current examples for this exist as guidance for this work, and as the WID supporters are currently active in those efforts, or otherwise have expertise in this area, the complexity that does exist is well within the ability of OMA to address.
Time to Market:

The Web 2.0 / Web applications marketplace is poised for rapid growth, and standardization continues outside OMA for client-side API’s which do not address the key issues and features that have driven the development of OMA enablers. Thus unless OMA can act in this window of opportunity, the market built upon OMA enablers risks losing the ability to leverage some its key investments in service enablers, if they remain inaccessible to Web applications, or inconsistently addressed through proprietary efforts.
Uniqueness:

There is no current coordinated standardization activity focused on access to OMA enablers generally via client-side Web application API’s, e.g. Javascript-callable API’s for browser and widget based Web applications. Further such an activity is not likely to be initiated by more access/network-agnostic standards organizations such as W3C.

Core aspects of Web runtime support for device API’s have been defined and continue to be led by external SDO’s, e.g. W3C’s DAP. These aspects include API patterns and Web runtime security requirements. To ensure consistency with these efforts, and avoid market fragmentation, WREAP will reference published specifications where applicable for API patterns and Web runtime security requirements, and resolve any further aspects as necessary through liaison.
Existing Specifications or Documents Affected:

None
Linked Work Items:

The scope of this WID includes API specifications for DCD, Push, and DPE, as identified in the CSEA 1.0 reference release. There is thus a dependency upon the specifications for those enablers, limited to the Candidate versions.
Linked Affected OMA Groups and External Fora

The CD working group is responsible for the DCD, Push, and DPE enablers, and is recommended to lead the work on the API specifications.

OMA should collaborate with W3C to ensure OMA API consistency with the generic Web application API’s, security framework requirements, and other Web application related standards in development in W3C.
2 Planned Deliverables

Enabler Release Package:

 FORMCHECKBOX

Full life-cycle work flow with specifications (RD, AD, TS, etc) and interoperability testing.

Reference Release Package:

 FORMCHECKBOX

RD Package – This is not intended to be part of an enabler.

 FORMCHECKBOX

AD Package (Includes associated RD, if needed) – This is not intended to be part of an enabler.

 FORMCHECKBOX

White Paper Package – Informative technical document not associated with an enabler.
 FORMCHECKBOX

Data Description Package (e.g. Schema, MO) – Data description whose definition is not part of an enabler.
 FORMCHECKBOX

Other – Describe:_Technical Specifications for the Push, DCD, and DPE APIs, and a Best Practices white paper.
3 Impacts

	Service Requirements
	Arch
	Charging
	Security
	Privacy
	IOT

	Smart Card
	Terminals
	Servers
	Access
	
	
	
	
	

	
	X
	
	
	
	
	X
	
	

Service Impacts:

WRAPI will offer new opportunities for developers, but is not expected to impact existing services.
Architecture Impacts:

No impacts, as there are no planned changes to the features of the enablers in scope. WRAPI will only define bindings for access to the enablers in scope, via their existing interfaces and the functions of OMA clients implementing the enablers in devices.

Charging/Billing Impacts:

None expected.
Security Impacts:

Overall, issues of API security and policy management are being addressed in external organizations such as W3C DAP, based upon prior work in the OMTP (BONDI) and on W3Cs Web application APIs. In particular, the BONDI-defined security policy framework, which is being adopted by the WAC and is being incorporated into the work of W3C DAP, is compatible with OMA DM-based management (e.g. via a policy MO, which while not in scope for this WID, may be developed as a followup or parallel effort).

As noted above, to ensure consistency with the core Web runtime and device API aspects that have been defined by OMTP and W3C, WRAPI will reference the published specifications for requirements related to web runtime security, and other security-related aspects determined through liaison.
Privacy Impacts:

No specific impacts identified. Privacy protection is a key goal of the security-related initiatives in the WAC and W3C.
IOT Impacts:

No impacts are expected, as no client-server impacts are planned. However, the developed APIs are likely to be of use in the IOP and compliance testing of the related enablers.
4 Document History

4.1 Approved Versions

	Version
	Date
	Notes

	<tbd>
	xx Mmm 2010
	<provide info related to approval by TP>

4.2 Draft Version 1.0 Revisions

	Date
	Notes

	17 Aug 2010
	Initial draft.

	18 Aug 2010
	WID registration

	19 Aug 2010
	Changed name to Web Runtime API (WRAPI)

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-WID-20100101-I]

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-WID-20100101-I]

_1343546748.vsd
Data

CSEA – Enabled Terminal

DPE Client

DPE Server

Content Provider

Property Cache

Get: Publish/
Query/Subscribe

Web Runtime Environment

Browser | Widgets

Device Status API

(DCCI)

API

[Get:Query/Subscribe, Set]

[Device OS]

Property Groups & Report
Policies

DPE Client/Server Protocol
Query/Subscribe
(online and offline use)

AJAX / HTTP
(online use only)

DPE Enabler

(W3C/UWA)

WAC/DAP

CSEA

Component of, or interface provided by

DPE Server API
Query / Subscribe
(online and offline use)

Note: arrows show primary direction of data flow

[Device/OS]

[Get:Query/Subscribe]

_1343547260.vsd
Data

CSEA – Enabled Terminal

Push Client

Push Proxy Gateway (PPG)

Content Provider

Browser | Widgets

Web Runtime Environment

Other API’s

API

Connection Profiles, Application Profiles

Push-OTA Protocol
(online and offline use)

HTML5 EventSource API
(online use)

Push Enabler

CSEA

Component of, or interface provided by

Push Access Protocol (PAP) or RESTful Push API
(online and offline use)

Note: arrows show primary direction of data flow

Register Push Application

Receive Push Events

Push Services, Client/Application Profiles

_1317215584.vsd
Data

CSEA – Enabled Terminal

DCD Client

DCD Server

Request:
Register, Subscribe, Discover, Get, Submit,
Suspend, Resume

Content Provider

Web Runtime Environment

Browser | Widgets

Response/Notification: Registered,
 Subscribed, Discovered,
Delivered, Submitted,
Supended, Resumed

Other API’s

API

Content Cache, Channel Guide, Application Profiles

DCD Client/Server Protocol
(online and offline use)

AJAX / HTTP
(online use only)

DCD Enabler

Content Cache, Channel Guide, Application Profiles

CSEA

Component of, or interface provided by

DCD Server API
(online and offline use)

Note: arrows show primary direction of data flow

