Doc# OMA-CD-AOI-2013-0117-CR_Web_Sockets_Protocol_Binding_AOI_1.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

	Title:
	Web Sockets Protocol Binding AOI-1
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA CD AOI

	Doc to Change:
	OMA-ER-AOI-V1_0-20131115-D

	Submission Date:
	9 Dec 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Eduardo Fullea, efc@tid.es, Telefonica SA

	Replaces:
	n/a

1 Reason for Change

This CR introduces a new section with the WebSockets Protocol Binding according to the discussion on input contribution #93.
2 Impact on Backward Compatibility

none

3 Impact on Other Specifications

none
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Review and apply the proposed changes to the AOI ER.

6 Detailed Change Proposal

Change 1: Add normative reference
	[RFC6455]
	“The WebSocket Protocol”, I. Fette and A. Melnikov, December 2011, URL: http://www.ietf.org/rfc/rfc6455.txt

10. WebSockets Protocol Binding
Some of the AOI interfaces can be implemented via a WebSockets [RFC6455] Protocol Binding, with the request and responses encoded as JSON.
10.1 AOI-1 Interface

10.1.1 AOI Client Registration
Whenever an AOI Client wants to perform the AOI Client Registration it firstly establishes a websocket with the AOI Server and then issues an AOI Client Registration request, encoded according to the following JSON schema:
{

“title”: “ AOI Client Registration request”,

“type”: “object”,

“properties”: {

“messageType”: {

“type”: “string”,

“enum”:[“aoiClientRegistrationReq”]
},

“deviceNumber”: {

“type”: “string”
}
},

“required”: [“messageType”, “deviceNumber”]

}
Example:
{

messageType: “aoiClientRegistrationReq”,

deviceNumber: “5465465416846865465”
}

Upon successful registration the AOI Server returns an AOI Client Registration success response encoded according to the following JSON schema:
{

“title”: “ AOI Client Registration response”,

“type”: “object”,

“properties”: {

“messageType”: {

“type”: “string”,

“enum”:[“aoiClientRegistrationRes”]
},

“clientID”: {

“type”: “string”
},

“code”: {

“type”: “integer”
 “enum”:[200]
},

“desc”: {

“type”: “string”
}
},

“required”: [“messageType”, “clientID”, “code”, “desc”]

}
Example of success response:

{

messageType: “aoiClientRegistrationRes”,

clientID: “aoi123456789“,

code: 200,

desc: “OK“

}
Then the AOI Client keeps the websocket open so that a Notification Channel Activation request can be sent.
Upon unsuccessful registration the AOI Server returns an AOI Client Registration error response encoded according to the following JSON schema:
{

“title”: “ AOI Client Registration response”,

“type”: “object”,

“properties”: {

“messageType”: {

“type”: “string”,

“enum”:[“aoiClientRegistrationRes”]
},

 “code”: {

“type”: “integer”
},

“desc”: {

“type”: “string”
}
},

“required”: [“messageType”, “code”, “desc”]

}
Example of error response:

{

messageType: “aoiClientRegistrationRes”,

code: 503,

desc: “Service Unavailable“

}
Then the AOI Client may either retry the request if the error may be temporary or otherwise close the websocket.
10.1.2 AOI Client Deregistration

Whenever an AOI Client wants to perform the AOI Client Deregistration it firstly checks if there is an open websocket with the AOI Server and if not then it establishes it. Then it issues an AOI Client Deregistration request, encoded according to the following JSON schema:
{

“title”: “ AOI Client Deregistration request”,

“type”: “object”,

“properties”: {

“messageType”: {

“type”: “string”,

“enum”:[“aoiClientDeregistrationReq”]
},

“clientID”: {

“type”: “string”
}
},

“required”: [“messageType”, “clientID”]

}
Example:

{

messageType: “aoiClientDeregistrationReq”,

clientID: “aoi123456789“
}

Then the AOI Server returns an AOI Client Deregistration response encoded according to the following JSON schema:
{

“title”: “ AOI Client Deregistration response”,

“type”: “object”,

“properties”: {

“messageType”: {

“type”: “string”,

“enum”:[“ aoiClientDeregistrationRes”]
},

 “code”: {

“type”: “integer”
},

“desc”: {

“type”: “string”
}
},

“required”: [“messageType”, “code”, “desc”]

}
Example:
{

messageType: “aoiClientDeregistrationRes”,

code: 200,

desc: “OK“
}

Then the AOI Client proceeds to close the websocket.

10.1.3 Notification Channel Activation
10.1.4 Notification Channel Deactivation

10.1.5 Client Application Registration

10.1.6 Client Application Deregistration

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

